Table of Contents

mth621 reall analysis 2
MTH621-QUIZ\#3-FALL-2019-BY-SHAZIA 6
MTH621-QUIZ-3-POINTS-BY-MTA-1 16
MTH621-QUIZ-BY-KINAT-SHAFIQUE-2 17

Question \#1 of 10 (Start time: 12:59:51 AM, 17 February 2019)
The function $g(x)=x^{2}$ is

MTH621:Quiz No 3

MTH621:Quiz No 3

Quiz Start Time: 12:59 AM. 17 February 2019

Question f 3 of 10 (Start time: 01:01:30 AM, 17 February 2019)
If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then f is

elect	correct option	0 Reload Math Equations
-		
\bigcirc	dieconlinuous at c.	
\bigcirc	undefined at C.	
\bigcirc	hoving one sided limit.	

Download More Quizzes Files From
VUAnswer.com

MTH621:Quiz No 3
Quiz Start Time: 12:59 AM. 17 February 2019
Question 85 of 10 (Start time: 01:0205 AM, 17 February 2019)
Total Merks: 1
If f is differentiable at o local extreme point $x_{0} \in D_{f}^{\mathrm{p}}$, then

MTH621:Quiz No 3		Quiz Start Time: 12.59 AM, 17 February 2019
Question \#6 of 10 (Start time: 01:03:08 AM, 17 February 2019)		Total Marks. 1
The inverse of the function $f(x)=x^{2}$, is		
Select the correct option		OReload Math Equations
\bigcirc	$f^{-1}(y)=y^{2}$	
9	$f^{-1}(y)=\sqrt{y}$	
\bigcirc	$f^{-1}(y)=\frac{1}{2}$	
\bigcirc	$f^{-1}(y)=\frac{1}{y^{2}}$	

Download More Quizzes Files From
VUAnswer.com

MTH621:Quiz No 3
Quiz Start Time 12.59 NM. 17 February 2019
Question \#8 of 10 (Start time: 01:04:21 AM, 17 February 2019)
Rolle's Theorem says, suppose that f is continuous on the closed interval $[a, b \mid$ and differentiable on the open interval (a, b) and $f(a)=f(b)$.
Download More Quizzes Files From

MTH621:Quiz $\operatorname{No} 3$
Quiz Start Time: 12:59 AM. 17 February 2019

Question If 9 of 10 (Start time: 01:05:10 AM, 17 February 2019)
The Mean Value Theorem says, suppose that f is differentibble on $[a, b], f^{\prime}(a) \neq f^{\prime}(b)$, and μ is between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Download More Quizzes Files From

VUAnswer.com

Download More Quizzes Files From

VUAnswer.com

MTH621:Ouiz 2

Ouestion \# 9 of 10 (Start time: 02:14:42 PAA, 28 November 2017)

Every Cauchy sequence has a

Download More Quizzes Files From
VUAnswer.com

- Select the correct option

O	convergent subsequence.	
	increasing subsequence.	
	decreasing subsequence.	
	positive subsequence.	
		Download More Quizzes Files Fror VUAnswer.com

The function $f(x)=\left\{\begin{array}{ll}2, & 0 \leq x<1, \\ 2, & 1 \leq x \leq 2,\end{array}\right.$,

Download More Quizzes Files From

VUAnswer.com

70
Hen(a)

$$
J=[0,2] .
$$

is norancreasing on

$$
I=\{0,2\},
$$

is having negatre values an

$$
I=[0,2],
$$

is undefined on
0

$$
I=[0,2]
$$

MC7BO20051苗: SHA21A TABASSUM

The function $h(x)--x^{3}$ is

Download More Quizzes Files From

Select the correct option

VUAnswer.com

NAC18020051B: SHAZ1A TABASSUM

MTH621:Qutr No 3

74
(14eric)
Quir Start Time: 03:26 PM, 16 February 2019

Question \#7 of 10 (Start time: 03:31:31 PM, 16 February 2019)

