PEN PALS Mth632 - Quiz 3 solved 2021

	Let z_o and z_1 be two points in simply connected domain D
	and f be an analytic complex valued function in D and C be contour by joining z_o and z_1 then
	Download More Quizzes Files From
elect the correct	option VUAnswer.com
0	$\int_{z_0}^{z_1} f(s)ds = F(z_1) + F(z_0)$
0	$\int_{z_0}^{z_1} f(s)ds = F(z_0) + F(z_0)$
0	$\int_{z_0}^{z_1} f(s)ds = F(z_0) - F(z_1)$
0	$\int_{z_0}^{z_1} f(s)ds = F(z_1) - F(z_0)$

Question # 3 of 10 (Start time: 05:09:03 PM, 13 August 2021)

Total Marks: 1

Reload Math Equations

Using Cauchy integral formula to compute the value of integral

$$\int_{C} \frac{z-2}{z+i} dz \text{ where } f(z) = z-2 \text{ and } z_o = -z$$

Select the correct option

0	$2\pi(1-2i)$
0	$2\pi(-1+2i)$
0	$2\pi(-1-2i)$
0	$2\pi(1+2i)$

Glick to Save Answer & Move to Next Russian

Evaluate $\frac{1}{2\pi} \int_{0}^{2\pi} \exp(\frac{i\pi}{3} + 5e^{i\theta}) d\theta$ if $f(z) = \exp(z)$ then we get,

Select the correct option		😂 Reload Math Equations
0	$\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$	
0	$\sin\frac{\pi}{3} + i\cos\frac{\pi}{3}$	
0	$\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}$	
0	$\cos\frac{\pi}{3} + \sin\frac{\pi}{3}$	

Click to Save Antwork-Move to Next Question

Let C_1 and C_2 be two simple closed contours with positively oriented s, t C_1 is exterior and C_2 is an interior. If f(x) is analytic in domain

elect the correct option	
0	$\int\limits_{C_1} f(z)dz = \int\limits_{C_2} f(z)dz$
0	$\int\limits_{C_l} f(z) dz > \int\limits_{C_l} f(z) dz$
0	$\int\limits_{C_1} f(z) dz \neq \int\limits_{C_2} f(z) dz$
0	$\int\limits_{C_1} f(z) dz < \int\limits_{C_2} f(z) dz$

f 10 (Start time: 05:00:12 PM, 13 August 2021)

 C_2 be two simple closed contours with positively oriented s, t C_1 is exterior and C_2 is an interior. If f(z) is analytic in domain

et option

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

$$\int_{C_1} f(z)dz > \int_{C_1} f(z)dz$$

$$\int_{C_1} f(z)dz \neq \int_{C_2} f(z)dz$$

$$\int_{C_1} f(z)dz < \int_{C_2} f(z)dz$$

MTH632.Quiz # 3	632 Quiz # 3
-----------------	--------------

Quiz Start Time: 04:53 PM, 13 AL

Tot

Question # 7	of 1	0(Start time:	04:58:14	PM.	134	August	2021	j.
--------------	------	----	-------------	----------	-----	-----	--------	------	----

Each simple closed curve C divides the plane into interio and exterior domains where one is bounded and other is unbounded. This statement is of

Select the correct option

0	Green's Theorem	
0	Cauchy Theorem	
0	Cauchy Goursat Theorem	
0	Jordan Curve Theorem	Download More Quizzes Files From VUAnswer.com

Which is the Principal Control of March Street

THE REAL PROPERTY AND A CONTRACT OF A REAL PROPERTY.

MTH632:Quiz # 3

Quiz Start Time: 04:50 PM, 13 August 2021

Question # 10 of 10 (Start time: 04:57:35 PM, 13 August 2021)

Evaluate
$$\int_{C} f(x)dx$$
 where $C: x(t) = e^{it} for 0 \leq t \leq \pi and f(x) = 1/x$

Select the correct option

in 0 $-2\pi i$ 0 $2\pi i$ 0 $-\pi i$ 0 Download More Quizzes Files From VUAnswer.com

Time Left nec(n)

Total Marks: 1

Reload Math Equations

Quiz Start Time: 04:50 PM, 13 August 2021

Question # 9 of 10 (Start time: 04:56:23 PM, 13 August 2021)

Total Marks: 1

Each simple closed curve C divides the plane into two domains (connected open sets). One of which is bounded and is called of C. Select the correct option interior Download More Quizzes Files From VUAnswer.com exterior

Elizability America Monthe Link Guercian

Quiz Start Time: 04:50 PM, 13 August 2021

Question # 6 of 10 (Start time: 04:53:27 PM, 13 August 2021)

Using Cauchy integral formula to compute the value of integral

$$\int_{C} \frac{z-2}{z+i} dz \text{ where } f(z) = z - 2 \text{ and } z_{z} = -i$$

Select the correct option

0	$2\pi(-1+2i)$
0	$2\pi(1+2i)$
0	$2\pi(-1-2i)$
0	$2\pi(1-2i)$

 $\mathbb{E}[(1, \gamma, \mathbb{Z}_{+}))/\mathbb{A}(\gamma) \rightarrow \mathbb{E}[\mathcal{B}(\gamma), \gamma, \mathbb{P}(\gamma)/\mathbb{A}(\gamma)])^{1/2}$

Total Marks: 1

Reload Math Equations

Quiz Start Time: 04:50 PM, 13 August 2021

Question ₹	7 of 10	Start time:	04:54:55 PM,	13 August	2021]
------------	---------	-------------	--------------	-----------	-------

Total Marks: 1

Ma	athematically, the functions in Green's theorem will be
Select th	e correct option
0	Continuous derivatives
0	Discrete derivatives
0	Discrete partial derivatives
0	Continuous partial derivatives
	Download More Quizzes Files From
	VUAnswer.com

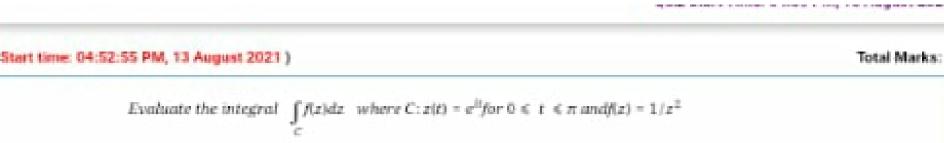
Question # 8 of 10 (Start time: 04:55:37 PM, 13 August 2021)

Total Marks: 1

A curve is said to be if it is constructed by joining finitely many smooth curves end to end

