

⋖

.

Question # 1 of 10 (Start time: 12:58:10 PM, 27 August 2021)

For an inner product space <x+y,z>=.....

Solved by M@I!k

Select the correct option

0

0

<x,z> - <y,z></y,z></x,z>	Download More Quizzes Files From
	VIJAnswer com

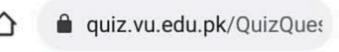
None of these

<x,z> . <y,z>

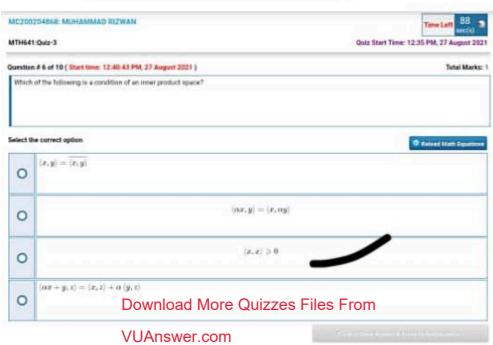
GRALINE WEARING & Month Name Str.

12:37 PM

1 4G | 17.3 (751)

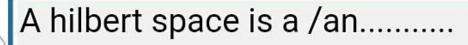


Question	n # 1 of 10 (Start time: 12:38:27 PM, 27 August 2021)	Total Marks: 1
Every o	complete Inner product space is	
	Download More Quizzes Files From	
Select th	ne correct option VUAnswer.com	Reload Math Equations
0	Euclidean space	
0	Complex space	
0	Banach space	
0	Hilbert space	


Olick to Save Answer & Move to Next Overtion.

 $\langle y, -x \rangle$

12:40 PM

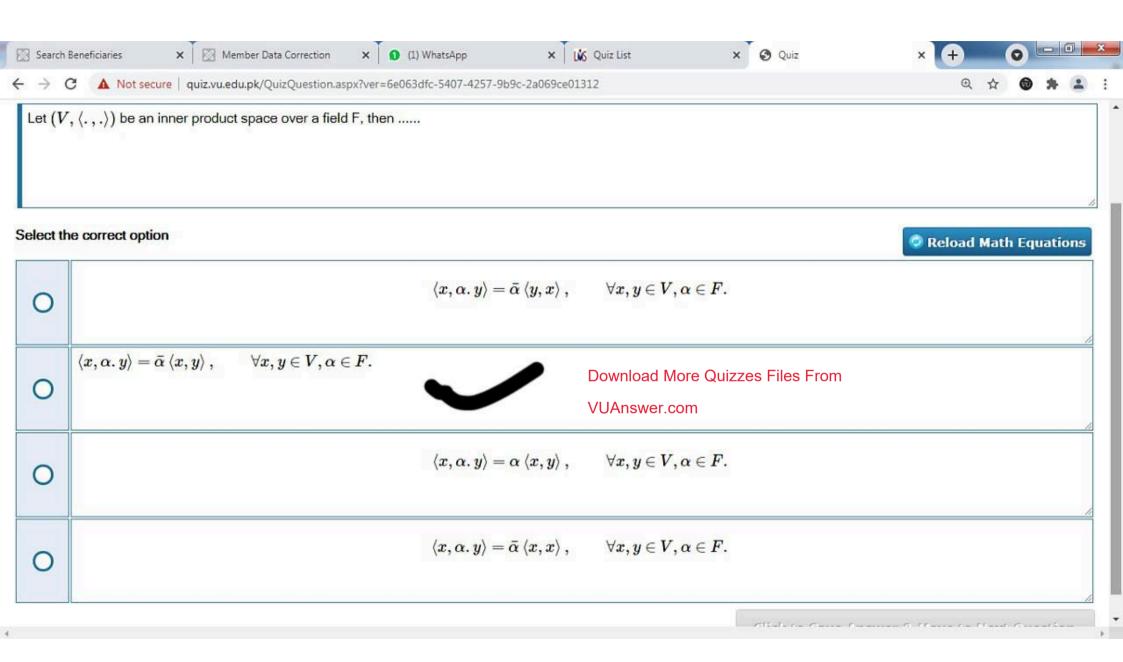


Select the correct option

0

0

0

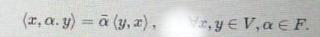


complete norm space

complete Inner product space

Incomplete Inner product space

Question # 3 of 10 (Start time: 01:34:22 PM, 27 August 2021)