Generalized Meari Value Theorem says if f and g are coatinumus on the clased interval (u, b) and differentiable on the open interval ($14, b$), then

Select the correct option

Anmat Ma thuatisu

$$
g^{\prime}(x)=f^{\prime}(z) \text { for all } x \text { in }(a, b)
$$

The function $g(x)=x^{2}$ is

[^0]increasing on $[0, \infty)$.

having negative values on ($0, \infty$).
undafined on $(0, \infty)$. leciol

MTH621:Qulz No 3

Question a 5 of 10 (Stant time 03:30:23 PM, 16 February 2019)

The Mean Value Theorem says, suppose that f is differestiabie on $|a, b|, f^{\prime}(a) \neq f^{\prime}(b)$, and μ in between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Select the correct option

Then $f^{\prime}(c) \neq \mu$ for some c in (a, b)	
	Then $f^{\prime}(c)=\mu$ for some c in (a, b).
	Then $f^{\prime}(c)=0$ for same c in (a, b).
	Then $f^{\prime}(c)$ may be 0 or μ for some c in (a, b),

MTH621:Quiz No 3

Question \#\# 2 of 10 (Start time: 03:28:07 PM, 16 February 2019)
If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then f is

Select the correct option

discontinuous at c .
undefined at c.
having one sided limit.

MTH621:Quiz No 3

Question \# 4 of 10 (Start time: 03:29:43 PM, 16 February 2019)
The derivative of the function x^{n} is

Select the correct option

MTH621:Quiz No 3

Question \# 3 of 10 (Stact time: 03:28:42 PM, 16 February 2019)

Total Marks: 1
If a function f is contonous on the closed interval then f attains ita

Select the correct option

eatreme values in the closed interval.	
	extreme values at one point in the closed interval.
	may or may not attain extreme values in the cloted interval

Question $₹ 9$ of 10 (Sturt lime: 03:33:11 PM. 16 February 2019)
$\lim _{x \rightarrow 0} x \log x$, has the following indeterninate form

Select the correct option

IMPORTANT POINTS TO REVIEW BEFORE SOLVING MTH621-QUIZ\#3

It is not useful to define $\infty-\infty, 0 \cdot \infty, \infty / \infty$, and $0 / 0$. They are called indeterminate forms, and left unde_ned.

The function
$f(x)=$
$\{$
$x, 0 \leq x<1$,
$2,1 \leq x \leq 2$,
is nondecreasing on $I=[0,2]$.

The function $g(x)=x 2$ is increasing on $[0, \infty)$. The function $h(x)=-x 3$ is decreasing on $(-\infty, \infty)$.

If f and g are continuous on the closed interval $[a, b]$ and di_erentiable on the open interval (a, b), then

$$
[g(b)-g(a)] f^{\prime}(c)=[f(b)-f(a)] g^{\prime}(c)
$$

The derivative of the function x^{n} is $n x^{n-1}$
Download More Quizzes Files From
VUAnswer.com
Recall the following: If a function f is continuous on the closed interval
then f attains its extreme values in the closed interval.

The inverse of the given function is $f^{-1}(y)=g(y)=\sqrt{y}, 0<y<R^{2}$

Suppose that f is continuous on the closed interval $[a, b]$ and di_erentiable on the open interval (a, b), and $f(a)=f(b)$. Then $f^{\prime}(c)=0$ for some c in the open interval (a, b).
\square
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=fd3b45a7-91a4-4fa2-bb55-0513a412328b

MC170201745: Shakool Ahmad

MTH621:Quiz 3-Lecture 23 to 27

Total Marks: 1

Question \# 9 of 10 (Start time: 07:54:42 PM. 16 January 2018)

The limit

$$
\lim _{x \rightarrow 1} \sqrt{x}-1 .
$$

Select the correct option

OReload Math Equations

The set of terms of $\left\{s_{n_{4}}\right\}$ is contained in the set of terms of $\left\{s_{n}\right\}$ implies

Sup $\left\{s_{n}\right\}=\sup \left\{s_{n_{*}}\right\}$.	
	$\sup \left\{s_{n}\right\} \leqslant \sup \left\{s_{n_{*}}\right\}$.
	$\sup \left\{s_{n}\right\} \geqslant \sup \left\{s_{n_{*}}\right\}$.
	$\left\{s_{n}\right\}$ is convergent.