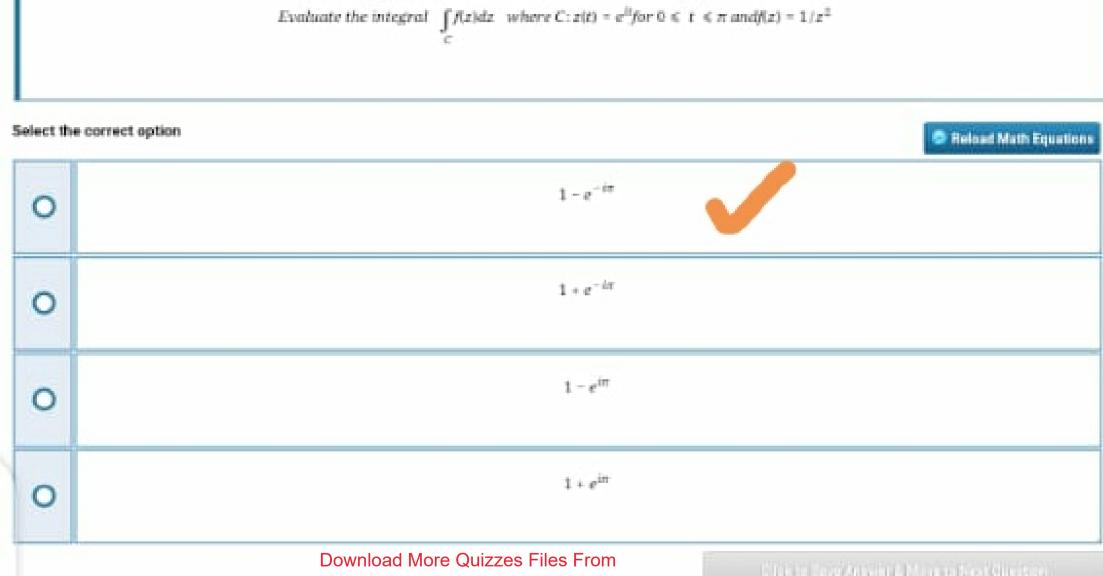
Select the correct option

The static former of the second of the second



Question # 5 of 10 (Start time: 04:52:55 PM, 13 August 2021)

and the second second



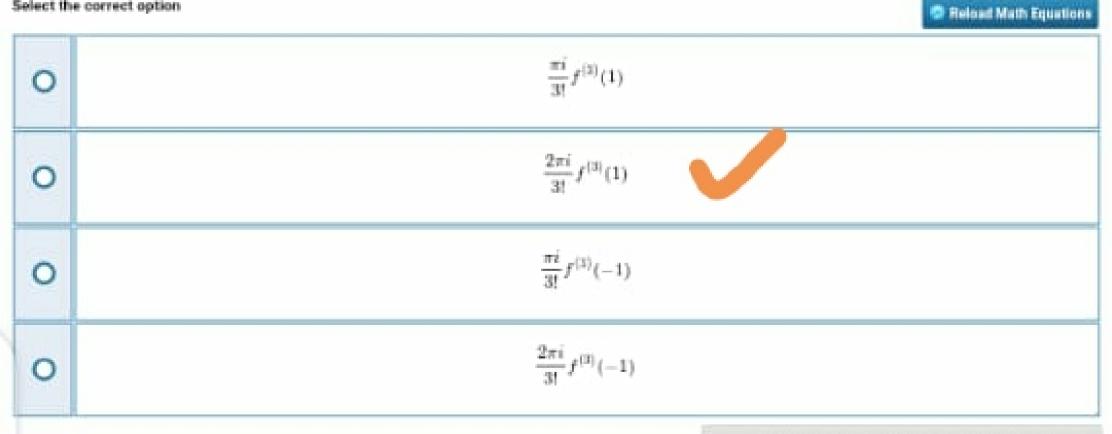
VUAnswer.com

Quiz Start Time: 04:50 PM, 13 August 2021

Question # 4 of 10 (Start time: 04:52:17 PM, 13 August 2021)

$$\int\limits_C \frac{f(x)}{\left(x+1\right)^4} dx \text{ where } x=e^{2x} \text{ then this integral is equal to}$$

Select the correct option



Total Marks: 1

mec(n)

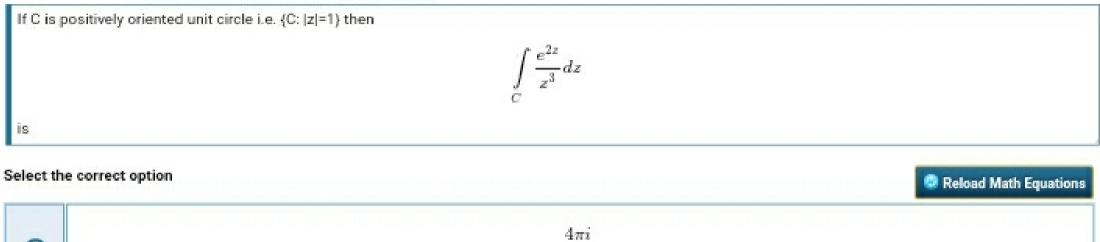
Question # 3 of 10 (Start time: 04:51:30 PM, 13 August 2021)

Total Marks: 1

		the interior of every simple closed contour C is contained the domain D , then domain is said to be
-	Select th	e correct option
	0	None of above
	0	Unbounded
	0	Disconnected
	0	Simple connected
		The standards attended and a second second

Total Marks: 1

Question # 6 of 10 (Start time: 04:11:08 PM, 13 August 2021)



0	$4\pi i$
0	$2\pi i$
0	$6\pi i$
0	$3\pi i$

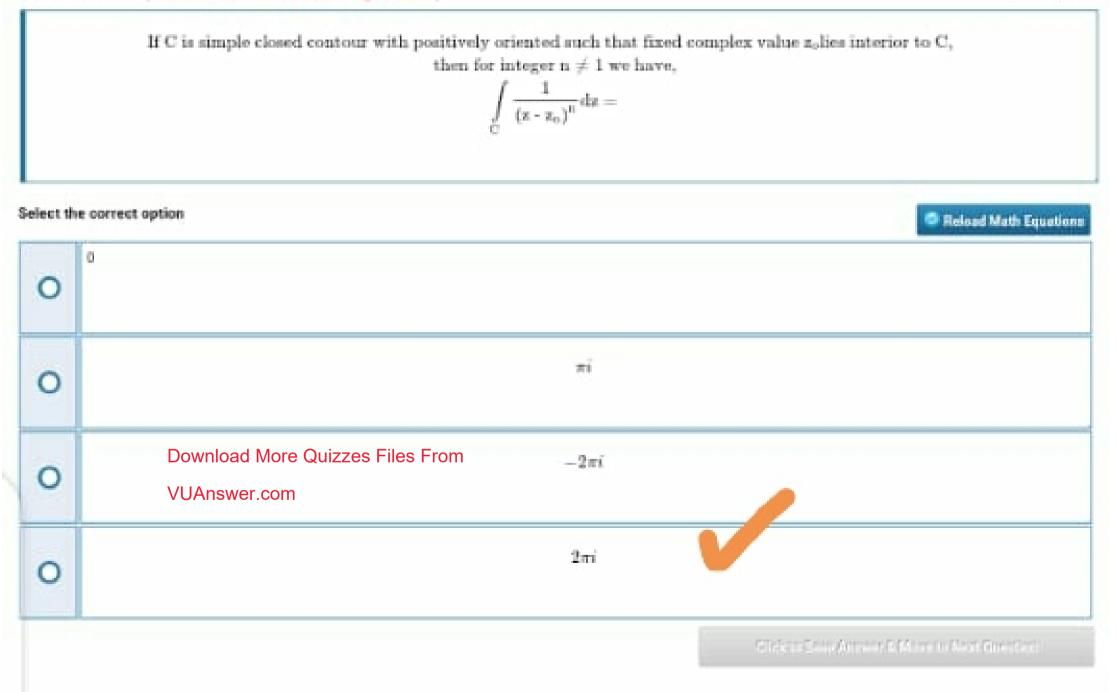
Question # 1 of 10 (Start time: 04:50:03 PM, 13 August 2021) Total Marks: 1 If function f is continuous in simple connected domain D and $\int f(x)dx$ for every closed contour C in D, then f is analytic in D. This statement is of: Select the correct option Relead Math Equations Green's Theorem 0 Morera's Theorem O Cauchy Goursat Theorem 0 **Cauchy** theorem \cap Enders Designed a Research and Exercise

