

Ш

35% 🔳 8:50

MTH621:Quiz-3			
Question # 8 of 10 (Start time: 08:50:33 PM, 17 August 2021)			
The 1	radius of convergence of the given power series $\sum n!x^n$ is $$.		
_	Download More Quizzes Files From		
Select th	VUAnswer.com ne correct option		
0	1		
0	° R		
0	none of these		
0	∞		

quiz.vu.edu.pk/QuizQue:

WITHOZT:QUIZ-3

Question # 1 of 10 (Start time: 09:06:25 PM, 17 August 2021)

The radius of convergence of $\sum a_n (x-x_n)^n$ is given by $---=\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ $if \, the \, limit \, exists \, in \, the \, extended \, real \, system.$

Select the correct option

0	$\frac{1}{R}$
0	n
0	$none\ of\ these$
0	R

Download More Quizzes Files From VUAnswer.com

quiz.vu.edu.pk/QuizQue

92: NAVEED IQBAL Time Le :-3 Quiz Start Time: 09:06 PM, 17 of 10 (Start time: 09:12:24 PM, 17 August 2021) Let f be bounded on [a,b], and let P be a partition on [a,b]. Then The lower sum s(P) of f over P is the ---- of the set of all Riemann sums of f over P. rect option $\sup remum$ $\inf imum$

quiz.vu.edu.pk/QuizQue:

(Start time: 09:14:08 PM, 17 August 2021)

Suppose that f has n derivative at x_o and n is the the smallest positive $\text{integer such that } f^{n}\left(x_{o}\right)\neq0.\text{ If } n\text{ is even, } x_{o}\text{ is }------\text{ if } f^{(n)}\left(x_{o}\right)<0.$

Download More Quizzes Files From

ption

VUAnswer.com

a local $\min imum \ of \ f$.

a local $\max imum \ of \ f$.

 $not\ a\ local\ extreme\ point\ of\ f.$

None of these

4GI 4GI 21:15

quiz.vu.edu.pk/QuizQue:

99Z: NAVEED IQBAL Time Le iz-3 Quiz Start Time: 09:06 PM, 17) of 10 (Start time: 09:14:52 PM, 17 August 2021) Let f be bounded on [a,b], and let P be a partition on [a,b]. Then The upper sum s(P) of f over P is the ---- of the set of all Riemann sums of f over P. orrect option Reload N

 $\inf imum$

 $\sup remum$

Download More Quizzes Files From VUAnswer.com

quiz.vu.edu.pk/QuizQuest

HANGIR

Quiz Start Time: 09:27

)9:27:04 PM, 17 August 2021)

If f is ----- on [a,b], then f is not integrable on [a,b].

unbounded

Download More Quizzes Files From VUAnswer.com

bounded

MC200403975: MOEEZA JAHANGIR

MTH621:Quiz-3

Question # 5 of 10 (Start time: 09:30:12 PM, 17 August 2021)

The series $\sum (-1)^n a_n$ converges if $0 \le a_{n+1} \le a_n$ and $\lim_{x \to \infty} a_n = -1$

Select the correct option

0	-1
0	None of these
0	1
0	Download More Quizzes Files From

VUAnswer.com

Quiz Star

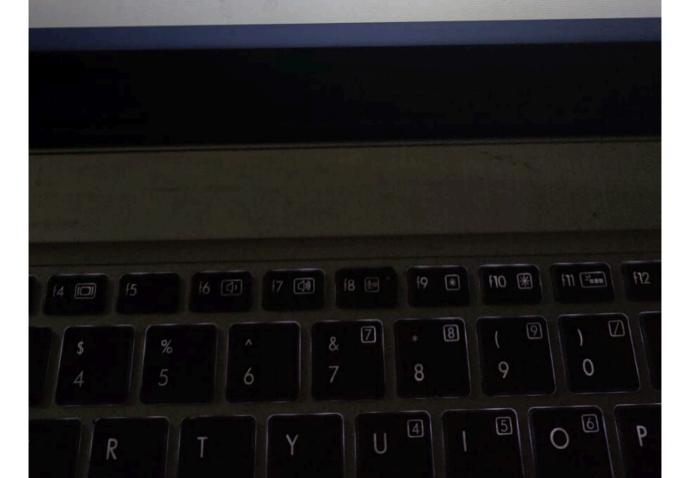
:31:21 PM, 17 August 2021)

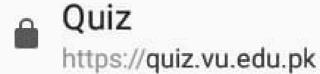
If f is unbounded on [a,b], then f is ---- on [a,b].

integrable

not integrable

Click to Save And




If f is diffrentiable at x_0 , then f is continuous at x_0 .

Download More Quizzes Files From *false*VUAnswer.com

true

1 of 10 (Start time: 09:58:01 PM, 17 August 2021)

Suppose that f has n derivative at x_n and n is the the smallest positive integer such that $f^n(x_0) \neq 0$. If n is odd, x_0 is -----.

None of these a local maximum of f.

not a local extreme point of f.

a local $minimum \ of \ f$.

White the State Con to C. P.

