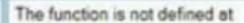
Mth621 Quiz#3 Topic (152 to 175) page (112-134)

Due date 16-18 August 2021


- Mth621 real analysis 17feb2019 (pg4)
- Mth621-QUIZ#3-FALL-2019-BY-SHAZIA 16feb2019 (pg10)
- Mth621-QUIZ-3-POINTS-BY-MTA-117feb2019 (pg1)
- Mth621-QUIZ-BY-KINAT-SHAFIQUE-2 mix quiz (pg52)
- Mid.Mth621.sol.files preparation Group-5 2018,2017, quiz4,2,3
 mix (pg52)
- Mth621 mega.quiz3 17feb2019 4files (pg68)
- 621 16Aug quiz.pdf (pg10)
- Mth 621 quiz..pdf (pg10)
- Mth621.Quiz#3(16Aug2021) made by stylish (pg10)
- Mth621 quiz#3(16 aug2021).current quiz. Solved by stylish(pg10)
- Mth621 quiz no 4-1 17aug2021 (pg21) exactly quiz3
- Mth621 quiz no 4 17aug2021 (pg17) exactly quiz3
- Mth621 verified by tajji Badsha 18aug2021 (pg10)
- Mth621 quizz#3 17august 2021 for final by @ TALHA (37pg)
- Mth621.Quiz#3(152to175)..(17Aug2021).Made by Stylish(pg23)
- 621{18AUG} solved quiz by billi (112 pg)
- Mth621..mega quiz 3.Solved By MS (pg68)

Question # 9 of 10 (Start time: 09:48:57 PM, 18 January 2018)

For the function $f(x) = x \sin \frac{1}{x}$, $x \neq 0$, which statement is true

Select the correct option

$$\lim_{x\to 1/\pi} f(x) = 0.$$

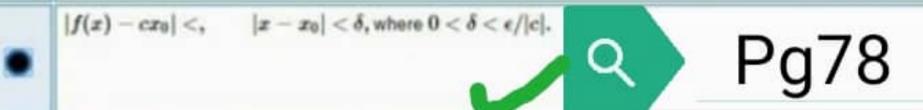
$$x = 0$$
.

$$\lim_{x\to 0} f(x) = 1.$$

Q

Pg78

$$\lim_{x\to 0} f(x) = 0.$$

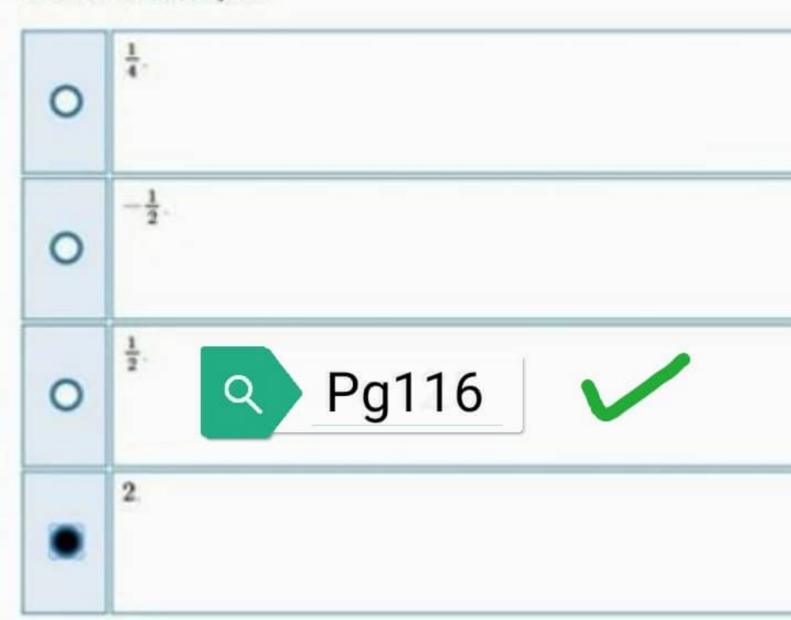

Question # 7 of 10 (Start time: 07:52:40 PM, 16 January 2018)