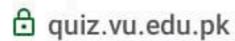

Let (1', (,,,)) be an inner product space over a field F, then

Select the correct option

0			$\langle x, \alpha, y \rangle = \bar{\alpha} \langle x, x \rangle,$	$\forall x, y \in V, \alpha \in F$

$$\langle x, lpha, y
angle = lpha \, \langle x, y
angle \, , \quad \, orall x, y \in V, lpha \in F.$$

$$\langle x, \alpha, y \rangle = \tilde{\alpha} \langle x, y \rangle, \quad \forall x, y \in V, \alpha \in F.$$



MTH641:Quiz-3

Question # 5 of 10 (Start time: 02:08:18 PM, 27 August 2021)

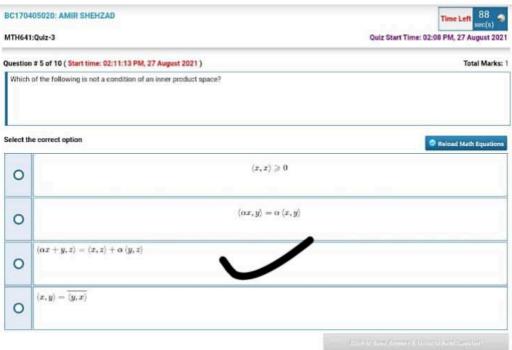
Let $(V,\langle .\,,.\rangle)$ be an inner product space over a field F, then


Select the correct option

$$\langle x, lpha, y
angle = ilde{lpha} \left\langle y, x
ight
angle, ~~ orall x, y \in V, lpha \in F.$$

$$\langle x,\alpha,y\rangle = \bar{\alpha}\,\langle x,y\rangle\,,\qquad \forall x,y\in V,\alpha\in F.$$
 Download More Quizzes Files From

$$\langle x, lpha, y
angle = lpha \left\langle x, y
ight
angle, \hspace{5mm} orall x, y \in V, lpha \in F.$$



Download More Quizzes Files From

VUAnswer.com

Question # 4 of 10 (Start time: 01:35:18 PM, 27 August 2021)

In an inner product space X over the field of Complex numbers, for all $x,y \in X$ and $\alpha \in F$, then $(x,\alpha y) =$

Select the correct option

0		Download More Quizzes Files From VUAnswer.com
0	$\langle \alpha x, y \rangle$	
0	$\alpha\langle x,y angle$	
0	$\langle x, \overline{\alpha}y \rangle$	

quiz.vu.edu.pk/QuizQ

MC190404002: MUHAMMAD FAISAL

MTH641:Quiz-3

Question # 10 of 10 (Start time: 01:35:30 PM, 27 August 2021)

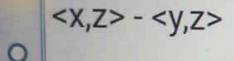
For an element x belongs to an inner product space , $\langle x,x
angle = \ldots$