Question \# 2 of 10 (Start time: 10:03:30 PM, 06 February 2018)
The Mean Value Theorem says, suppose that f is differentiable on $[a, b], f^{\prime}(a) \neq f^{\prime}(b)$, and μ is between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Select the correct option

$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=952f0347-ef07-4cfc-9cee-34120131a125

MC170201745: Shakeol Ahmad

Question \# 1 of 10 (Start time: 07:47:22 PM. 16 January 2018)

Total Marks: 1

The limit

$$
\lim _{x \rightarrow \infty} x^{2}-x .
$$

is

\square
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=7dfb6960-1289-4a8d-93b3-c72e147d25fe

MC170202886: Aqsa Zunaira \square

Question \# 9 of $\mathbf{1 0}$ (Start time: 10:05:45 PM, 06 February 2018)

If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then f is


```
L6% LMS-Virtual University of Pab }\times=\mathrm{ Wl Quiz
|f(3) Facebook
x +
10
5
``` Viewing payed advet...
Identify the identical sequences.
```


## Select the correct option

0	$\left\{\frac{1}{n^{2}-2}\right\}_{3}^{\infty}$ and $\left\{\frac{1}{n}\right\}_{1}^{\infty}$.
0	$\left\{\frac{1}{n}\right\}_{3}^{\infty}$ and $\left\{\frac{1}{n}\right\}_{1}^{\infty}$.
0	$\left\{\frac{1}{n-2}\right\}_{3}^{\infty}$ and $\left\{\frac{1}{n^{2}}\right\}_{1}^{\infty}$.
$\bullet$	$\left\{\frac{1}{n-2}\right\}_{3}^{\infty} \text { and }\left\{\frac{1}{n}\right\}_{1}^{\infty} \text {. }$


0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=b5e8d9b5-f1a9-4d37-906b-44332e66438f

MC170201745: Shakoel Ahmad $\square$
Time Left
MTH621:Quiz 4 -Lectures 30 to 37

Question \#10 of 10 (Start time: 09:42:41 PM, 06 February 2018)
$\lim _{x \rightarrow 0 t} x \log x$, has the following indeterminate form

## Select the correct option

## O Reload Math Equations



MTH621:Quiz 4 -Lectures 30 to 37

Question \# 4 of 10 (Start time: 10:04:12 PM. 06 February 2018)
Rolle's Theorem says, suppose that $f$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$ and $f(a)=f(b)$.

Select the correct option
Then $f^{\prime}(c)=0$ for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c) \neq 0$ for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c)$ exists for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c)=0$ for some $c$ in the open interval $(a, \infty)$.

## Question \# 5 of $\mathbf{1 0}$ (Start time: 10:04:36 PM. 06 February 2018)

Generalized Mean Value Theorem says. If $f$ and $g$ are continuous on the closed interval $[a, b]$ and differentiable on the open interval ( $a, b$ ), then

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=3 \mathrm{~b} 569447-6 \mathrm{cdd}-44 \mathrm{df}-87 \mathrm{c} 1-23 \mathrm{edOd} 27227 \mathrm{c}$

MC170202886: Aqsa Zunaira

For the function defined as $f(x)=c x$. for every $\epsilon>0$ the formal definition of limit of function ensures

## Select the correct option



$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=1130 \mathrm{~b} 338-4761-42$ a6-8270-be33150c8568

MC170200890: Awwal Khan $\square$
Time Left