For the function defined as

$$f(x) = cx$$

for every $\epsilon>0$ the formal definition ensures

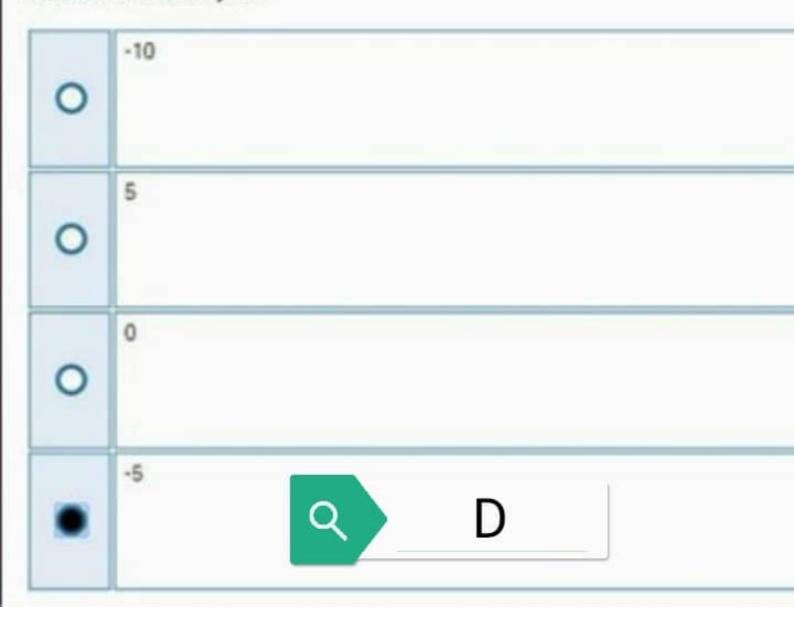
	f(x)-cx	r ₀ <,	x -	$ x_0 < \delta$	where	$0<\delta<\epsilon.$
0						


$$|f(x)-cx_0|<$$
, $|x-x_0|<\delta$, where $-\epsilon<\delta<\epsilon$.

$$|f(x)-cx_0|<$$
, $|x-x_0|<\delta$, where $0<\delta<\epsilon$.

MTH621:Quiz 3 - Lecture 23 to 27

Question # 6 of 10 (Start time: 07:51:32 PM, 16 January 2018)


The
$$\lim_{x\to 0} \frac{4-4\cos x-2\sin^2 x}{x^4}$$
 is

MTH621:Quiz 3 - Lecture 23 to 27

Question # 6 of 10 (Start time: 09:47:44 PM, 18 January 2018)


If
$$\lim_{x \to 0} f(x) = 10$$
 and $\lim_{x \to 0} g(x) = -2$ then $\lim_{x \to 0} \frac{f(x)}{g(x)}$ is

Question # 8 of 10 (Start time: 09:48:22 PM, 18 January 2018)

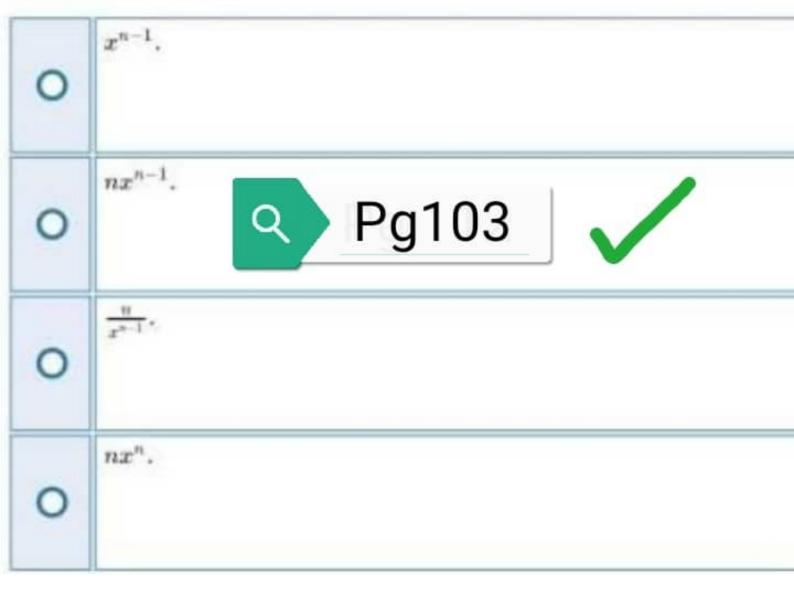
For the piecewise defined function \$f(x) = \left\{ {

$$x^{3}$$
, $x \leq 0$,
 $x^{2} \sin \frac{1}{x}$, $x > 0$,

Question # 3 of 10 (Start time: 03:28:42 PM, 16 February 2019)

if a function f is continuous on the closed interval then f attains its

extreme values in the closed interval. Pg110
extreme values at one point in the closed interval.
may or may not attain extreme values in the closed interval.
derivative in the closed interval.