Download More Quizzes Files From

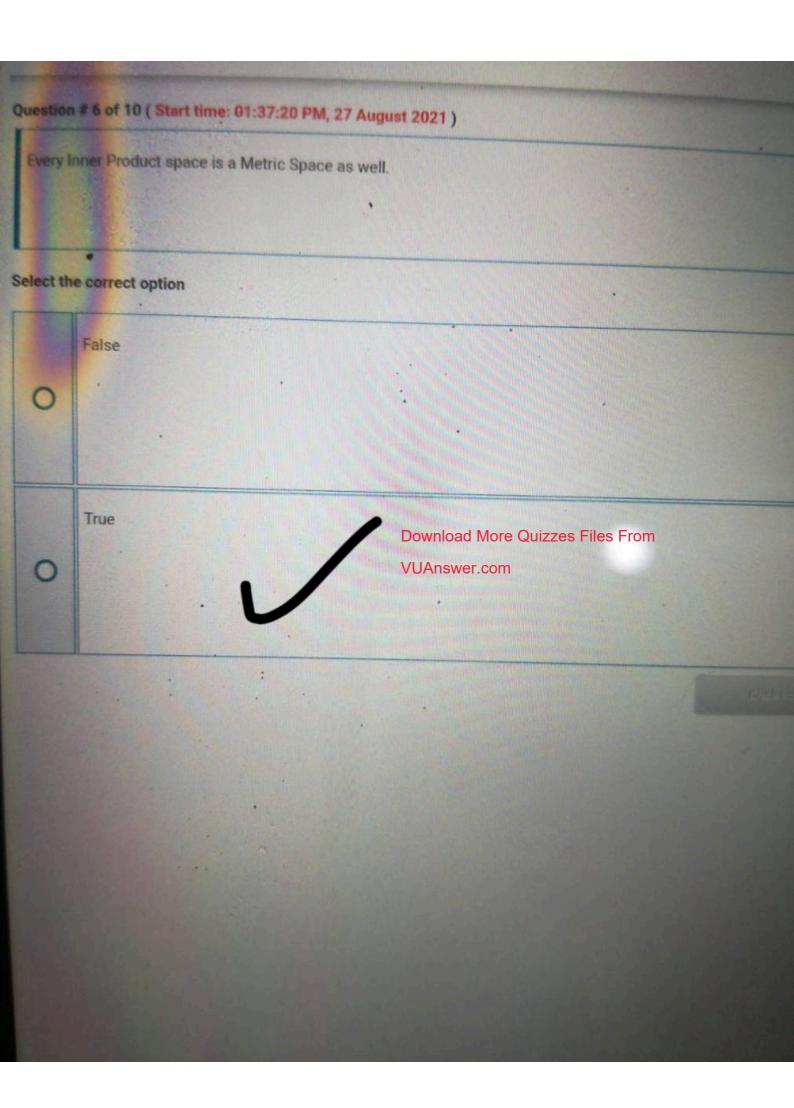
VUAnswer.com

Select the correct option

less than 0 greater than 0

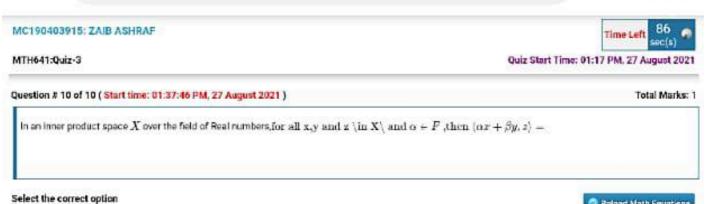

infinity

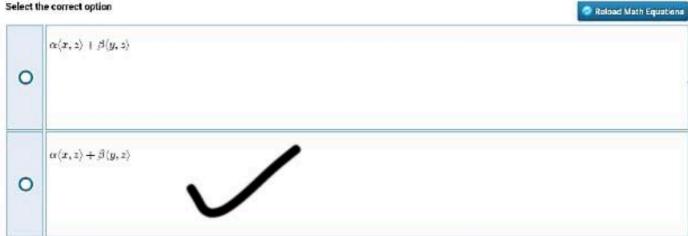
Question # 5 of 10 (Start time: 01:36:46 PM, 27 August 2021)


For an inner product space <x+y,z>=.....