Quiz Start Time: 10:31 PM, 06 February 2018

If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$, then $f$ is

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=702ef977-ca04-46bd-ba12-6cdb1b400821

MC170201745: Shakeol Ahmad

## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 6 of 10 ( Start time: 07:51:32 PM. 16 January 2018 )

The $\lim _{x \rightarrow 0} \frac{4-4 \cos x-2 \sin ^{2} x}{x^{4}}$ is
Download More Quizzes Files From
VUAnswer.com

## Select the correct option


$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=5842a112-37a2-462d-b48c-cd84dc2029t

MC170202886: Aqsa Zunaira
Time Left 70
Quiz Start Time: 10:03 PM, 06 February 2018

## MTH621:Quiz 4 -Lectures 30 to 37

Total Marks: 1
Question \# 10 of 10 (Start time: 10:06:24 PM, 06 February 2018)
The function $h(x)=-x^{3}$ is


Question \# 8 of 10 (Start time: 09:41:16 PM. 06 February 2018 )
The inverse of the given function $S(x)=2 x+4$. Iquad 0 Veqsiant $x$ Veqsiant 2.8 is

## Select the correct option


$\$\left[f^{2}(-1]\right](y)=|f r a c[[y-2] / 4]| \$$
O
$\$(f(-1])](y)=\mid \operatorname{frac}\left[(x-2] h^{4}\right) . \$$
O
$\left.\$\left(f^{\prime}[-1]\right](y)=\mid f r a c[[y-4]\} 4\right] \$$
O
$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=77d5f9de-1c8d-423c-88de-a45boffec034

MC170201745: Shakeol Ahmad

## MTH621:Quiz 4 -Lectures 30 to 37

## Question \# 7 of $\mathbf{1 0}$ (Start time: 09:40:26 PM, 06 February 2018 )

The inverse of the function $f(x)=x^{2}$, is

## Select the correct option



$\square$

## Question \# 5 of 10 (Start time: 02:10:35 PMA, 28 November 2017)

Which statement(s) is(are) true about the following sequence $s_{0}=1$ and $s_{n}=1-e^{-s}$

## Select the correct option

© Reload Math Equations

	$0<s_{n} \leqslant 1$ for all $n$.
	$s_{n+1}-s_{n}=-\left(c^{-s_{n}}-e^{-s_{n-1}}\right)$.
	Sequence is convergent.

All of the above.

Quiz Start Time: 10:03 PM, 06 February 2018

The inverse of the function $f(x)=x^{2}$, is

## Select the correct option


$\boldsymbol{\theta}$ $\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=702ef977-ca04-46bd-ba12-6cdb1b400821

MC170201745: Shakeol Ahmad

## Question \# 6 of 10 ( Start time: 07:51:32 PM. 16 January 2018 )




Which of the following given sets is compact subset of $\mathbb{R}$.

	(1.5]
	\{1,2.4\}
	[0.1]
	(2,3)

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=$ b96fa9c4-532b-4658-a381-1 c498ba21c69

## Question \# 3 of $\mathbf{1 0}$ (Start time: 07:48:48 PM. 16 January 2018 )

For the function $\frac{|s|}{z}$, identify the false statement(s)

## Select the correct option

O	$\lim _{z \rightarrow 0 \mid} \frac{\|x\|}{x}=1$
	$\lim _{z \rightarrow 0} \frac{\|x\|}{x}=-1$
	$\lim _{z \rightarrow 0} \frac{\|x\|}{x}$ doesn't exist.
	$\lim _{z \rightarrow 0} \frac{\|x\|}{x}=1$.

$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=34c7069f-228f-4199-b09d-5ff7207afe22

## Question \# 7 of 10 ( Start time: 09:48:03 PM, 18 January 2018 )

## The value of the limit

