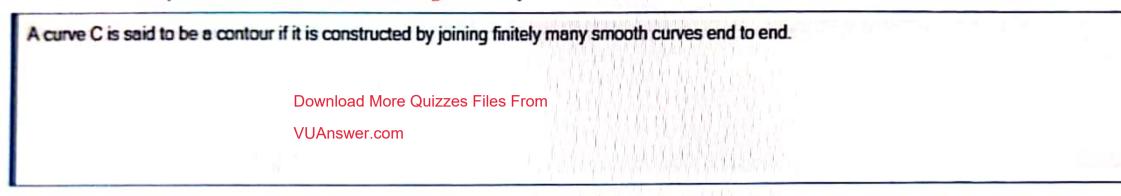


Let z_o and z₁ be two points in simply connected domain D and f be an analytic complex valued function in D and C be contour by joining z_o and z₁ then

If function f is an analytic function in simple connected domain where $C_R(z_o) = \{z(t) : |z - z_o| = R\}, 0 \le t \le 2\pi$ and R be the radius of circle, then COTTES OPLOT Reload Math Equations $f(z_o) = \frac{1}{\pi} \int_{-\infty}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$ $f(z_o) = \frac{1}{2\pi} \int_{-\infty}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$ $f(z_o) = \frac{1}{4\pi} \int_{-\infty}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$ $f(z_o) = \frac{1}{2\pi i} \int_{-\infty}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$

Find value of Green's theorem if P=x2 and Q=y2 for region x=1 and y=2 from origin.	Total
and G=y2 for region x=1 and y=2 from origin.	A STATES


Select the correct option

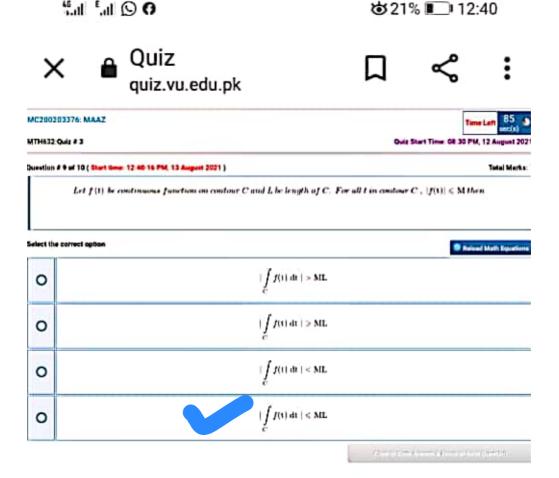
	Evaluate the integral $\int_{C} \frac{e^{z}}{z^4} dz$ where the contour C : $ z = 1$	Total Marine 1
he correct option		Reload Math Equations
	$\frac{2\pi i}{3}$	ig-
	$\frac{4\pi i}{3}$	
	$\frac{8\pi i}{3}$	N
	$\frac{\pi i}{3}$	

Evaluate the integral
$$\int_{C} f(z)dz$$
 where $C: z(t) = e^{it}$ for $0 \le t \le \pi$ and $f(z) = 1/z^2$
nect option
 $1 - e^{i\pi}$
 $1 + e^{-i\pi}$
 $1 + e^{i\pi}$
 $1 - e^{i\pi}$

Question # 4 of 10 (Start time: 01:19:45 PM, 13 August 2021)