Select the correct option

0



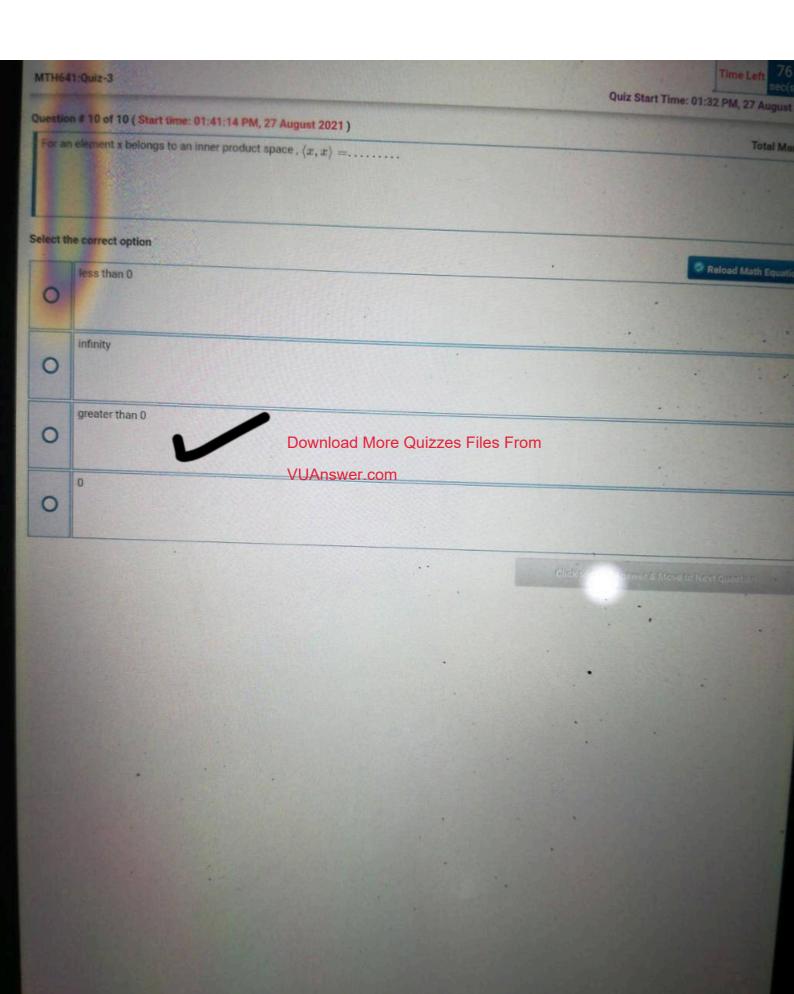


quiz.vu.edu.pk/QuizQuestion.aspx?ver=b93cf21e-6200-4l

Which of the following is not a condition of an inner product space?

Select the correct option

(ax -	$+y,z\rangle$	= ($ x,z\rangle$	+0	(21 4)
		-	23.01	Tu	18,2)

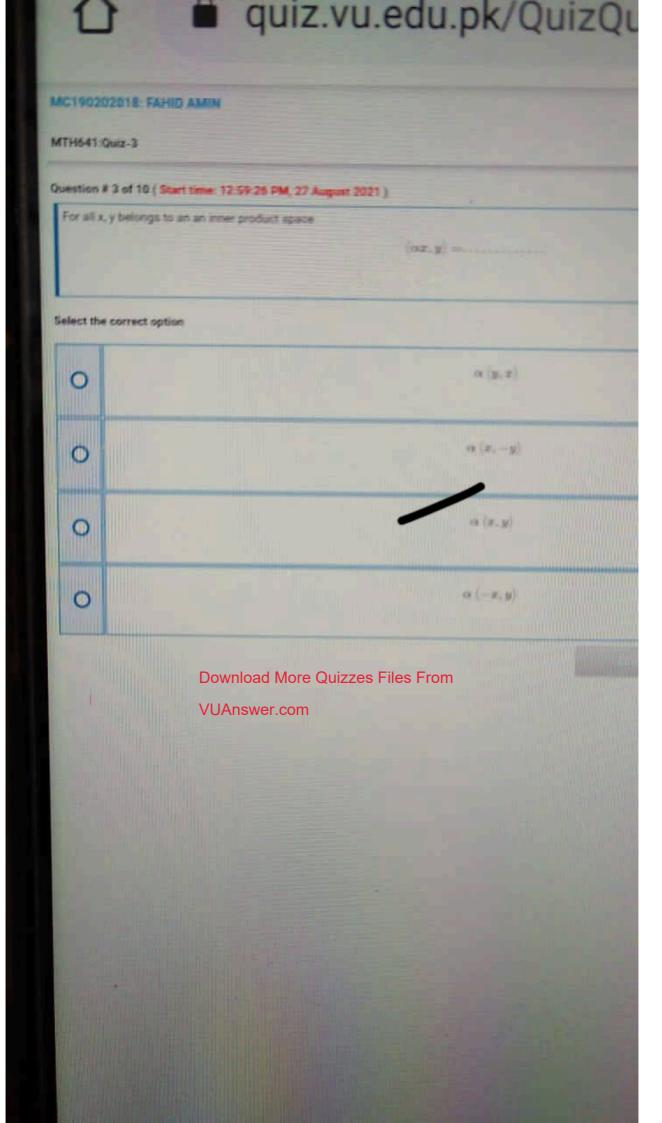

$$\langle x,x
angle \geqslant 0$$

$$\bigcirc \hspace{0.2cm} \langle x,y \rangle = \overline{\langle y,x \rangle}$$


$$\langle lpha x,y
angle =lpha \langle x,y
angle$$

Cilcle to Save Activer 5 Mary 1

For all x, y belongs to an a	t 2021)	
	$\langle \alpha x,y angle = \dots$	
select the correct option		
0	$lpha\left\langle x,-y ight angle$	•
0	$lpha\left\langle -x,y ight angle$	
0	$lpha\left\langle x,y ight angle$	
0	$lpha\left\langle y,x ight angle$	
		Clickic Save Answer State to No.