```
\mp@subsup{\operatorname{lim}}{x->0!}{}x\operatorname{log}x,
```


$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=84 \mathrm{~b} 88+02-10 \mathrm{fb}-48 \mathrm{a} 4-9437$-d583ba2c41b3

## Question \# 9 of $\mathbf{1 0}$ (Start time: 09:48:57 PM. 18 January 2018 )

For the function $f(x)=x \sin \frac{1}{x}, \quad x \neq 0$, which statement is true

## Select the correct option

0	$\lim _{\substack{ \\ \rightarrow 1 / s}} f(x)=0$.	
O	The function is not defined ot	$x=0$.


O	$\lim _{x \rightarrow 0} f(x)=1$.

$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxłver=c61114b1-ed77-4d6d-a830-6825b0c6c9b0

MC170201745: Shakeol Ahmad

## Question \# 4 of $\mathbf{1 0}$ (Start time: 07:49:47 PM. 16 January 2018)

## For the function

$$
f(x)=x \sin \frac{1}{x}, \quad x \neq 0
$$

## O Reload Math Equations

## Select the correct option


$\leftarrow \rightarrow$ C (1) quiz.vuedu.pk/QuizQuestion.aspxiver=131467c7-db13-4c11-8c94-383827def38c
MC170202886: Aqsa Zunaira
Download More Quizzes Files From

Quiz Start Time: 09-46 PM, 18 January 2018

## MTH621:Quiz 3-Lecture 23 to 27

VUAnswer.com

Total Marks: 1
Question \# 8 of 10 ( Start time: 09:48:22 PM. 18 January 2018 )

$$
\begin{array}{ll}
x^{2}, & x \leqslant 0, \\
x^{2} \sin \frac{1}{x}, & x>0,
\end{array}
$$



```
Time Left }7
```


## MTH621:Quiz 4 -Lectures 30 to 37

Total Marks: 1

## Question \# 7 of 10 ( Start time: 10:33:35 PM. 06 February 2018 )

The inverse of the given function $s(x)=2 x+4$. quasd 0 Veqslant $x$ Veqslant 2.5 is

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=54488921-1a48-4331-a85b-869022e2938e

MC170200890: Awwal Khan

## Time Left

Quiz Start Time: 10:31 PM, 06 February 2018

## MTH621:Quiz 4 -Lectures 30 to 37

## Question \# 3 of $\mathbf{1 0}$ (Start time: 10:32:11 PM, 06 February 2018 )

The function $g(x)=x^{2}$ is

## Select the correct option

| decreasing on $[0, \infty)$. |  |
| :--- | :--- | :--- |
| P |  |
|  | increasing on $[0, \infty)$. |
|  | having negative values on $[0, \infty)$. |
|  | undefined on $[0, \infty)$. |

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=5e626101-614c-46d5-9891-19ee385b82ec

MC170202886: Aqsa Zunaira

## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 6 of 10 (Start time: 09:47:44 PM. 18 January 2018 )

```
If }\mp@subsup{\operatorname{lim}}{x->0}{}f(x)=10\mathrm{ and }\mp@subsup{\operatorname{lim}}{x->0}{}g(x)=-2\mathrm{ then }\mp@subsup{\operatorname{lim}}{x->0}{}\frac{f(x)}{g(x)}\mathrm{ is
```


## Select the correct option


$\leftarrow \rightarrow$ (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=18t8d3c5-93a9-4i8f-ad08-f6e1adc63f20
MC170200890: Awwal Khan $\square$
Time Left

## MTH621:Quiz 4 -Lectures 30 to 37

Total Marks: 1
Question \# 6 of $\mathbf{1 0}$ (Start time: 10:33:22 PM. 06 February 2018)
Generalized Mean Value Theorem says. If $f$ and $g$ are continuous on the closed interval $[a, b]$ and differentiable on the open interval ( $a, b$ ), then

$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=7c19273f-6072-49f0-af53-5199ac832c4f

MC170202886: Aqsa Zunaira $\square$

## Question \# 7 of $\mathbf{1 0}$ (Start time: 10:05:25 PM. 06 February 2018)

The derivative of the function $x^{n}$ is

## Select the correct option

## O Reload Math Equations



## Question \# 7 of $\mathbf{1 0}$ ( Start time: 07:52:40 PM, 16 January 2018 )

## For the function defined as

$$
f(x)=c x
$$

for every $\epsilon>0$ the formal definition ensures

## Select the correct option


$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=0ecc5fbf-3cbd-4d10-a9d5-92026c66f944

MC170202886: Aqsa Zunaira