Select the correct option

0	False	
0	True	


Evoluate
$$\int_{C} f(z)dz$$
 where $C: z(t) = (z + iy)t$ for $a \le t \le b$ and $f(z) = z$
aption
$$\frac{(b^2 - a^2)(z + iy)^2}{2}$$

$$\frac{(b^2 + a^2)(x + iy)}{2}$$

$$\frac{(b^2 - a^2)(x + iy)}{2}$$

$$\frac{(b^2 - a^2)(x + iy)}{2}$$

•

Download More Quizzes Files From

VUAnswer.com

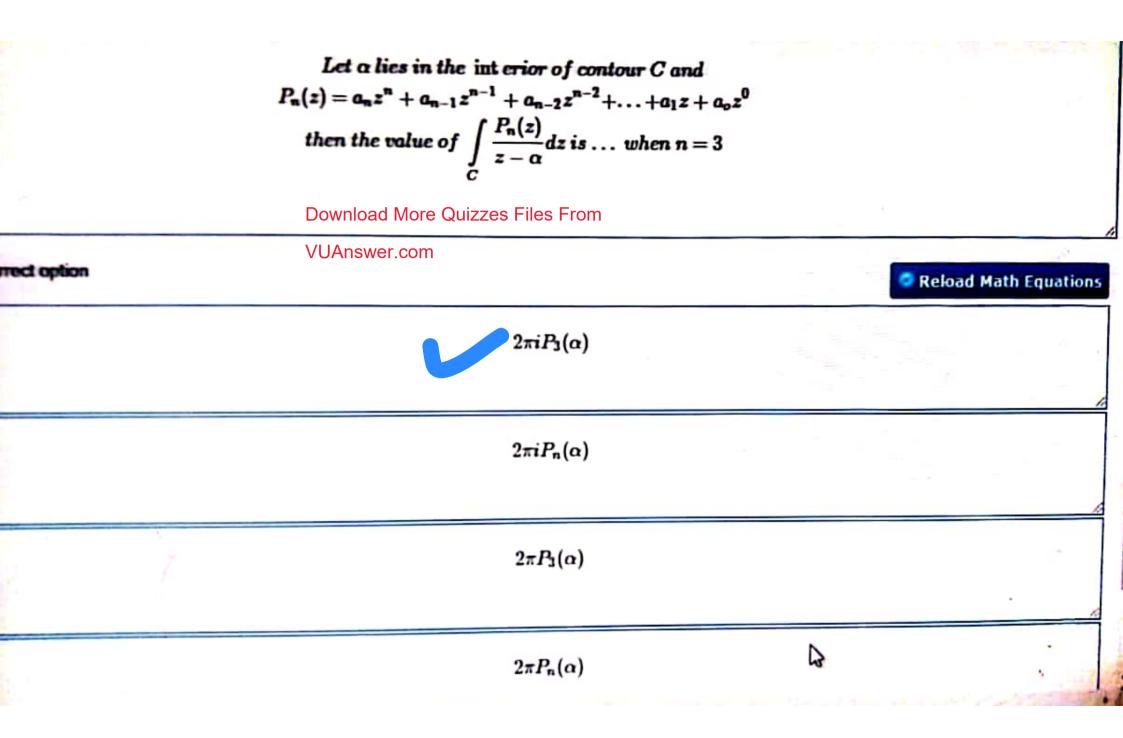
<

MTH632:Quiz # 3

Question # 8 of 10 (Start time: 12:37:37 PM, 13 August 2021)

Total Marks: 1

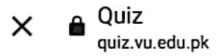
If function f is an analytic function in simple connected domain where $C_R(z_o) = \{z(t) : |z - z_o| = R\}, 0 \le t \le 2\pi$ and R be the radius of circle, then


Select the correct option

Reload Math Equations

0	$f(z_o)=rac{1}{\pi}\int\limits_0^{2\pi}f(z_o+{ m Re}^{it})dt$
0	$f(z_o)=rac{1}{2\pi}\int\limits_{0}^{2\pi}f(z_o+{ m Re}^{it})dt$
0	$f(z_o)=rac{1}{4\pi}\int\limits_{0}^{2\pi}f(z_o+{ m Re}^{it})dt$
0	$f(z_o)=rac{1}{2\pi i}\int\limits_{0}^{2\pi}f(z_o+{ m Re}^{it})dt$