Question # 1 of 10 (Start time: 12:58:10 PM, 27 August 2021)

For an inner product space <x+y,z>=......

Select the correct option

0

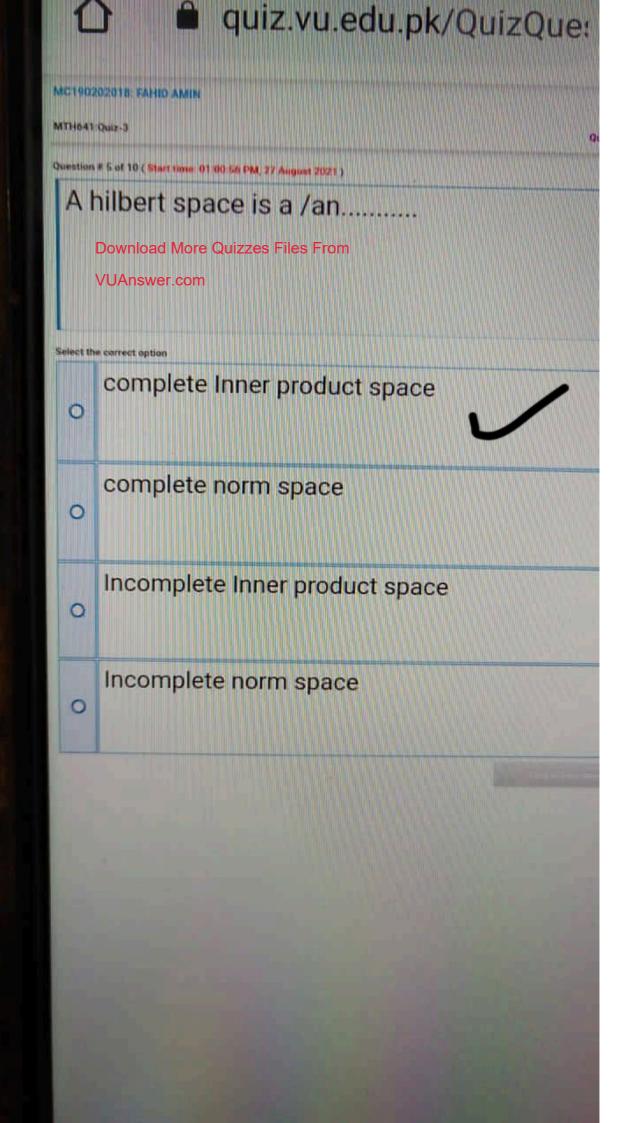
quiz.vu.edu.pk/QuizQue:

MC190202018: FAHID AMIN

M174641:Quiz-3

Question # 4 of 10 (Start time: 0):00:03 PM, 27 August 2021)

Wash of the following is a condition of an inner product space?


Select the correct option

$$(\alpha x + y, x) = (x, x) + \alpha (y, x)$$

$$\langle x,x\rangle \geq 0$$

$$(\alpha x, y) = (x, \alpha y)$$

1:0	quiz.vu.edu.pk/QuizQu	;ll □
MC19020 MTH641:Q	2018: FAHID AMIN	Quiz Sta
Question #	a of 10 (Start time: 01:03:36 PM, 27 August 2021) ses product space X over the field of Complex numbers, for all $x,y \in \mathbb{R}$ correct option	$X\setminus \mathrm{and}\; lpha\in F, \mathrm{then}\; \langle x,lpha y angle =$
0	$\alpha(x,y)$	
0	Download More VUAnswer.com	Quizzes Files From
0	(ax, y)	
0	$(x, \overline{\alpha}y)$	

×	_	Quiz
/\		https://quiz.vu.edu.i

	م	
Ш	8	

For all x, y belongs to an an inner p		
	$\langle \alpha x, y \rangle = \dots$	
Select the correct option		
0	$lpha\left\langle -x,y ight angle$	
0	$lpha\left\langle x,-y ight angle$	
0	$lpha\left\langle x,y ight angle$	
0	$lpha\left\langle y,x ight angle$	