Quiz Start Time: 04:50 PM, 13 August 2021

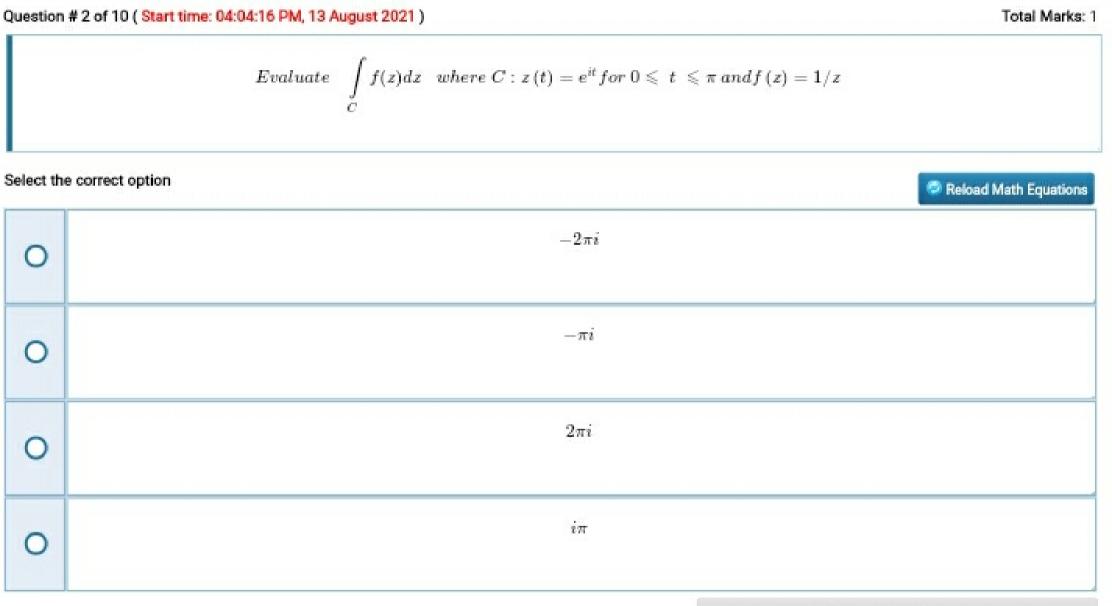
Question # 2 of 10 (Start time: 04:50:53 PM, 13 August 2021)

Total Marks: 1

and the second second



sec(s)



Question # 4 of 10 (Start time: 04:06:54 PM, 13 August 2021)

Total Marks: 1

 $Evaluate \ the \ integral \quad \int\limits_C f(z)dz \ \ where \ C: z \ (t) = e^{it} \ for \ 0 \leqslant \ t \ \leqslant \pi \ and f \ (z) = 1/z^2$

Select the correct opt	tion	Reload Math Equations
0	$1+e^{i\pi}$	
0	$1 - e^{-i\pi}$	
0	$1-e^{i\pi}$	
0	$1+e^{-i\pi}$	
	Download More Quizzes Files From	Olick to Save Answer & Move to Next Question

VUAnswer.com

Question # 7 of 10 (Start time: 04:11:48 PM, 13 August 2021)

Total Marks: 1

Consider contour
$$C: z(t) = e^{it} = Cos t + i$$
 Sint be counter clockwise where $-\pi/2 \le t \le \pi/2$ then the integral $\int_C \overline{z}(t) dz =$
Select the correct option

0	$-\pi$
0	π
0	$-i\pi$
0	$i\pi$
	Download More Quizzes Files From Click to Save Answer & Move to Next Ouestion

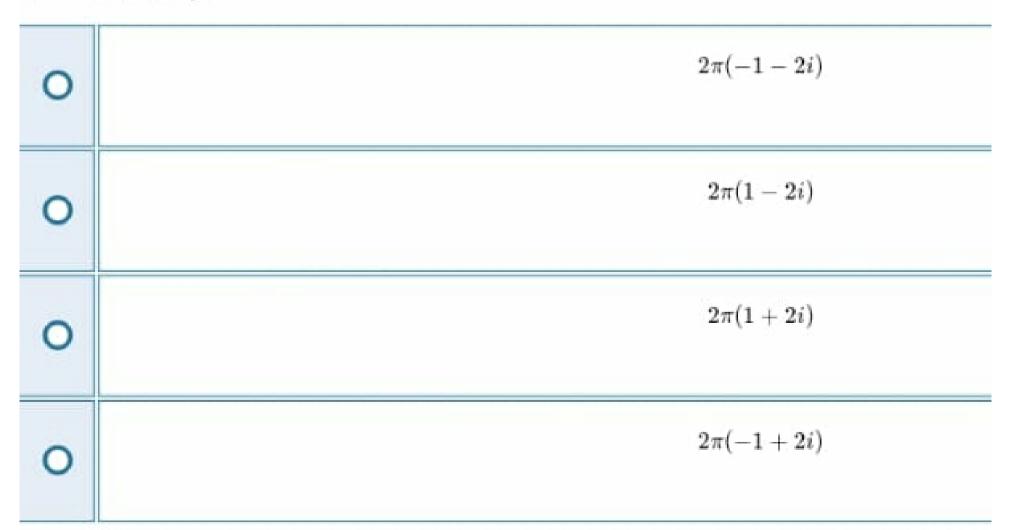
VUAnswer.com

Question # 3 of 10 (Start time: 10:55:08 AM, 13 August 2021)

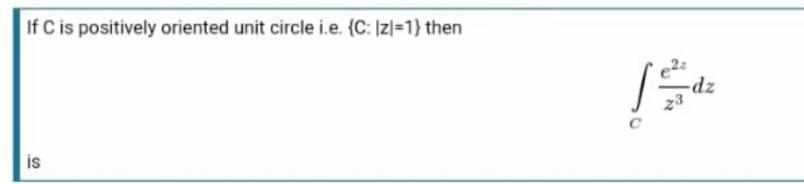
Using Cauchy integral formula to compute the value of integral

$$\int\limits_{C} \frac{z-2}{z+i} dz \text{ where } f(z) = z-2 \text{ and } z_o = -i$$

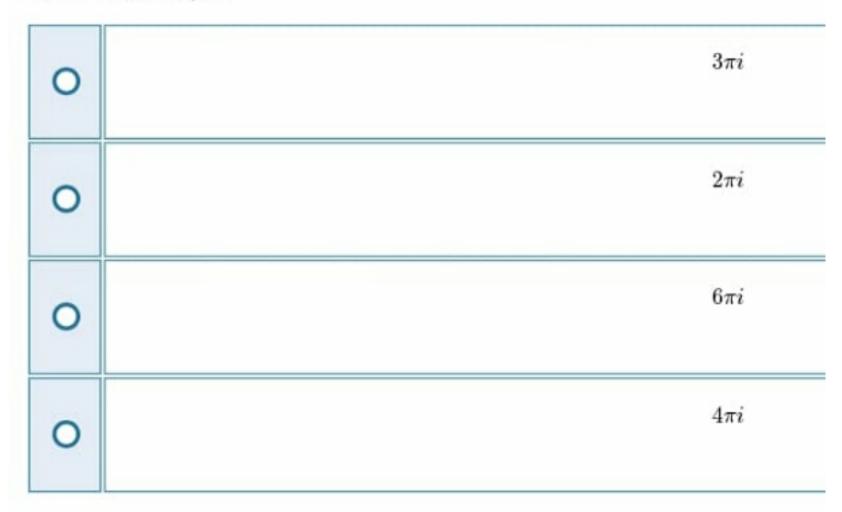
Select the correct option



Question # 6 of 10 (Start time: 11:05:38 AM, 13 August 2021)