Question # 10 of 10 (Start time: 03:33:30 PM, 16 February 2019)

The function
$$f(x) = \begin{cases} x, & 0 \leqslant x < 1, \\ 2, & 1 \leqslant x \leqslant 2, \end{cases}$$
 is

0	e Pg 97	I=[0,2] .
0	is nonincreasing on	I=[0,2] .
0	is having negative values on	I = [0, 2],
0	is undefined on	I = [0, 2].

Question # 4 of 10 (Start time: 03:29:43 PM, 16 February 2019)

The derivative of the function x^n is

Question # 5 of 10 (Start time: 03:30:23 PM, 16 February 2019)

The Mean Value Theorem says, suppose that f is differentiable on [a,b], $f'(a) \neq f'(b)$, and μ is between f'(a) and f'(b).

Select the correct option

Then $f'(c) \neq \mu$ for some c in (a,b).

0

Then $f'(c) = \mu$ for some c in (a, b).

Q

Pg111

Then f'(c) = 0 for some c in (a, b).

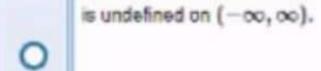
0

Then f'(c) may be 0 or μ for some c in (a, b).

Question # 2 of 10 (Start time: 03:28:07 PM, 16 February 2019)

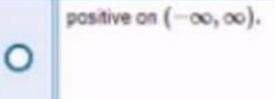
If $f:I o\mathbb{R}$ has a derivative at $c\in I$, then f is

•	continuous at c.
0	discontinuous at c.
0	undefined at c.
0	having one sided limit.

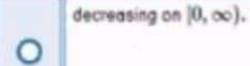

Question # 10 of 10 (Start time: 03:33:30 PM, 16 February 2019)

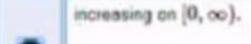
The function
$$f(x) = \begin{cases} x, & 0 \leqslant x < 1, \\ 2, & 1 \leqslant x \leqslant 2, \end{cases}$$
 is


0	es nondecreasing on Pg97	J=[0,2] .
0	is nonincreasing on	I=[0,2].
0	is having negative values on	I=[0,2] .
0	is undefined on	I = [0, 2].


Question # 4 of 10 (Start time: 01:01:38 AM, 17 February 2019)

The function $h(x) = -x^3$ is





Question # 1 of 10 (Start time: 12:59:51 AM, 17 February 2019)

The function $g(x) = x^2$ is

Select the correct option

Pg97

having negative values on $[0, \infty)$.

undefined on $[0, \infty)$.

Question # 1 of 10 (Start time: 05:37:55 PM, 17 August 2021)

The series $\sum (-1)^n a_n$ converges if $0 \le a_{n+1} \le a_n$ and $\lim_{x \to \infty} a_n = ----$.

Question # 2 of 10 (Start time: 10:58:26 PM, 17 August 2021)

Total Marks: 1

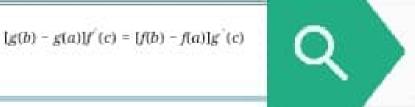
Let f be bounded on [a, b], and let P be a partition on [a, b]. Then The upper sum s(P) of f over P is the ---- of the set of all Riemann sums of f over P.

Question # 8 of 10 (Start time: 11:03:35 PM, 17 August 2021)

Total Marks: 1

Generalized Mean Value Theorem says, If f and g are continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then

[g(b) - g(a)] = [f(b) - f(a)]g'(c)


Select the correct option

Reload Math Equations

g'(x) = 0 for all x in (a, b).

- for some c in (a, b).
- for some c in (a, b).

g'(x) = f'(x) for all x in (a, b).

Pg121

Question # 1 of 10 (Start time: 03:52:38 AM, 18 August 2021)

If f is continuous at x_o , then f is diffrentiable at x_o .


Question # 10 of 10 (Start time: 01:19:07 AM, 18 August 2021)

The radius of convergence of $\sum a_n (x - x_n)^n$ is given by $---- = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ if the limit exists in the extended real system.