```
Time Leff }\frac{80}{\operatorname{sec}(\textrm{s})
```


## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 4 of 10 ( Start time: 09:47:08 PM. 18 January 2018 )

If $\lim _{z \rightarrow 0} f(x)=10$ and $\lim _{x \rightarrow 0} g(x)=-2$ then $\lim _{z \rightarrow 0}\left(\frac{f(x)}{g(z)}\right.$ is

## Select the correct option

OReload Math Equations



0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=3666 \mathrm{cc} 5 \mathrm{e}-$-fee2-40ed-a87b-412224ba1e98

MC170200890: Awwal Khan

Time Left
Quiz Start Time: 10:31 PM, 06 February 2018

## MTH621:Quiz 4 -Lectures 30 to 37

## Question \# 5 of $\mathbf{1 0}$ (Start time: 10:32:56 PM, 06 February 2018)

$$
\text { The function } f(x)=\left\{\begin{aligned}
x, & 0 \leqslant x<1, \\
2, & 1 \leqslant x \leqslant 2,
\end{aligned}\right.
$$



## Question \# 6 of 10 (Start time: 10:04:50 PM, 06 February 2018)

The function $f(x)=\left\{\begin{array}{ll}x, & 0 \leqslant x<1, \\ 2, & 1 \leqslant x \leqslant 2,\end{array}\right.$ is

## Select the correct option



$$
I=[0,2]
$$

$$
I=[0,2]
$$

O
is nonincreasing on

is having negative values on	$I=[0,2]$.
	is undefined on
	$I=[0,2]$.

## Question \# 9 of 10 (Start time: 10:34:12 PM, 06 February 2018)

The inverse of the function $f(x)=x^{2}$, is

## Select the correct option




0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=a144425i-dca1-43ff-b7be-a22682535b4
MC170202886: Aqsa Zunaira
Time Left ${ }^{69}$
Quiz Start Time: 09-46 PM, 18 January 2018

## MTH621:Quiz 3-Lecture 23 to 27

## Question \#\# 1 of 10 (Start time: 09:46:10 PM, 18 January 2018 )

If $f(x)=\log x$ and $g(x)=\frac{1}{1-x^{3}}$, then $f^{\circ} g$ is

## Select the correct option

O Reload Math Equations

$\left(f^{\circ} g\right)(x)=\log \frac{x}{1-x^{\circ}}$.
0

$\left(f^{\circ} g\right)(x)=\log \frac{1}{2^{2}}$.	
	$\left(f^{\circ} g\right)(x)=\log \frac{1}{1-x^{2}}$.

Question \# 4 of 10 ( Start time: 10:32:26 PM, 06 February 2018)
Rolle's Theorem says. suppose that $f$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$ and $f(a)=f(b)$.

Select the correct option
Then $f^{\prime}(c)=0$ for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c) \neq 0$ for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c)$ exists for some $c$ in the open interval $(a, b)$.

Then $f^{\prime}(c)=0$ for some $c$ in the open interval $(a, \infty)$.

Select the correct option



## MTH621:Quiz 4 -Lectures 30 to 37

Question \# 9 of $\mathbf{1 0}$ (Start time: 09:41:59 PM. 06 February 2018 )
Generalized Mean Value Theorem says. If $f$ and $g$ are continuous on the closed interval $[a, b]$ and differentiable on the open interval ( $a, b$ ), then

$\square$
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=2 \mathrm{~d} 39$ a4b3-9cbc-4fb5-8000-6711b92ce91f

MC170202886: Aqsa Zunaira
Time Left $\begin{gathered}82 \\ \sec (\mathrm{~s})\end{gathered}$
Quiz Start Time: 09-46 PM, 18 January 2018

## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 2 of 10 (Start time: 09:46:36 PM. 18 Jonuary 2018 )

The $\lim _{x \rightarrow 2}(3 x-5)=$

$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver $=\mathrm{d} 763445 \mathrm{c}-\mathrm{e} 6 \mathrm{~b}-4021-946 \mathrm{c}-\mathrm{bb} 5 \mathrm{cff9a} 7 \mathrm{e} 1 \mathrm{e}$

MC170202886: Aqsa Zunaira

Quiz Start Time: 09-46 PM, 18 January 2018

## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 10 of $\mathbf{1 0}$ ( Start time: 09:49:37 PM, 18 January 2018)

The value of $x+\lim _{x \rightarrow 0+} \frac{|x|}{x}=$

## Select the correct option



## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 5 of $\mathbf{1 0}$ (Start time: 07:51:09 PM. 16 January 2018 )

For the function $f(x)=x \sin \frac{1}{2}, \quad x \neq 0$, which statement is true

## Select the correct option


$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=9bc45c8b-74e7-4a1f-a638-a92b77cfb?

MC170200890: Awwal Khan

Time Left
Quiz Start Time: 10:31 PM, 06 February 2018

## MTH621:Quiz 4 -Lectures 30 to 37

## Question \# 1 of 10 (Start time: 10:31:47 PM, 06 February 2018 )

$$
\lim _{x \rightarrow 0 t} x \log x \text {, has the following indeterminate form }
$$

## Select the correct option

## O Reload Math Equations



## MTH621:Quiz 4 -Lectures 30 to 37

## Question \# 8 of 10 (Start time: 10:05:33 PM, 06 February 2018 )

$$
\lim _{x \rightarrow 0 t} x \log x \text {, has the following indeterminate form }
$$

## Select the correct option


$\square$
0
$\leftarrow \rightarrow$ C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver=91dab23a-eb7d-4084-9a00-629dfb1d6626

MC170201745: Shakoel Ahmad

## MTH621:Quiz 3-Lecture 23 to 27

## Question \# 2 of 10 (Start time: 07:48:16 PM. 16 January 2018 )

The $\lim _{x \rightarrow 2}(3 x-5)=$


Question \# 1 of 10 (Start time: 10:03:05 PM. 06 February 2018)
If a function $f$ is continuous on the closed interval then $f$ attains its

Select the correct option
extreme values in the closed interval.
extreme values at one point in the closed interval.
may or may not attain extreme values in the closed interval.
derivative in the closed interval.