Select the correct option



$$Evaluate \int_{0}^{2\pi} \sin(\frac{\pi}{4} + 3e^{i\theta}) d\theta \text{ if } f(z) = \sin z$$

$$2\pi$$

$$\sqrt{2\pi}$$

$$\frac{\pi}{\sqrt{2}}$$

Click to Save Answe

Quiz Start Time: 04:05 PM, 13 August 2021

Question # 3 of 10 (Start time: 04:07:55 PM, 13 August 2021)

$$Evaluate \int\limits_C f(z)dz \ where \ C: z\left(t\right) = \left(x+iy\right)t \ for \ a \leqslant \ t \ \leqslant b \ and \ f\left(z\right) = \frac{1}{z}$$

Select th	Correct option
0	$\ln b - \ln a$
0	$\frac{(\ln a)}{(\ln b)}$
0	$\ln b + \ln a$
0	$(\ln a)(\ln b)$

Click to Save Answer & Move to Next Question

Total Marks: 1

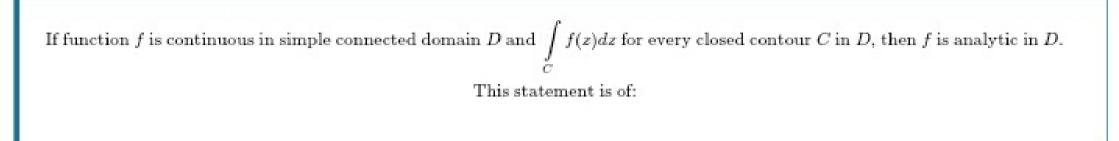
accial

Quiz Start Time: 04:05 PM, 13 August 2021

Question # 9 of 10 (Start time: 04:14:00 PM, 13 August 2021)

Total Marks: 1

ocrio)



Select the correct option

🥏 Reload Math Equations

0	Cauchy Goursat Theorem	
0	Cauchy theorem	Download More Quizzes Files From
0	Morera's Theorem	VUAnswer.com
0	Green's Theorem	

MTH632:Quiz	#	3	
-------------	---	---	--

Quiz Start Time: 04:03 PM, 13 August 2021

Question # 8 of 10 (Start time: 04:13:18 PM, 13 August 2021)

Total Marks: 1

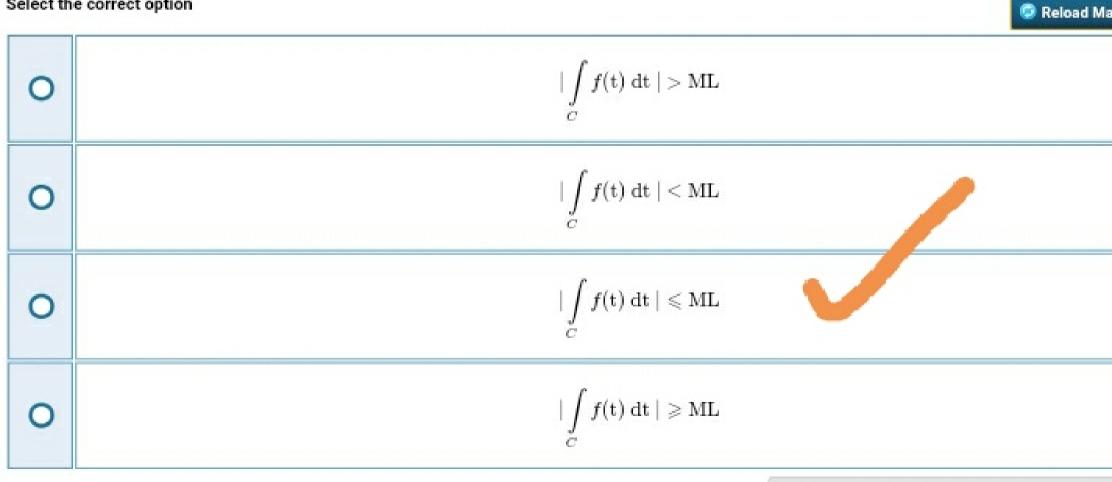
Mo	orera's Theorem is the converse of
Select the	e correct option
0	Guass Mean value Theorem
0	Cauchy Goursat Theorem
0	De Movire's theorem
0	Green's Theorem

Т

Question # 2 of 10 (Start time: 04:06:45 PM, 13 August 2021)

Let f(t) be continuous function on contour C and L be length of C. For all t in contour C, $|f(t)| \leq M$ then

Select the correct option



Quiz Start Time: 04:03 PM, 13 August 2021

aculat

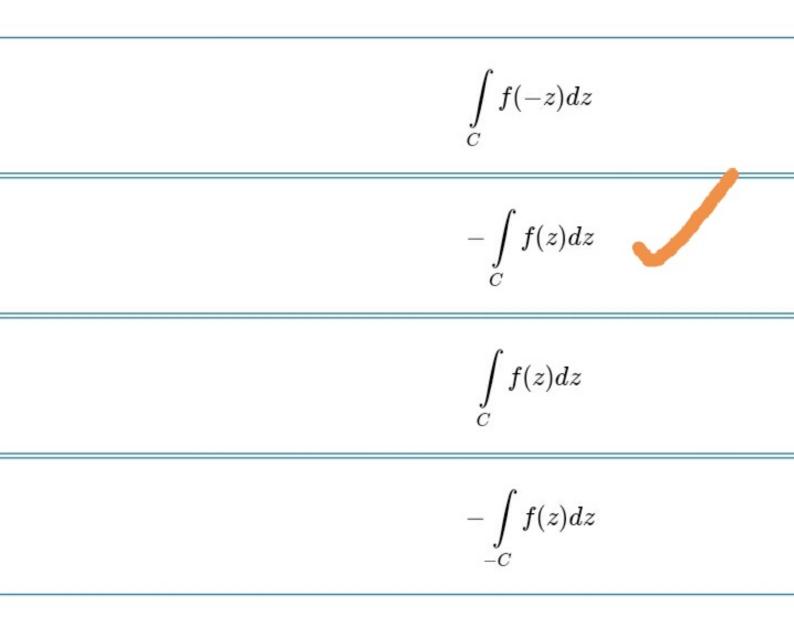
Question	Question # 6 of 10 (Start time: 04:11:44 PM, 13 August 2021)	
	If f (z) is an analytic function in domain D then for $n \ge 0$ where n is a positive integer,	
Select the	e correct option	Reload Math Equations
0	None of above	
0	$f^{(n)}(z)$ is analytic in disconnected D	
0	$f^{(n)}(z)$ is not analytic in simple connected D	
0	$f^{(n)}(z)$ is an analytic in simple connected D	
	Clinks to Come Language to Like	

Question	# 8 of 10 (Start time: 04:12:53 PM, 13 August 2021) Total Marks
A	domain D that is not simply connected is
Select th	e correct option
0	multiply connected
0	doubly connected
0	none of above
0	triply connected

Download More Quizzes Files From VUAnswer.com

PM, 13 August 2021)

 $ion \ and \ C \ and \ -C \ be \ the \ contours \ with \ same \ geometrical \ represent$



Quiz Start Time: 04:03 PM, 13 August 2021

MTH632:Quiz # 3

Question # 2 of 10 (Start time: 04:04:16 PM, 13 August 2021)

