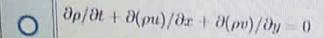
For the steady incompressible two dimensional flow, the continuity equation is given as _

f4 [D]

4


Solved by M@l!k

Select the correct option

Download More Quizzes Files From

 $O = \frac{\partial u/\partial x + \partial v/\partial y = 0}{\partial x + \partial y/\partial y} = 0$

VUAnswer.com

 $\partial \rho/\partial t + \partial u/\partial x + \partial v/\partial y = 0$

바

%

6

 $\bigcirc \quad \frac{\partial (\rho u)/\partial x + \partial (\rho v)/\partial y = 0}{}$

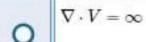
Type here to search

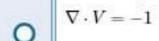
O

esc

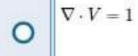
:

MC200203202: ABDUL RAUOF


MTH642:Quiz #3

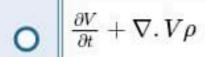

Question # 9 of 10 (Start time: 04:21:48 PM, 26 August 2021)

The flow is appoximated as incompressible if ______


Download More Quizzes Files From

VUAnswer.com

f /quiz.vu.edu.pk/Qu


Question # 10 of 10 (Start time: 04:22:31 PM, 26 August 2021)

The material derivative Dp/Dt can be expanded as ______.

$$O \left | rac{\partial V}{\partial t} + V \cdot
abla
ho$$

$$\bigcirc$$
 $\frac{\partial \rho}{\partial t} + \nabla . V \rho$

$$\bigcirc$$
 $\left| \frac{\partial \rho}{\partial t} + V \cdot \nabla \rho \right|$

The differential equation representing the transport of linear momentum, and conservation of linear momentum as well is called. Download More Quizzes Files From VUAnswer.com Select the correct option the continuity equation the Navier-Stokes equation the Raynolds Transport equation the Euler equation

For the steady compressible two dimensional flow, the continu

Download More Quizzes Files From

VUAnswer.com

$$\partial(u)/\partial x + \partial(v)/\partial y = 0$$

$$\partial \rho/\partial t + \rho \partial(u)/\partial x + \rho \partial(v)/\partial y = 0$$

$$\partial(\rho u)/\partial x + \partial(\rho v)/\partial y = 0$$

$$\partial \rho / \partial t + \partial (\rho u) / \partial x + \partial (\rho v) / \partial y = 0$$

quiz.vu.edu.pk/QuizQue:

•	_	_ :	٦
	_	,	1
	- 1		
			п

MC200	203056: MUHAMMAD FAIZAN BUTT	Time Left 88 sec(s)	
MTH642-Quiz #3		Quiz Start Time: 05:27 PM, 26 August 2021	
Question	# 1 of 10 (Start time: 05:27:00 PM, 26 August 2021)	Total Marks: 1	
For the	e steady compressible flow, the continuity equation is given as		
Select th	ne correct option	Reload Math Equations	
0	$\partial ho / \partial t + abla . \left(ho V ight) = 0$		
0	$\partial ho/\partial t + abla.V = 0$		
0	$ abla_{\cdot}\left(ho V ight)=0$		
0	$\nabla . V = 0$		
	л	Glick to Save Answer & Move to Next Question	

Download More Quizzes Files From

VUAnswer.com

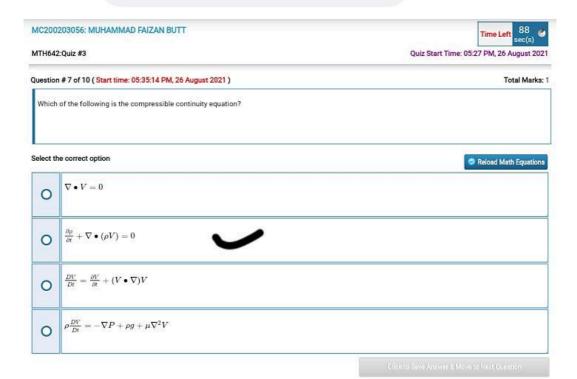
MC200	203056; MUHAMMAD FAIZAN BUTT	Time Left 88 sec(s)
MTH642:Quiz #3		Quiz Start Time: 05:27 PM, 26 August 2021
Question	n # 4 of 10 (Start time: 05:31:02 PM, 26 August 2021)	Total Marks: 1
The m	naterial derivative <i>Dp/Dt</i> can be expanded as	
Select th	he correct option	Reload Math Equations
0	$rac{\partial V}{\partial t} + V \cdot abla ho$	
0	$\frac{\partial V}{\partial t} + \nabla . V ho$	
0	$rac{\partial ho}{\partial t} + V \cdot abla ho$	
0	$rac{\partial ho}{\partial t} + abla . V ho$	
	JI.	