Click to Seve Assurer & Mor

Download More Quizzes Files From VUAnswer.com

Question # 9 of 10 (Start time: 01:05:05 PM, 27 August 2021)

Every complete Inner product space is -----

Select the correct option

- Complex space
- Banach space
- Hilbert space

C Euclidean space

Questio	n # 8 of 10 (Start time: 01:05:38 PM, 27 August 2021)	10
In an I and {	Inner Product space say X_n if the sequences $\{x_n\}$ $y_n\}$ are Cauchy, then (x_n,y_n) is ———	
Select t	the correct option	Reload Ma
0	not necessarily a Cauchy Sequence in $oldsymbol{X}$	
0	necessarily a Cauchy Sequence in F	
0	necessarily a Cauchy Sequence in X	
0	not necessarily a Cauchy Sequence in $oldsymbol{F}$	

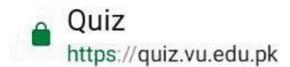
MC190202018: FAHID AMIN

MTH641:Quiz-3

Question # 10 of 10 (Start time: 01:06:08 PM, 27 August 2021)

In an Inner Product space say X, for any sequences $\{x_n\}$ and $\{y_n\}$, if $x_n\longrightarrow x$ and $y_n\longrightarrow y$, then it ——.

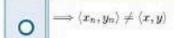
Select the correct option


$$\bigcirc \qquad \Rightarrow \langle x_n,y_n\rangle \longrightarrow \langle x,y\rangle$$

$$\bigcirc \implies \langle x_n, y_n \rangle = \langle x, y \rangle$$

$$\bigcirc$$
 \Longrightarrow $\langle x_n,y_n\rangle \longrightarrow \langle x,y\rangle$

$$\bigcirc$$
 \Rightarrow $\langle x_n, y_n \rangle \neq \langle x, y \rangle$



In an inner Product space say X, for any sequences $\{x_n\}$ and $\{y_n\}$, if $x_n\longrightarrow x$ and $y_n\longrightarrow y$, then it ——.

Select the correct option

8

0

$$\longrightarrow \langle x_n, y_n \rangle = \langle x, y \rangle$$

0

$$\Longrightarrow \langle x_n, y_n \rangle \longrightarrow \langle x, y \rangle$$

0

$$\Rightarrow \langle x_n, y_n \rangle \longrightarrow \langle x, y \rangle$$

If the Fall'S aver Apparer 5, Mo.

Download More Quizzes Files From VUAnswer.com

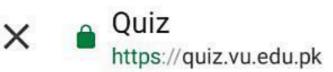
MTH641:Quiz-3	Quiz Start Time: 12

Question # 10 of 10 (Start time: 01.07.51 PM, 27 August 202	n # 10 of 10 (Start time: 01:07:51 PM, 27 Augu	st 2021)
--	---	---------	---

In an inner product space X over the field of Complex numbers, for all $x,y \in X \setminus A$ and $\alpha \in F$, then $\langle x,\alpha y \rangle = A$

Select ti	the correct option	
0	$\langle \alpha x, y \rangle$	
0	$\langle x, \overline{\alpha}y angle$	
0	$lpha\langle x,y angle$	
0	$\overline{lpha}\langle x,y angle$	

Elick to Save Are wer to Meva



Every l	Every Inner Product space is a Metric Space as well.				
Select th	ne correct option				
0	False				
0	True				

Question # 6 of 10 (Start time: 01:03:18 PM, 27 August 2021)

Which of the following is a condition of an inner product space?

Select the correct option

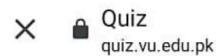
Reloa

	$\langle \alpha x + y, z \rangle = \langle x, z \rangle + \alpha \langle y, z \rangle$
0	

0

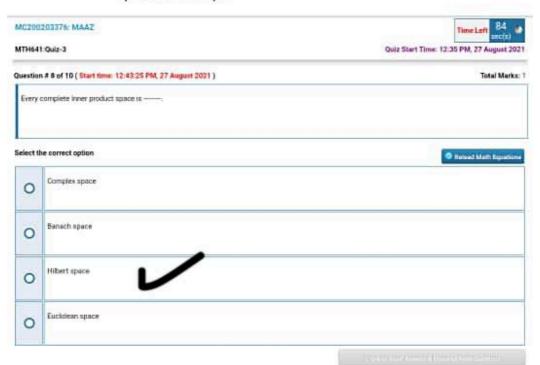
$$\langle x, y \rangle = \langle x, y \rangle$$