Download More Quizzes Files From VUAnswer.com

(2)

Question # 3 of 10 (Start time: 09:58:46 PM, 17 August 2021)

If $\sum\limits_{n=1}^{\infty}b_n$ is rearrangement of an absolutely convergent series $\sum\limits_{n=1}^{\infty}a_n, \ then \ \sum\limits_{n=1}^{\infty}b_n \ also \ ----- \ absolutely, \ and \ to \ the \ same \ sum.$

Select the correct option

Download More Quizzes Files From

VUAnswer.com

Quiz Start Time: 09:55

e: 10:00:47 PM, 17 August 2021)

In the Riemann integral $\int_{-\infty}^{\infty} f(x) dx$, if it exist, is -

different

Download More Quizzes Files From

VUAnswer.com

unique

♠ quiz.vu.edu.pk/QuizQues

M1H621:Quiz-3

Question # 7 of 10 (Start time: 10:02:56 PM, 17 August 2021)

The series $\sum a_n b_n$ converges if $a_{n+1} \leq a_n$ for $n \geq k$, $\lim_{n \to \infty} a_n = 0$, and $|b_k+b_{k+1}+\ldots+b_n|---M, \ for \ some \ constant \ M.$

Select the correct option

0	S	Download More Quizzes Files From VUAnswer.com
0	None of these	
0	<	
0	≥	

♠ quiz.vu.edu.pk/QuizQues

:04:52 PM, 17 August 2021)

If f is continuous at x_o , then f is diffrentiable at x_o . Download More Quizzes Files From

VUAnswer.com

false

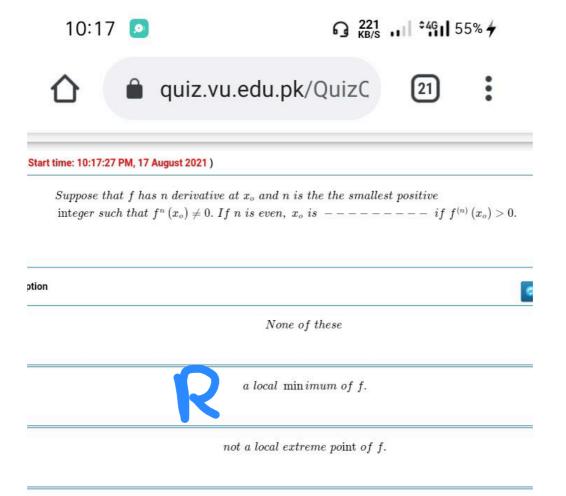
true

Olink in St

The function $g(x) = x^2$ is ---- on $[0, \infty)$.

 $in rea\sin g$

 $decrea\sin g$



a local $\max imum \ of \ f$.

Glieb to Come Commer C I Com

Download More Quizzes Files From VUAnswer.com

auiz.vu.edu.pk/QuizC

Q

e: 10:15:52 PM, 17 August 2021)

Investigate the value of
$$\lim_{x \to \infty} x^{\frac{1}{x}} = ----$$

$None\ of\ these$

0

1

-1

Olick to S

auiz.vu.edu.pk/QuizC

:48 PM, 17 August 2021)

Investigate the value of $\lim_{x\to o+} x \log x = ---$.

1

0

 $None\ of\ these$

-1

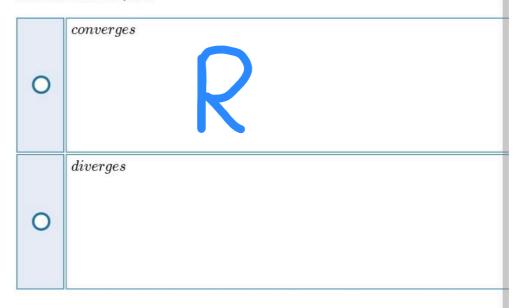
Download More Quizzes Files From

VUAnswer.com

a quiz.vu.edu.pk/QuizC 21

1C190405608: ANAM NAWAZ						
1TH621	TH621:Quiz-3					
uestion # 7 of 10 (Start time: 10:21:59 PM, 17 August 2021)						
The radius of convergence of the given power series $\sum \frac{x^n}{n!}$ is $$.						
elect th	ne correct option					
0	None of these					
0	∞					
0	1					
	0					

Ü

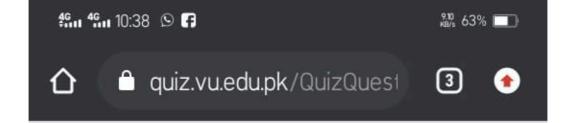


auiz.vu.edu.pk/QuizC

Question # 10 of 10 (Start time: 10:25:10 PM, 17 August 2021)

The series
$$\sum (-1)^n a_n -----if\ 0 \leq a_{n+1} \leq a_n \ and \lim_{x o \infty} \ a_n = 0$$

Select the correct option

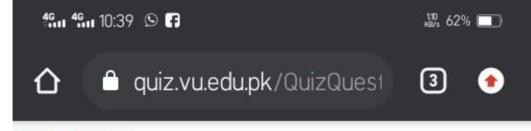


MTH621:Quiz-3

Question # 3 of 10 (Start time: 10:38:02 PM, 17 August 2021)

 $\lim_{x o 0+} x \log x$, has the following indeterminate form

Download More Quizzes Files From


VUAnswer.com

Select the correct option

0	$(0)(\infty)$.
0	$\infty \times \infty$.
0	0^{∞} .
0	$\frac{0}{0}$.

6: SAMEER AHSAN KHAN

Quiz Cariz

f 10 (Start time: 10:39:39 PM, 17 August 2021)

The function $g(x) = x^2$ is inreasing on ----.

rect option

none of these

 $(-\infty,0)$

 $(-\infty, -1)$

Olick to Gairo Act