MC200	203056; MUHAMMAD FAIZA	N BUTT	Time Left 87	
MTH642:Quiz #3			Quiz Start Time: 05:27 PM, 26 August 2021	
Question	# 5 of 10 (Start time: 05:32:1	PM, 26 August 2021)	Total Marks:	
The flo	w is appoximated as incompre	essible if		
		Download More Quiz	zes Files From	
Select th	e correct option	VUAnswer.com	Reload Math Equations	
0	$ abla \cdot V = 1$			
0	$\nabla \cdot V = \infty$			
0	$\nabla \cdot V = 0$	<u> </u>		
0	$\nabla \cdot V = -1$			
-	D		Click to Save Answer & Move to Next Question	

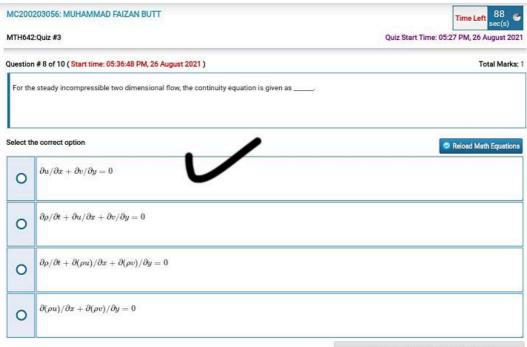
Download More Quizzes Files From

VUAnswer.com

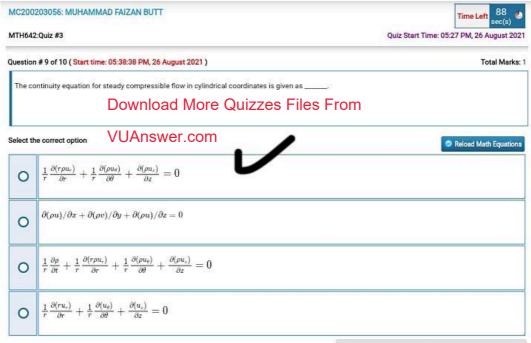
MC200203056; MUHAMMAD FAIZAN BUTT MTH642:Quiz #3 Quiz Start Time: 05:27 PM, 26 August 2021 Question # 3 of 10 (Start time: 05:30:02 PM, 26 August 2021) The continuity equation for steady incompressible flow in cylindrical coordinates is given as _ Reload Math Equations 0 $\frac{1}{r}\frac{\partial ho}{\partial t} + \frac{1}{r}\frac{\partial (r ho u_r)}{\partial r} + \frac{1}{r}\frac{\partial (ho u_ heta)}{\partial heta} + \frac{\partial (ho u_z)}{\partial z} = 0$ 0 $\partial u/\partial x + \partial v/\partial y + \partial w/\partial z = 0$ 0 $\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial(u_\theta)}{\partial \theta} + \frac{\partial(u_z)}{\partial z} = 0$ 0



quiz.vu.edu.pk/QuizQue



Hamza Butt 24 online quiz.vu.edu.pk/QuizQue:



quiz.vu.edu.pk/QuizQue:

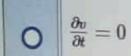
4^G1 4^G1 5:39

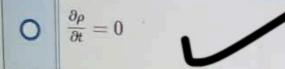
quiz.vu.edu.pk/QuizQues

MC200	203056: MUHAMMAD FAIZAN BUTT	Time Left 88 sec(s)	
MTH64	2:Quiz #3	Quiz Start Time: 05:27 PM, 26 August 2021	
Questio	n #10 of 10 (Start time: 05:39:28 PM, 26 August 2021)	Total Marks: 1	
Which	of the follwing is used to define the stream function for two dimensional flows?		
Select t	he correct option	Reload Math Equations	
0	the Cauchy equation		
0	the continuity equation		
0	the Reynolds Transport equation		
0	the Navier-Stokes equation		

Download More Quizzes Files From

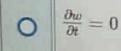
VUAnswer.com





Surrant # 1 to 10 (Sinit time: 05/96/31 PM, 26 August 2021)

For an incompressible three dimensional flow, which of the following must be true?