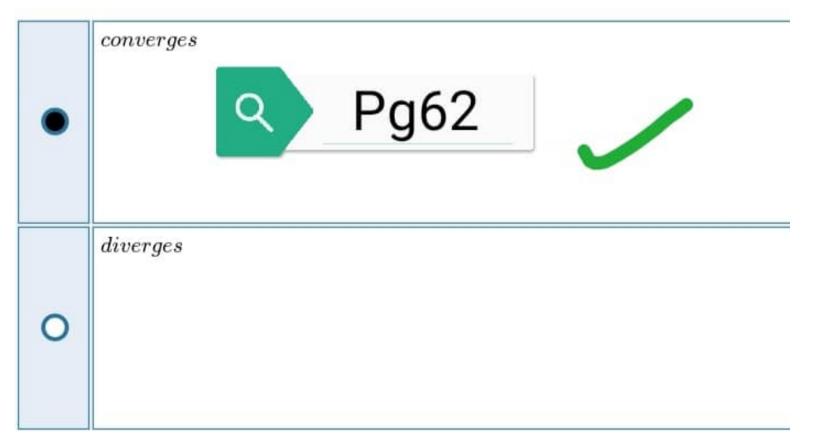
0	R
0	$none\ of\ these$
•	Pg70 /
0	n

Question # 3 of 10 (Start time: 08:00:34 PM, 18 August 2021)

If f is diffrentiable at x_o , then f is continuous at x_o .

Question # 7 of 10 (Start time: 01:09:33 AM, 18 August 2021)

The function
$$g(x) = x^2$$
 is $----$ on $[0, \infty)$.


Question # 3 of 10 (Start time: 01:20:54 AM, 18 August 2021)

The function $g(x) = x^2$ is inreasing on ----

0		$(-\infty,-1)$
0		none of these
0		$(-\infty,0)$
•	Pg97	

Question # 5 of 10 (Start time: 01:24:53 AM, 18 August 2021)

The series
$$\sum (-1)^n a_n$$
 $----$ if $0 \leq a_{n+1} \leq a_n$ and $\lim_{x \to \infty} a_n = 0$

Question # 3 of 10 (Start time: 03:53:08 AM, 18 August 2021)

The series $\sum a_n b_n$ converges if $a_{n+1} \leq a_n$ for $n \geq k$, $\lim_{x \to \infty} a_n = 0$, and $|b_k + b_{k+1} + \ldots + b_n| - - - M$, for some constant M.

Question # 6 of 10 (Start time: 03:53:57 AM, 18 August 2021)

Suppose that f has n derivative at x_o and n is the the smallest positive integer such that $f^n(x_o) \neq 0$. If n is even, x_o is ----- if $f^{(n)}(x_o) >$

Select the correct option

None of these

a local max imum of f.

not a local extreme point of f.

• Pg123

a local min imum of f.

Question # 8 of 10 (Start time: 03:54:19 AM, 18 August 2021)

Investigate the value of $\lim_{x \to \infty} x^{\frac{1}{x}} = ----$.

0		None of these
•	9 Pg119	1
0		0
0		-1

Question # 9 of 10 (Start time: 03:54:48 AM, 18 August 2021)

Suppose that f has n derivative at x_o and n is the the smallest positive integer such that $f^n(x_o) \neq 0$. If n is odd, x_o is -----.

Select the correct option

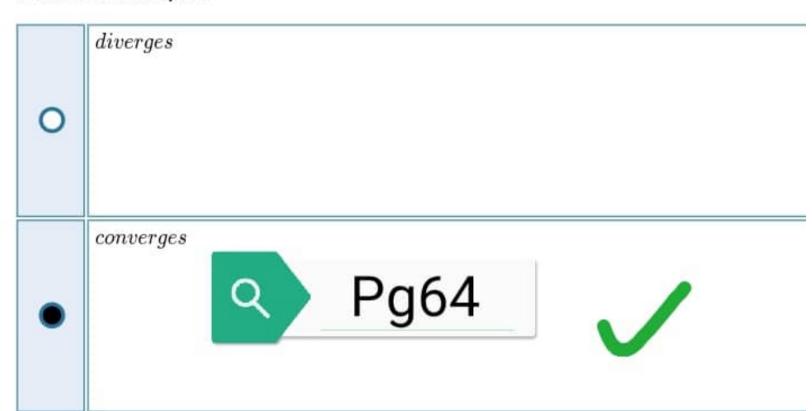
a local max imum of f.

None of these

Pg123


not a local extreme point of f.