Reload Math Equations



Select the correct option

0

	Newad Math Equations
$-2\pi i$	
$-\pi i$	

-πi 2πi iπ

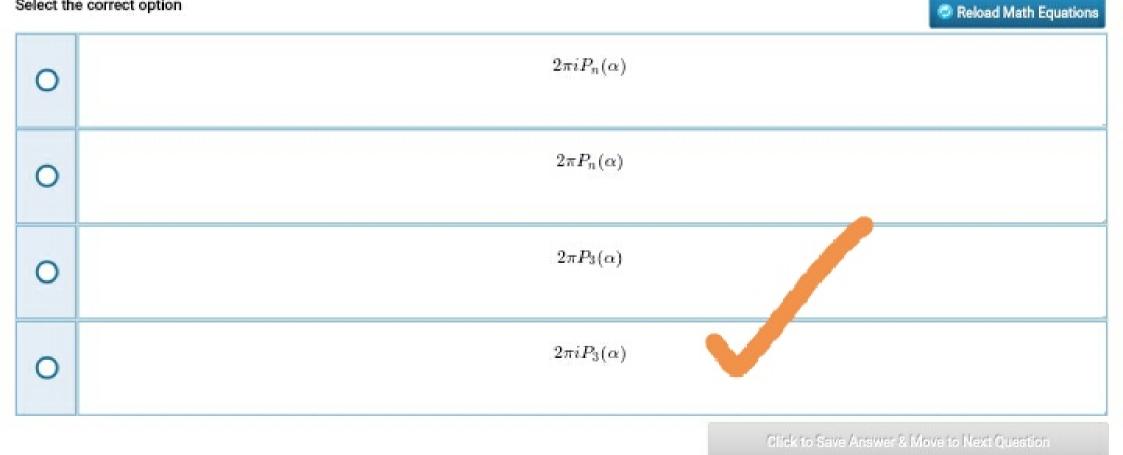
Quiz Start Time: 04:03 PM, 13 August 2021

Question #1 of 10 (Start time: 04:03:16 PM, 13 August 2021)

Total Marks: 1

Let
$$\alpha$$
 lies in the interior of contour C and
 $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \ldots + a_1 z + a_o z^0$
then the value of $\int_C \frac{P_n(z)}{z - \alpha} dz$ is \ldots when $n = 3$

Select the correct option



Question	# 10 of 10 (Start time: 04:03:08 PM, 13 August 2021) Total Marks:
A	domain D that is not simply connected is
Select th	e correct option
0	none of above
0	doubly connected
0	triply connected
0	multiply connected

Question # 9 of 10 (Start time: 04:02:31 PM, 13 August 2021)

Total Marks: 1

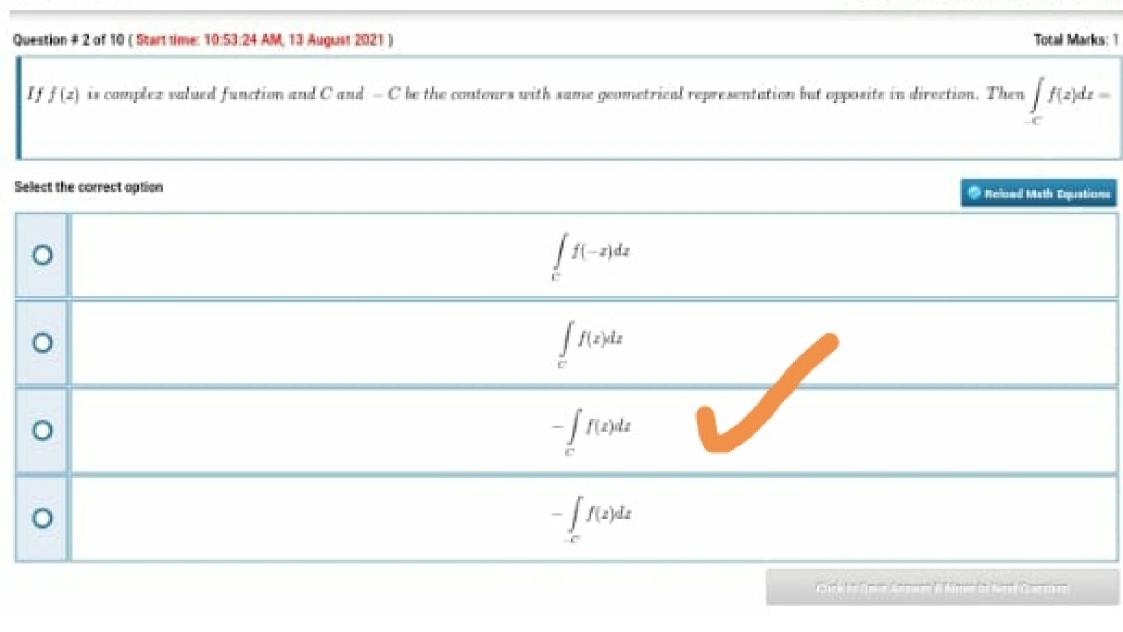
A curve C is said to be a contour if it is constructed by joining finitely many smooth curves end to end.

Select the correct option

Total Marks: 1

ntours with same geometrical representation but opposite in direction. Then
$$\int_{-C} f(z)dz =$$

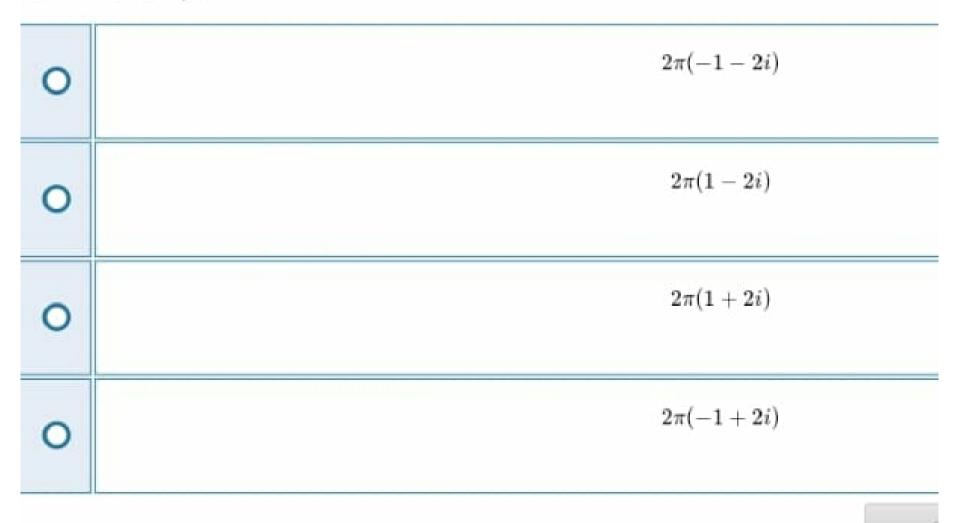
Reload Math Equations
 $\int_{C} f(-z)dz$
 $\int_{C} f(z)dz$
 $-\int_{C} f(z)dz$
 $-\int_{-C} f(z)dz$



Question # 3 of 10 (Start time: 10:55:08 AM, 13 August 2021)

Using Cauchy integral formula to compute the value of integral

$$\int_{C} \frac{z-2}{z+i} dz \text{ where } f(z) = z - 2 \text{ and } z_o = -i$$