```
Time Left

\section*{MTH621:Quiz 4 -Lectures 30 to 37}

\section*{Question \# 8 of 10 (Start time: 10:33:58 PM, 06 February 2018)}

If a function \(f\) is continuous on the closed interval then \(f\) attains its

\(\square\)
\(\leftarrow \rightarrow\) C (1) quiz.vu.edu.pk/QuizQuestion.aspxiver \(=21 \mathrm{~b} 2905 \mathrm{c}-\mathrm{d} 572-43 \mathrm{do}-8 \mathrm{~b} 5 \mathrm{f}-6 \mathrm{a} 15 \mathrm{e} 9 \mathrm{c} 29171\)

MC170201745: Shakeel Ahmad

Time Leff \(\begin{gathered}76 \\ \sec (\mathrm{~s})\end{gathered}\),
Quiz Start Time: 07:47 PM, 16 January 2018

\section*{MTH621:Quiz 3-Lecture 23 to 27}

\section*{Question \# 8 of 10 (Start time: 07:53:43 PM. 16 January 2018)}

The value of \(x+\lim _{x \rightarrow 0+} \frac{|x|}{x}=\)

\section*{Select the correct option}
\begin{tabular}{|c|c|}
\hline O & \(x-1\). \\
\hline \(\bigcirc\) & \(x+1\). \\
\hline O & \(x\). \\
\hline & \(x+1 / x\). \\
\hline
\end{tabular}
```


[^0]:    decreasing on $0, \infty$ ).