Select the correct option

Download More Quizzes Files From VUAnswer.com

 $\bigcirc \quad \frac{\partial u}{\partial t} = 0$

Type here to search

0

esc fi f2 f3 (f4 (f5) f6 (f6) f6 (f6) f7 (f7) f

I← Q W E R

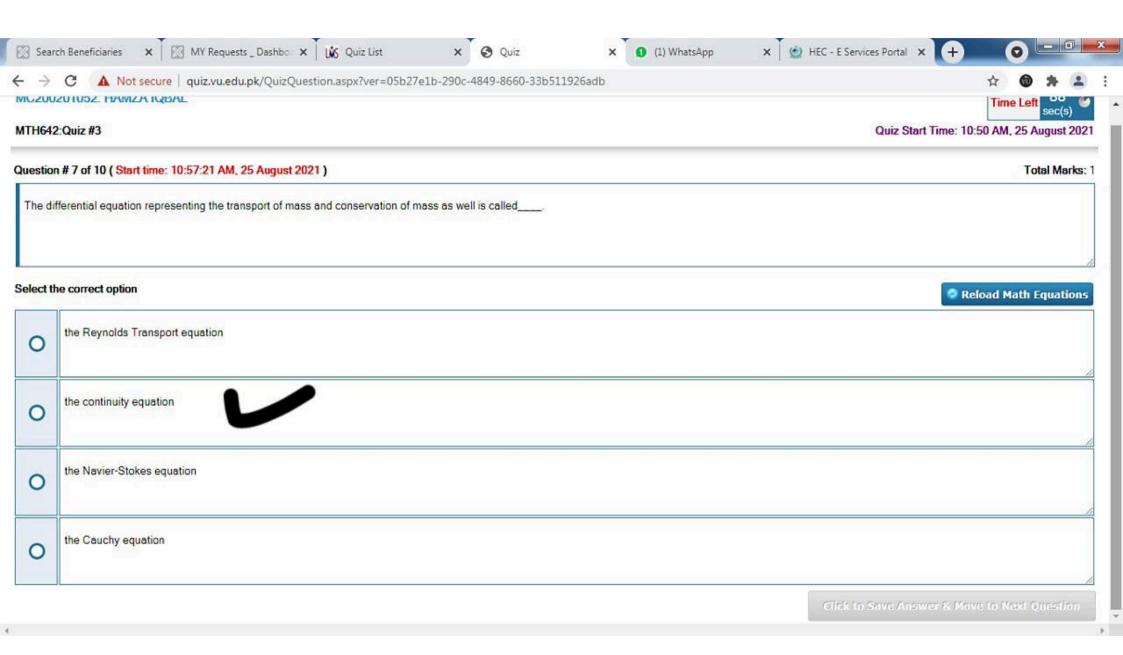
Question #3 of 10 (Start time: U5:47:52 PM, 26 August 2021) For the steady incompressible flow, the continuity equation is given as _____. Select the correct option $\nabla \cdot (\rho V) = 0$ 0 **Download More Quizzes Files From** $\nabla . V = 0$ VUAnswer.com $\partial \rho / \partial t + \nabla \cdot (\rho V) = 0$ $\partial \rho / \partial t + \nabla \cdot V = 0$ 4 O Type here to search 0 計 0 f2 f3 0 f4 101

Question # 4 of 10 (Start time: 05:48:19 PM, 26 August 2021) For the steady incompressible two dimensional flow, the continuity equation is given as _ Select the correct option $\partial u/\partial x + \partial v/\partial y = 0$ $\partial \rho/\partial t + \partial (\rho u)/\partial x + \partial (\rho v)/\partial y = 0$ 0 $\partial \rho/\partial t + \partial u/\partial x + \partial v/\partial y = 0$ $\partial(\rho u)/\partial x + \partial(\rho v)/\partial y = 0$ D Type here to search 山 Download More Quizzes Files From VUAnswer.com 0 f4 🗐 f6 [1] \$ % 4 5 6

11/

For the steady compressible two dimensional flow, the continuity equation is given as _

Select the correct option


$$O = \frac{\partial \rho}{\partial t} + \rho \partial(u)/\partial x + \rho \partial(v)/\partial y = 0$$

$$\partial \rho / \partial t + \partial (\rho u) / \partial x + \partial (\rho v) / \partial y = 0$$

Download More Quizzes Files From VUAnswer.com

$$\partial(\rho u)/\partial x + \partial(\rho v)/\partial y = 0$$

$$\partial(u)/\partial x + \partial(v)/\partial y = 0$$

MTH642:Quiz #3

Question # 3 of 10 (Start time: 10:53:47 AM, 25 August 2021)

Which of the following is the compressible continuity equation?