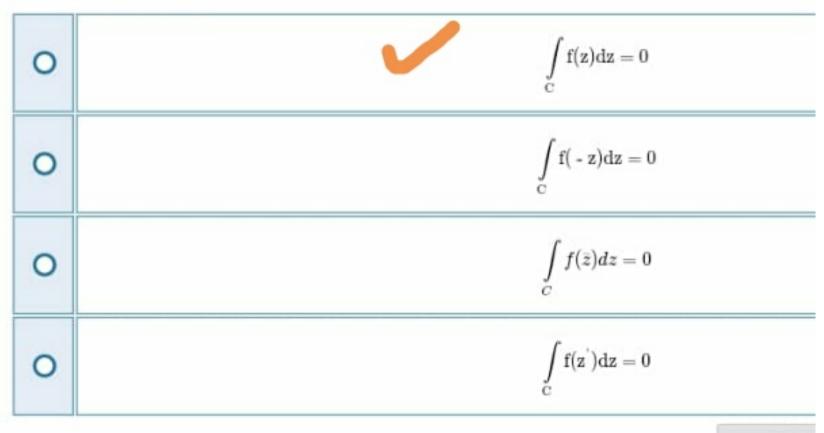


MTH632:Quiz # 3

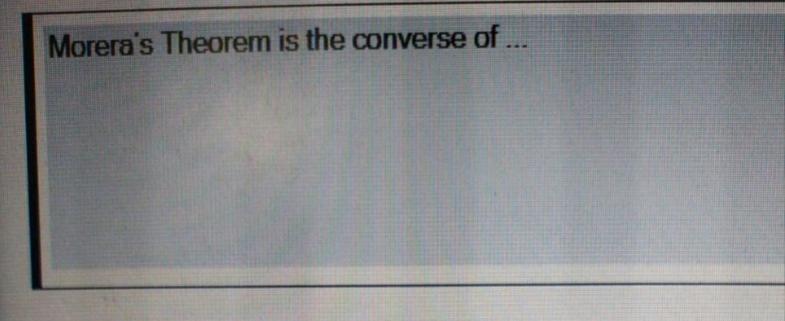
Question # 1 of 10 (Start time: 10:51:36 AM, 13 August 2021)

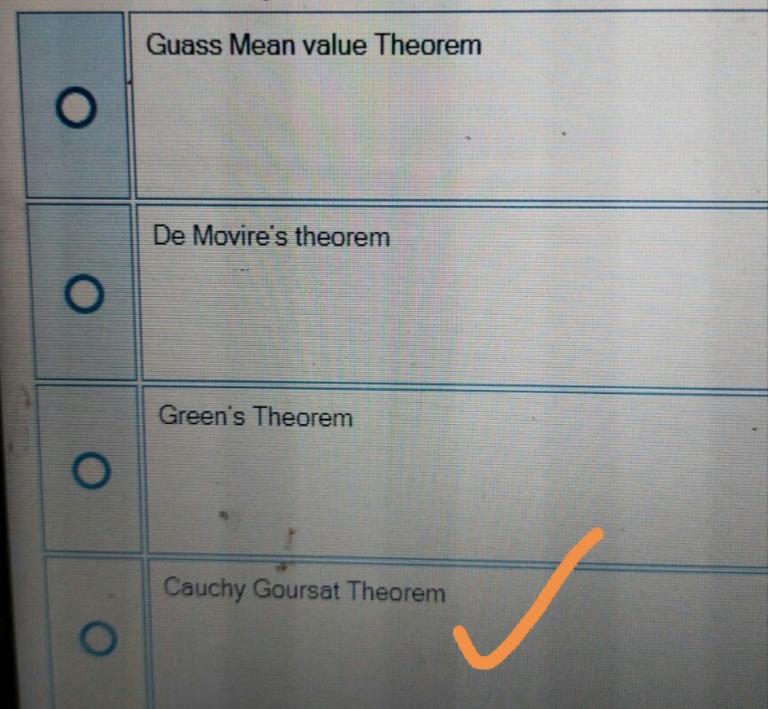
If the function f(z) is analytic in domain D and simple connected contour C lies in D then

Select the correct option



Ginisi





Question # 1 of 10 (Start time: 02:00:42 PM, 13 August 2021) If function f is continuous in simple connected domain D and $\int_C f(z)dz$ for every closed contour C in D , then f is analytic in D . This statement is of:				
Select th	he correct option			
0	Cauchy theorem			
0	Green's Theorem			
0	Morera's Theorem			
0	Cauchy Goursat Theorem			
	🔎 Type here to search O 🖽 💽 💯 🔚 🔂 😭 🖉 🔔 🖉 22°C. Sunn			

4 of 10 (Start time: 04 36:11 PM, 13 August 2021)

uchy integral formula to compute the value of integral

$$\int_{C} \frac{z-2}{z+i} dz \text{ where } f(z) = z - 2 \text{ and } z_{0} = -i$$

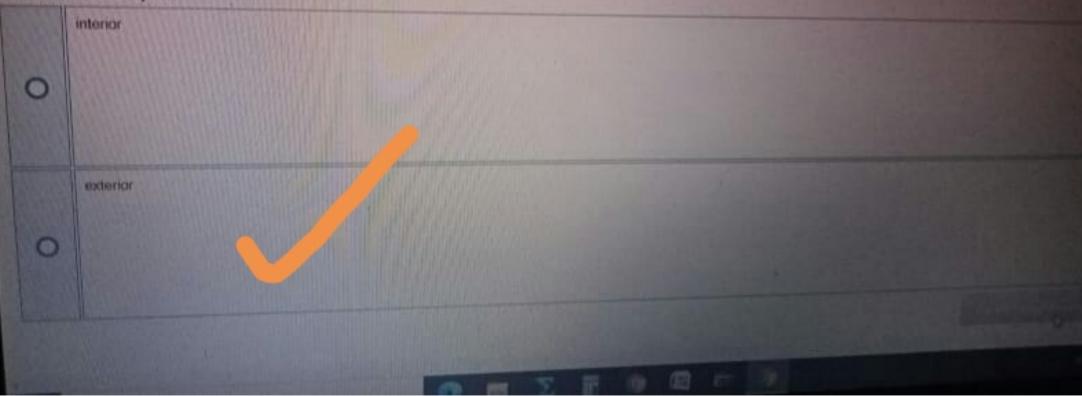
correct option

A REAL PROPERTY OF THE REAL PR	and the second division of the second
$2\pi(-1+2i)$	
$2\pi(1-2i)$	
$2\pi(1+2i)$	
2π(-1-2i)	

Question # 3 of 10 (Start time: 04:35:29 PM, 13 August 2021)