Glick to Save Answer & Mairs to Non Question


Scanned with CamScanner

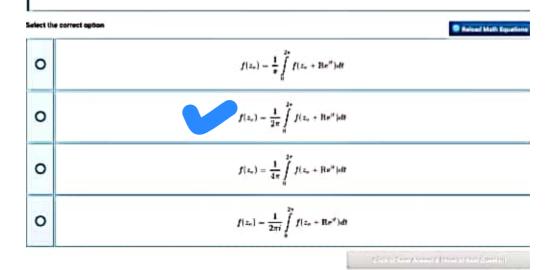
 \triangleleft

🕲 22% 💷 12:37

MC200203376: MAAZ

MTHE32 Quiz # 3

Quiz Start Time OR 30 PM, 12 August 202


86

Tistal Marts

-Let

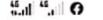
Duration # 8 of 10 (Start time: 12 37 37 PM, 13 August 2021)

If function f is an analytic function in simple connected domain where $C_R(z_*) = \{z(t) : |z - z_*| - R\}, 0 \le t \le 2\pi$ and R be the radius of virile, then

Scanned with CamScanner

□ **ぺ :**

01200205476 MAA2	Train juit 52		
(The 2 fact # 2 fact The 2			
and an \$7 of 10 Not have 12 10 40 1	Hager 201) Notice		
Let C, and C, in two analysis choose	$antainer with pointing principle + C_1 (i) where and C_2 is an interver. If f(i) is an adjust to domain that outlines both container and region between them, it is a standard straight to domain that outlines both container and region between them, it is a standard straight to domain the container both container and region between them, it is a standard straight to domain the container both container and region between them, it is a straight to domain the container both container and region between the container and regio$		
0	$\int_{a_1}^{a} f(x) dx = \int_{a_2}^{a} f(x) dx$		
0	$\int_{0}^{\infty} dt n dt = \int_{0}^{\infty} dt n dt =$		
0	L the late of L the late		
0	$\int_{\mathbb{T}^n} f(x) dx \to \int_{\mathbb{T}^n} f(x) dx$		


STREET, DOLLARS

Download More Quizzes Files From

VUAnswer.com

 \triangleleft

O Scanned with CamScanner

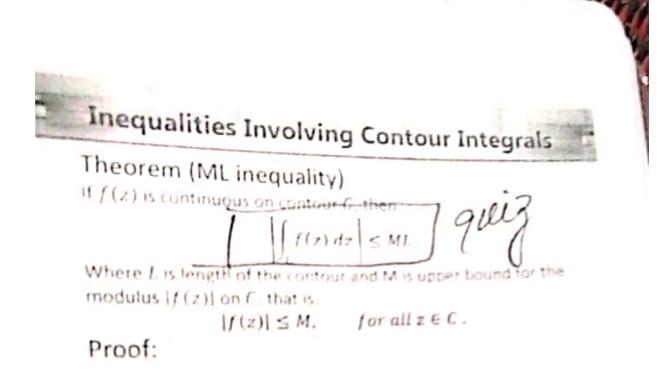
🛎 22% 🔳 12:36

口 ペ :

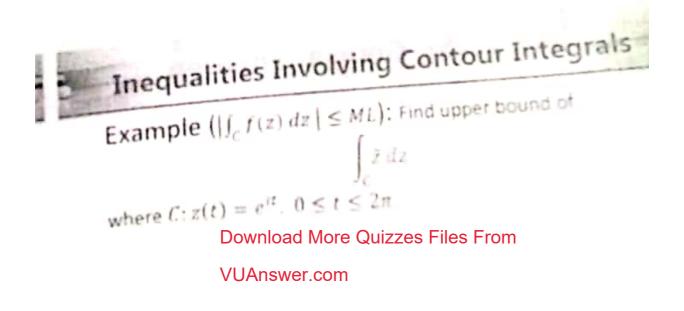
#12##2#\$#7% MAA2	Tere car	
(Treat) Back # # Back Tee		
anten 17 el 16 (Not have 12 16 18 19) 18 dagest 20	n j Lie tie	
Let C, and C, in the analysis down disardinate and	A point only period of C, to reference and C, to an interver. If f(2) to another to domain that instance between largest lateres. Here, it	
0	$\int_{0}^{0} f(x) dx = \int_{0}^{0} f(x) dx$	
0	$\int_{\Omega} dt x dx < \int_{\Omega} dt x dx$	
	In the	
0	I deside a Letter	
0	∫ taola > ∫ taola	
U	2 2	
	24 (P. 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	