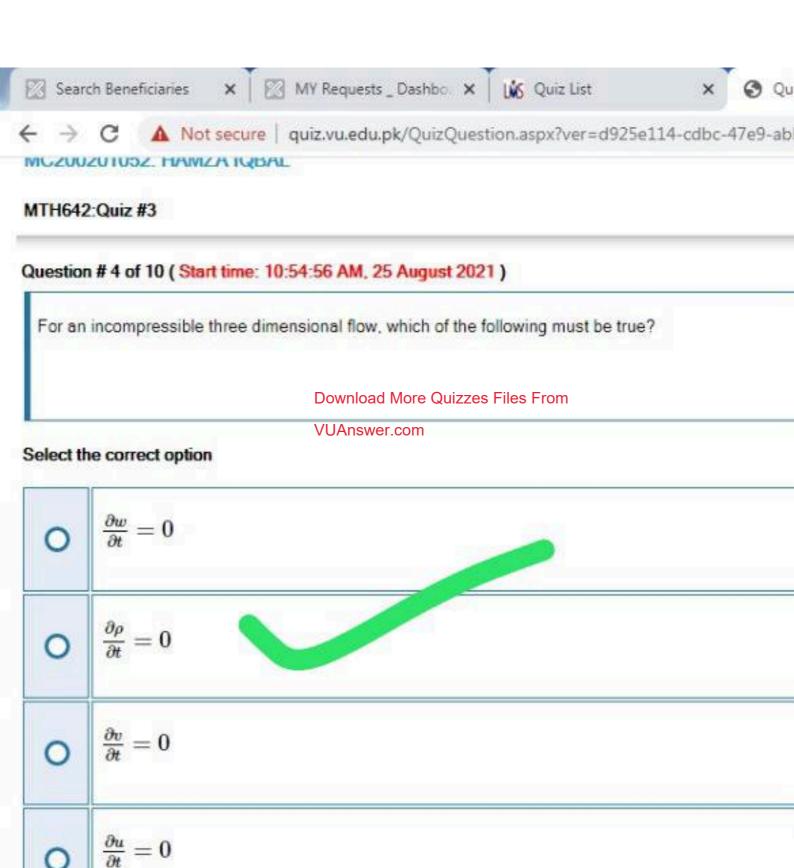
$$\nabla \bullet V = 0$$

$$O \qquad \frac{DV}{Dt} = \frac{\partial V}{\partial t} + (V \bullet \nabla)V$$

→ C A Not secure | quiz.vu.edu.pk/QuizQuestion.aspx?ver=05a03cb8-68a9-4149-b5fb-3

MICZUUZUTUOZ. HAWIZA TQBAL

MTH642:Quiz #3


Question # 6 of 10 (Start time: 10:56:24 AM, 25 August 2021)

The continuity equation for steady compressible flow in cylindrical coordinates is given as ___

Download More Quizzes Files From

VUAnswer.com

$$\partial(\rho u)/\partial x + \partial(\rho v)/\partial y + \partial(\rho u)/\partial z = 0$$

MTH642:Quiz #3

Question # 1 of 10 (Start time: 10:50:37 AM, 25 August 2021)

For the steady compressible two dimensional flow, the continuity equation is given as _____

Download More Quizzes Files From

VUAnswer.com

$$\partial(\rho u)/\partial x + \partial(\rho v)/\partial y = 0$$

$$\partial \rho/\partial t + \rho \partial(u)/\partial x + \rho \partial(v)/\partial y = 0$$

$$\partial
ho / \partial t + \partial (
ho u) / \partial x + \partial (
ho v) / \partial y = 0$$

$$\bigcirc \qquad \partial(u)/\partial x + \partial(v)/\partial y = 0$$

JABUS AZIVIAH ZCUTUZUUZUM

MTH642:Quiz #3

Question # 5 of 10 (Start time: 10:55:42 AM, 25 August 2021)

The flow is appoximated as incompressible if _____

$$\nabla \cdot V = \infty$$

$$\nabla \cdot V = 1$$

$$\nabla \cdot V = -1$$

$$\nabla \cdot V = 0$$

MICZUUZUTUDZ, HAMIZA TUBAL

MTH642:Quiz #3

Question # 8 of 10 (Start time: 10:58:44 AM, 25 August 2021)

Which of the following is the incompressible continuity equation?

$$ho rac{DV}{Dt} = -
abla P +
ho g + \mu
abla^2 V$$

$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho V) = 0$$

$$\frac{DV}{Dt} = \frac{\partial V}{\partial t} + (V \bullet \nabla)V$$

$$\nabla \bullet V = 0$$