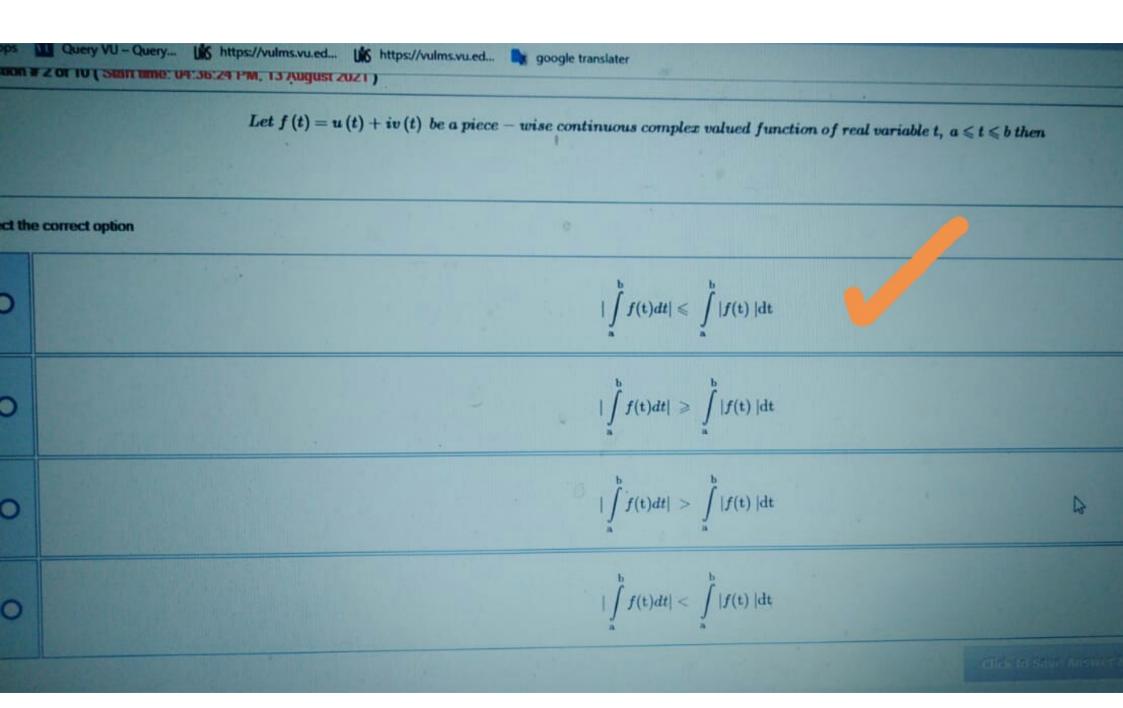
Each simple closed curve C divides the plane into two domains (connected open sets). One of which is unbounded and is called the

Select the correct option



dC

MTH632 Quiz # 3 Quiz Start Time DI 34 P Question # 2 of 10 (Start time: 04-34-31 PM, 13 August 2021) Consider contour $C: z(t) = e^{it} = Cos t + i$ Sint be counter clockwise where $-\pi/2 \le t \le \pi/2$ then the integral $\int z(t)dz =$ Select the correct option 0 3 0 0 0



MTH632.Quiz # 3

Question # 5 of 10 (Start time: 04:37:30 PM, 13 August 2021)

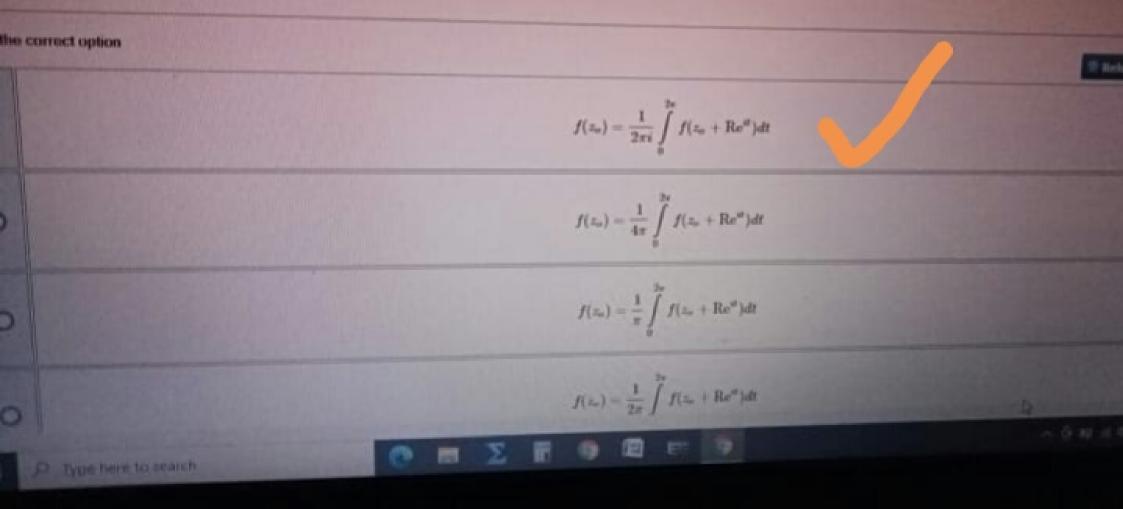
Each simple closed curve C divides the plane into interior and exterior domains where one is bounded and other is unbounded. This statement is of

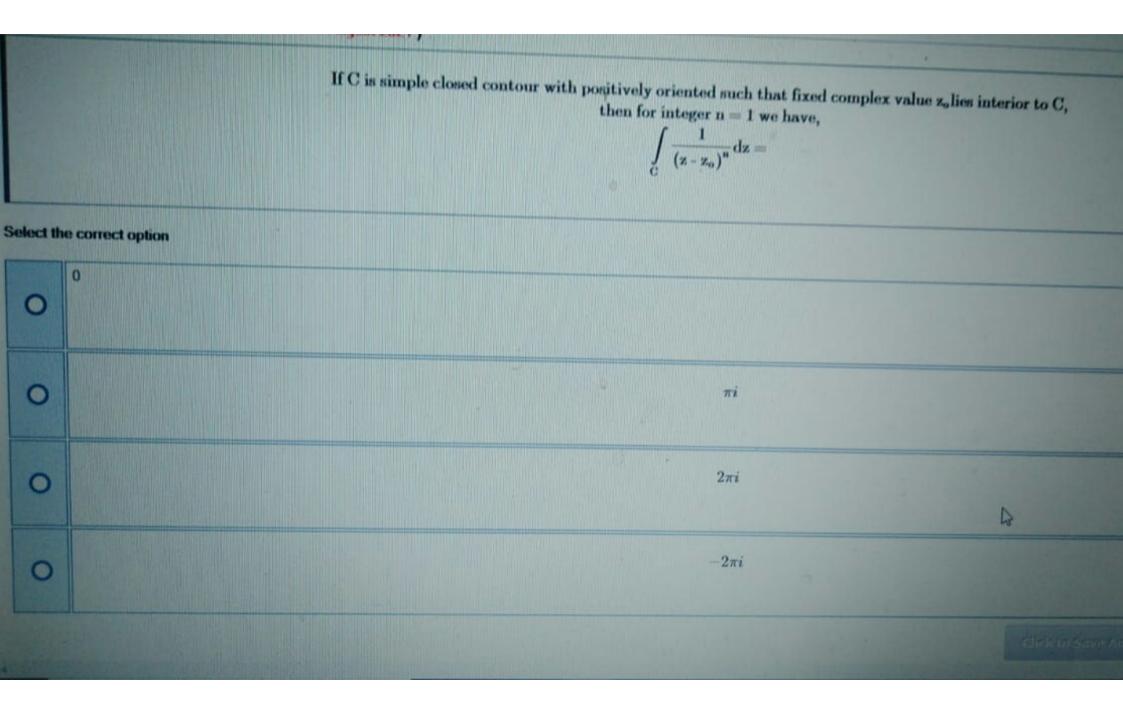
Cauchy Goursat Theorem
Jordan Curve Theorem
Green's Thoorem
Couchy Theorem O Type here to search

7 of 10 (Start time: 04 39:45 PM, 13 August 2021)

If function f is an analytic function in simple connected domain where $C_R(z_n) = \{z(t) : |z - z_n| = R\}, 0 \le t \le 2\pi$ and R be the radius of circle, then