Download More Quizzes Files From

VUAnswer.com


⁴⁶ 1 ⁴⁶ (D) O		1 22	७22% ा∎ 12:34		
×	Quiz quiz.vu.edu.pk	Д	\$:	
MC200203376		Dut	Start Time GE 30 PM,	sec(s)	
heation # 6 of 1	10 (Shart time: 12:34:11 PM, 13 August 2021)			Total Marks:	
ielect the correc	ct option		B Raturd	Math Equations	
O	ct option - #		Relation	Math Equations	
<u> </u>					
0	-21				
0	,				

Download More Quizzes Files From


VUAnswer.com

 \triangleleft

Hildelle

Scanned with CamScanner

46.al	" O	☎23% 🗩 12:31			
×	Quiz quiz.vu.edu.pk	Д	Ļ	:	
MC200203376: M	IAAZ	Quit	Time Start Time 08 30 PM	sec(s)	
Auestian # 3 of 10 (Start time: 12:29 26 PM, 13 August 2021)			Tietal Marks	
Select the surrest of	Let a lies in the interior of contains $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots$ then the value of $\int_C \frac{P_n(z)}{z-a} dz$ (s, wh	+++===		of Math Equations	
0	$2\pi P_{n}(\mathbf{n})$			eloted & small	
0	2#P ₃ (o)				
0	$2\pi i P_n(\alpha)$				
0	$2\pi i P_2(\alpha)$				
		et in	Avera (Comparing	an an a Hang	

Download More Quizzes Files From

VUAnswer.com

 \triangleleft

⁴⁶ .ull ³⁶ .ull G	
X 🔒 Quiz guiz.vu.edu.p	k

	Time Left	86 🕑
Quir Start Time GE 3	PM. 12 A	igual 2021

:

Tistal Marks

Question # 2 of 10 (Start time: 12 28 23 PM, 13 August 2021)

 \triangleleft

Mathematically, the functions in Green's theorem will be

٠

ŝ

MC200203376: MAAZ MTHE32 Quiz # 3

	ie narres epinen
0	Continuous derivatives
0	Discrete partial derivatives
0	Continuous partial derivatives
0	Discrete derivatives
	The part of the second s

⁴⁶ .11 ³⁶ .1 O				☎23% 📭 12:31			
>	< 🔒	Quiz quiz.vu.ed	u.pk	Д	Ļ	:	
	203376: MAAZ				Quiz Start Time: 08 3	Time Lan 87 C	
Questia	# 4 of 10 (Shart Sime	12 31 37 PM, 13 August 3	(031)			Tietal Martin	
	the dom		n domain is	said to be.	••		
0	Disconn	ected					
0	Simple o	connected	V		oad More		s Files From
0	None of	above		v cy un			
	H			ring	(t-t) = t	1-0-5-	

45.11 45.11 ()		© 23	% 🗩 12:33	
>	× 🔒	Quiz quiz.vu.edu.pk	Д	≮ :
AC200283376: MAAZ				Time Left 83 C
	n # 5 of 10 (Blart three	12 33 50 PM, 13 August 2021)		Tutal Marks
elect 1	he correct appears	and $ f(z) \leq M$, then $ f ^n$	$ u \leq \frac{n!M}{r^*}$	S slobaad kaaste kojisetsiini
_				
0	Cauchy Inequality			
	Cauchy Inequality	rsulity		
0		rquality		