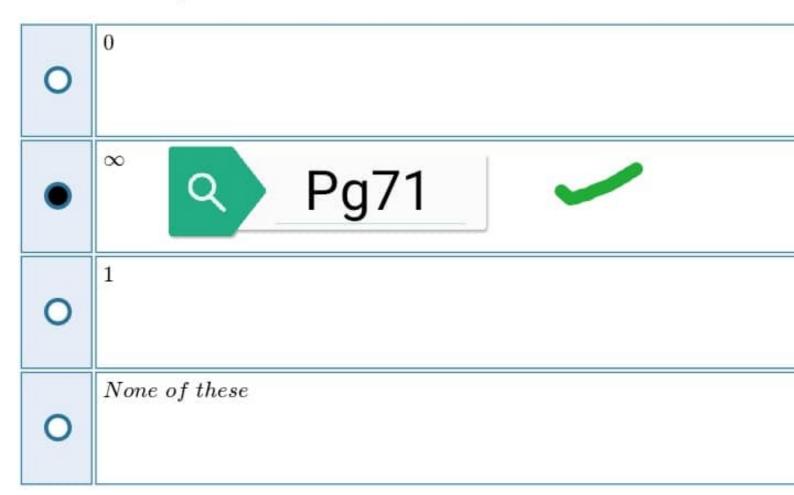
a local $\min imum \ of \ f$.


Question # 10 of 10 (Start time: 03:55:01 AM, 18 August 2021)

The radius of convergence of the given power series $\sum n!x^n$ is ----

Question # 2 of 10 (Start time: 08:00:21 PM, 18 August 2021)

If $\sum_{n=1}^{\infty} b_n$ is rearrangement of an absolutely convergent series $\sum_{n=1}^{\infty} a_n$, then $\sum_{n=1}^{\infty} b_n$ also ---- absolutely, and to the same sum.


Question # 4 of 10 (Start time: 08:00:49 PM, 18 August 2021)

In the Riemann integral $\int\limits_a^b f(x) \; dx$, if it exist, is ---

Question # 5 of 10 (Start time: 08:01:01 PM, 18 August 2021)

The radius of convergence of the given power series $\sum \frac{x^n}{n!}$ is ----.

Question # 6 of 10 (Start time: 08:01:15 PM, 18 August 2021)

Total Marks: 1

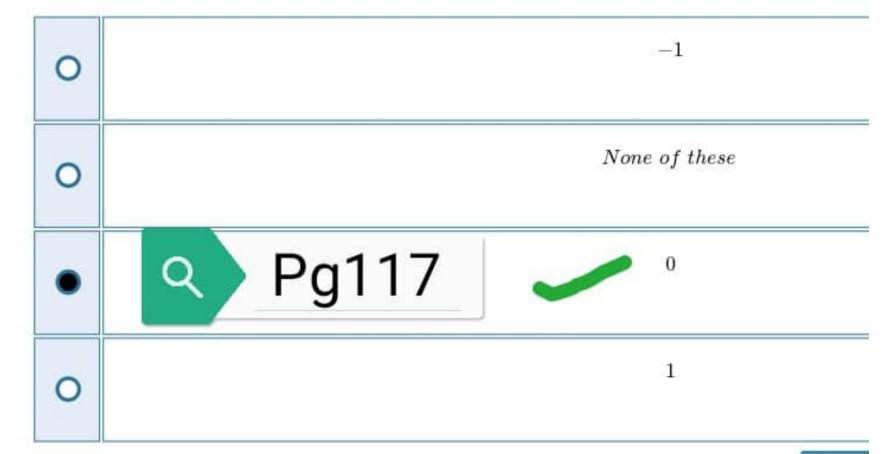
Suppose that f has n derivative at x_o and n is the the smallest positive integer such that $f^n(x_o) \neq 0$. If n is even, x_o is ------ if $f^{(n)}(x_o) < 0$.

Question # 7 of 10 (Start time: 08:01:27 PM, 18 August 2021)

 $\lim_{x o 0+} x \log x,$ has the following indeterminate form

0	$\frac{0}{0}$.
0	$\infty imes \infty$.
•	(0)(∞). Pg117

Question # 8 of 10 (Start time: 08:01:39 PM, 18 August 2021)


If f is unbounded on [a,b], then f is ---- on [a,b].

Question # 9 of 10 (Start time: 08:01:52 PM, 18 August 2021)

Investigate the value of $\lim_{x\to o+} x \log x = ----$.

Question # 10 of 10 (Start time: 08:02:04 PM, 18 August 2021)

If f is ----- on [a,b], then f is not integrable on [a,b].

Question # 1 of 10 (Start time: 09:58:31 AM, 18 August 2021) Total Marks: 1 Let f be bounded on [a,b], and let P be a partition on [a,b]. Then The lower sum s(P) of f over P is the ----- of the set of all Riemann sums of f over P. Select the correct option Reload Math Equations $\sup remum$ inf imum Pg131

Cliebre Cour Leaver & Hear to Dest Guertler