Quin There Tarner I





Let z_0 and z_1 be two points in simply connected domain D and f be an analytic complex valued function in D and C be contour by joining z_0 and z_1 then

$$\int\limits_{z_o}^{z_1}f(s)ds=F(z_o)+F(z_o)$$

$$\int\limits_{z_o}^{z_1} f(s)ds = F(z_1) + F(z_o)$$

$$\int\limits_{z_o}^{z_1} f(s)ds = F(z_o) {-} F(z_1)$$

$$\int\limits_{z_{o}}^{z_{1}}f(s)ds=F(z_{1})-F(z_{o})$$

 2π Evaluate $\int_{0}^{2\pi} \sin(\frac{\pi}{4} + 3e^{i\theta})d\theta$ if $f(z) = \sin z$ $\sqrt{2\pi}$ 2π $\frac{\pi}{2}$ $\frac{\pi}{\sqrt{2}}$

Let
$$\alpha$$
 lies in the interior of contour C and
 $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \ldots + a_1 z + a_0 z^0$
then the value of $\int_C \frac{P_n(z)}{z - \alpha} dz$ is ... when $n = 3$
 $2\pi P_3(\alpha)$
 $2\pi i P_3(\alpha)$
 $2\pi i P_n(\alpha)$

=

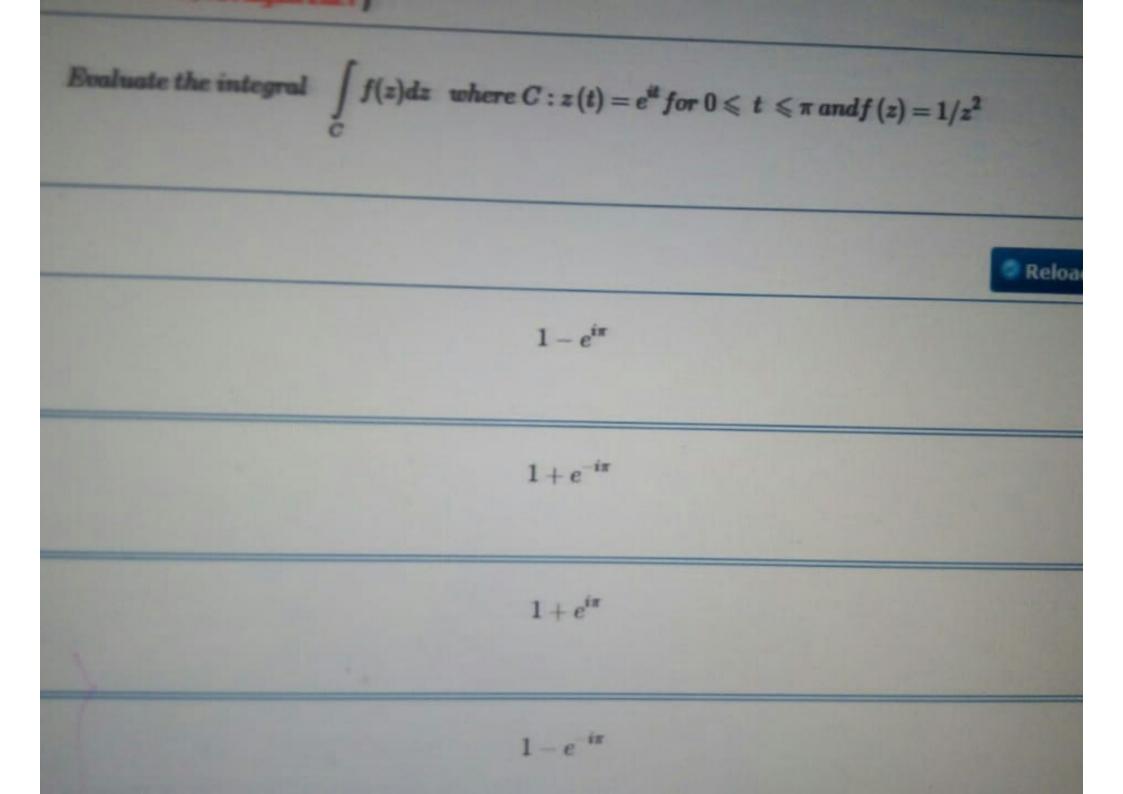
Boolstate
$$\int_{C} f(x)dx$$
 where $C: z(t) = (x + iy) t$ for $a \le t \le b$ and $f(z) = z$

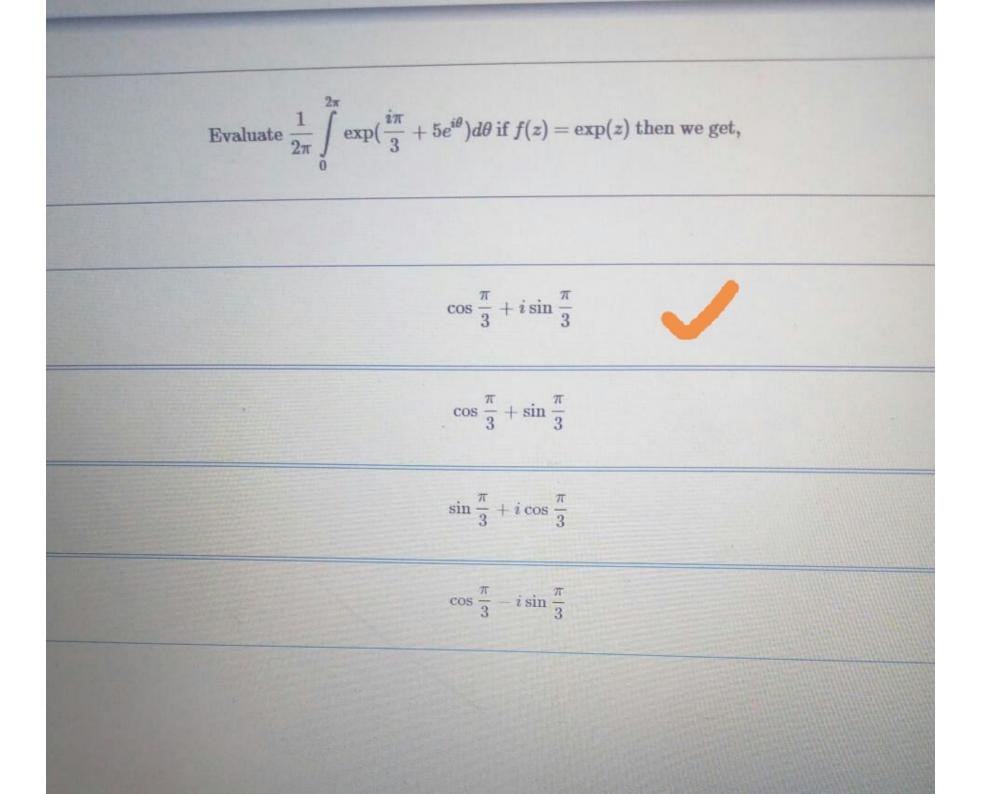
$$\boxed{(b^2 - a^2)(x + iy)^2}{2}$$

$$\frac{(b^2 + a^2)(x + iy)}{2}$$

$$\frac{(b^2 - a^2)(x + iy)}{2}$$

$$\frac{(b^2 - a^2)(x + iy)}{2}$$





$$\int_{C} \frac{f(z)}{(z+1)^4} dz \text{ where } z = e^{2z} \text{ then this integral is equal to}$$

$$\frac{\pi i}{3!} f^{(3)}(1)$$

$$\frac{\pi i}{3!} f^{(3)}(-1)$$

$$\frac{2\pi i}{3!} f^{(3)}(1)$$

$$\frac{2\pi i}{3!} f^{(3)}(-1)$$

MTH632:Quiz # 3

Question # 7 of 10 (Start time: 05:10:35 PM, 13 August 2021)

If C is simple closed contour and D be the domain that forms interior of C. P and Q are continuous function and their partial derivatives are also continuous then