O C Scanned with CamScanner

 \triangleleft

⁴⁶ .ul ²⁶ .ul O		©23	% 🗩 12:	29
×	Quiz quiz.vu.edu.pk	Д	Ļ	:
MC200203376: MAAZ		Ovi	Time GE 30 PM	e Left 84 C
Durentium # 3 of 10 (Start	1 Sme: 12:29:26 PM, 13 August 2021)			Tatal Marks:
Select the Entrect option	$P_{n}(z) = a_{n} z^{n} + a_{n-1} z^{n-1} + a_{n-2} z^{n-1}$ then the value of $\int_{z^{n}} \frac{P_{n}(z)}{z - \alpha} dz$	is when n = 3		el Math Equations
0	$2\pi P_{\mu}()$	n)		a fotor de comuna
0	2#756	u)		
0	2##P_(a)		
0	2 <i>#iP</i> 3(a)		

 \triangleleft

 \cap

General Access of the statement of the

Scanned with CamScanner

46	45	•	
· • • • • • •	•	~	

🛎 21% 💷 12:41

MC200203376: MAAZ

MTHE32 Quiz # 3

Quit Start Time. GE 30 PM, 12 August 2021

Time Let

Releved Math Reportients

85 😁

Tintal Marks:

Question # 10 of 10 (Start Sime: 12:41:00 PM, 13 August 2021)

If f(z) is an analytic function in domain D then for $n \ge 0$ where n is a positive integer,

Select the correct option

0

0

0

0

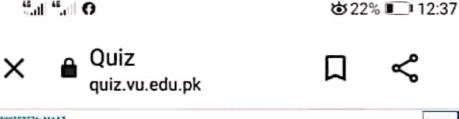
f⁽ⁿ⁾(z) is analytic in disconnected D None of above f⁽ⁿ⁾(z) is not analytic in simple connected D f⁽ⁿ⁾(z) is an analytic in simple connected D

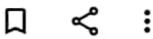
Production Access (All and Description)

**.al	"all "all G		% 💷 12:	31
×	Quiz quiz.vu.edu.pk	Д	Ļ	:
MC200203376: M	IAAZ	0.44	Start Time: GE 30 PM	perc(x)
huestium # 3 of 10 (Shart time: 12:29 26 PM, 13 Jugart 2021)			Tetal Marks
elect the surrest a	Let α lies in the interior of α $P_{\alpha}(z) = a_{\alpha} z^{\alpha} + a_{\alpha-2} z^{\alpha-1} + a_{\alpha-2} z^{\alpha-1}$ then the value of $\int_{C} \frac{P_{\alpha}(z)}{z - \alpha} dz$ (s.	++++++++++++++++++++++++++++++++++		ad Marth Francisco
0	2 <i>nP</i> ₂ (n)			alainda anna
0	2+P3(0)			
0	$2\pi P_n(\alpha)$			
0	$2\pi P_2(\alpha)$			
		Die in	$\partial t = \partial t = 0$	u militi

Question # 4 of 10 (Start time: 01:19:45 PM, 13 August 2021)

Acun	ve C is said to be a contour if it is constructed by jo	bining finitely many smooth curves end to end.
		$ \begin{array}{c} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Select ti	ne correct option	$f = L \cdot J + L \cdot \frac{L \cdot K}{L \cdot L \cdot K}$
0	False	
	True	
0		


⁴⁴ .ul ⁴⁵ .dl O		ම 21	% 💷 12:41
×	Quiz quiz.vu.edu.pk	Д	⊰ ∶
MC20020337		0.4	Time Left BS
Question # 10	of 10 (Shart Same: 12:41 SH PM, 13 August 2021)		Tintul Marks
Select the corr	rect option $f^{(n)}(v) \ \text{is analytic in}$	disconnected D	Relical Meth Equations
0	None of	aliove	
0	f ^{ent} (x) in not analytic in	simple connected D	
0	f ^{'ni} (z) is an analytic in	simple connected D	


is a pro-

O □
 Scanned with CamScanner

46 	⁴⁶ .ul ³⁶ .ul O			©23	% 💷 12:	29
×	â	Quiz quiz.vu.edu.pk		П	ኆ	:
MC200203374 MTH632 Quiz #				Ouis	Shart Times GB 30 PM	percipa)
Question # 3 of	10 (Blart terr	12.29 26 PM, 13 August 2021)				Tistai Marka
Select the parre	et syrilaan	Let a lies in the inter $P_n(z) = a_n z^n + a_{n-1} z^{n-1} +$ then the value of $\int_{C} \frac{P_n}{z}$.	4. 23 - 2+ +425	+ +		d Marth Department
0			2#P2(m)			
0			2=13(++)			
0		:	$lmP_n(\alpha)$			
0		:	triPs(a)			
			L.	Divis	a-di sine	senio

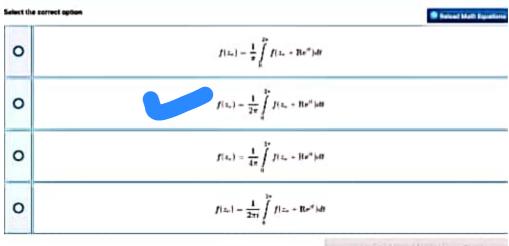
	5.al 5.al 6	© 23	% 💷 12:33	
>	≺ 🔒 Quiz quiz.vu.edu.pk	Д	\$:
AC200	1203776: MAAZ		Time Let	B3 G
AL1H#3	2.Quis # 3	Own	Start Time. OR 30 PM, 12 /	angunst 207
iuestin)	H # 5 of 10 (Shart time: 12:32:58 PM, 13 August 2021)		4	dui Marka
0	he surrect appan		Hained Ling	n Equivilian
0	- Casty kwyiałte			
0	Caustry Statiward Inequality			
0	None of scove			
		(marine	An and the set of the	-

MC200203376: MAAZ

MTHE32 Quis # 3

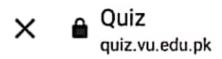
Outs Start Time OR 30 PM, 12 A 41 202

86


Tietal Marks

-1-

Departing # 8 of 10 (Start time: 12 37 37 PM, 13 August 2021)


 \triangleleft

If function f is an analytic function in simple connected domain where $C_R(z_a) = \{z(t) \mid |z - z_a| = R\}, 0 \in t \in 2\pi$ and R be the radius of circle, then

口 ペ :

ET 20000000 WAA2		Bant Start Town 18 48 FM 12 August
		Tes #
DI Cont C.h Ten angle chard other conty	control ground of a 1 C_1 is the control of C_2 is an energy of $f(z)$ to consider to detail that only a bar	A contact and region herein there, i
		·
0	$\int_{a_1} f(x) dx = \int_{a_2} f(x) dx$	a material and

0	f the state of f the state	
0	$\int_{U} \Omega a b da = \int_{U} \Omega a b da$	

in a second second

	"II"II 🕒 O	©22%	% 💷 12:34
×	Quiz quiz.vu.edu.pk	Д	י \$
MC2002	83376: MAAZ Quiz # 3	Owies	Time Laft 84 5
Duration (6 6 al 10 (Start Sense 12 34 11 Ftd, 13 August 2021)		Tintai Marka
Select the	e correct cyllum		 Relat Mell Reporters
0			
0	- 27		
0	,		

(Station re- (Individual and

"l "l 🖸 🗘			©21	% 💷 12:	40	
×	۵	Quiz quiz.vu.edu.pk		Д	\$:
MC20020377 MTH632:Q44				0	Start Time: GB 30 PM,	percha3
Question # • e	10 (that the	12:40 16 PM. 13 August 2021)				Tistai Marka
Select the sorr	wct options		1		B hates	Matt Repartme
0			$\int f(1) dt = ML$			
0 0			$\left \int_{C} f(t) dt \right > ML$ $\left \int_{C} f(t) dt \right > ML$			
			č			

Tend - A - (find brighting)

O Scanned with CamScanner

 \triangleleft

⁴⁴ .ull ³⁶ .ull O		७23% 🗩 12:31		
×	Quiz quiz.vu.edu.pk	Д	Ļ	:
MC200203376		044	Start Time GE 30 PM	e Lan 17 Lan 2071
Duesting # 4 of 7	0 (Shart time: 12 31 37 FM. 13 August 2021)			Tintal Martin
If the in the	interior of every simple clo domain D , then domain is	sed contour (said to be	is cont	ained

	Unbounded		
0	Unbounded		
0	Disconnected		
0	Simple connected	V	
0	None of above		

 \triangleleft

 \cap

ロ ペ :

11/241110/14 MAA2 (Dis22 may F 4		San Sar Town 10 10 10 11 San	
enten 17 al 18 Martinese (2 28 68 7%) 18 August 2021 Tata 1			
Difficul Cile ten magit chind orthogen and positio	of presented as the trademiser and C_2 to an ensemble $J(p)(0)$ to an apply in density that a	antian kelt contains and region keyware them, i	
ani la constatua			
ant fo contracto			
0	$\int_{a}^{b} R_{a} \dot{x} dx = \int_{a}^{b} R_{a} x dx$	Constantin	

0	Landon o Landon	
0	$\int_{U} \Omega x dx = \int_{U} \Omega x dx$	

in a second second

MC200203376: MAAZ

MTH632:Quiz # 3

Question # 8 of 10 (Start time: 12:37:37 PM, 13 August 2021)

If function f is an analytic function in simple connected domain where $C_R(z_o) = \{z(t) : |z - z_o| = R\}, 0 \le t \le 2\pi$ and R be the radius of circle, then

Select the correct option

Reload Math Equations

Total Marks: 1

$$O \qquad f(z_o) = \frac{1}{\pi} \int_{0}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$$

$$O \qquad f(z_o) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$$

$$O \qquad f(z_o) = \frac{1}{4\pi} \int_{0}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$$

$$O \qquad f(z_o) = \frac{1}{2\pi i} \int_{0}^{2\pi} f(z_o + \operatorname{Re}^{it}) dt$$

Glidete Devi Associa e Merrite Perriten

Scanned with CamScanner

9:47 AM 🗊 🖾 • 🔞 🔞 ... 11 11 46 12.3 🎟

MC200200763. AKHTER ZAMAN MTH622:0wc # 3		Time Latt B3
		Quez Start Time: 09 47 AM, 13 August 202
Question # 3 of 10 Start time: 19 48 59	AM, 13 August 2021 (Total Market
Using Gauchy energial formula to every		
	$\int_{C} \frac{x-2}{x+i} dx \text{ where } f(x) = x-2 \text{ and } x_{x} = -i$	
Salact the context option		States Math Equation
0	2n(1 + 2i)	
0	$2\pi(1-2i)$	
0	2r(-1+2r)	
0	$2\pi(-1-2i)$	

≝.al ™.al O		© 24% ■ 12:28		
×	Quiz quiz.vu.edu.pk	Д	Ļ	:
MC200203376		Quit	Start Time OR 30 PM	a Lan B6 anc(x)
Question # 2 of 1	0 (Shart time: 12 28 23 PM, 13 August 2021)			Tetal Marks
Mathe	ematically, the functions in	Green's theor	em will t	be

alact 1h	e serrect aplien
0	Continuous derivatives
0	Discrete partial derivatives
0	Continuous partial derivatives
0	Discrete derivatives

 \triangleleft

 \cap