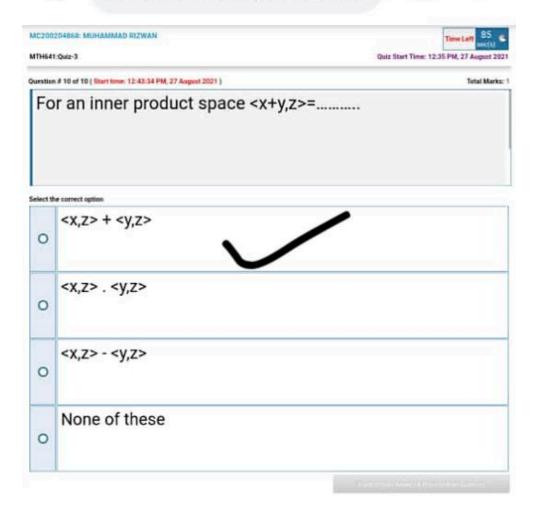
		٠,	ı
•	_	_	١.
			,
•		_	,
	-	•	


$$\langle \alpha x,y\rangle = \langle x,\alpha y\rangle$$

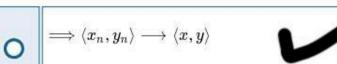
Download More Quizzes Files From

VUAnswer.com


51% ■ 12:43



	_	_	_		
- 1	^	-	-	۰,	L
		-		п	
		п			
		-		-1	
					,

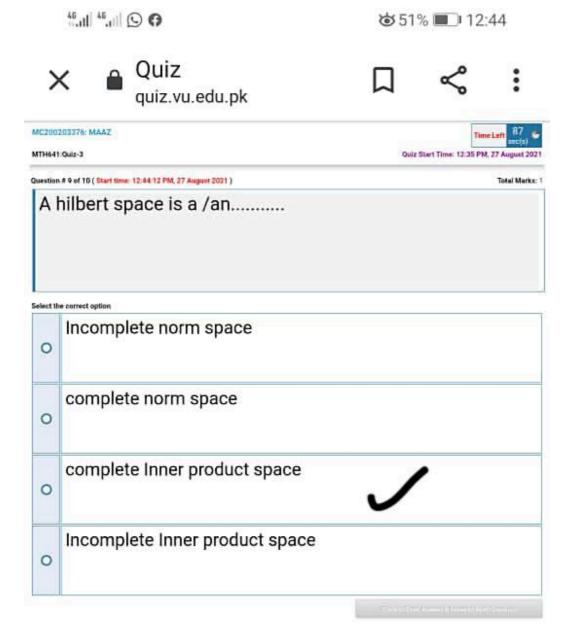

Reload Math Equations

In an Inner Product space say $X, \,$ for any sequences $\{x_n\}$ and $\{y_n\}$, if $x_n \longrightarrow x$ and $y_n \longrightarrow y$, then it ——.

Download More Quizzes Files From

VUAnswer.com

Select the correct option



$$\bigcirc \implies \langle x_n, y_n \rangle = \langle x, y \rangle$$

$$\bigcirc$$
 \Longrightarrow $\langle x_n,y_n
angle
eq \langle x,y
angle$

$$lacksquare$$
 $\Rightarrow \langle x_n, y_n \rangle \longrightarrow \langle x, y
angle$

Click to Save Answer & Move to Next Question

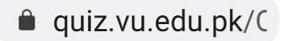
Download More Quizzes Files From

VUAnswer.com

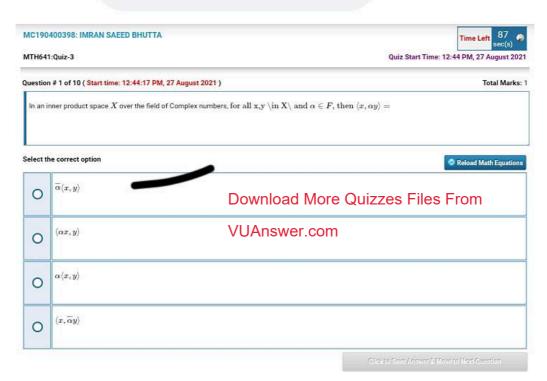
In an Inner Product space say $X,$ if the sequences	$\{x_n\}$
and $\{y_n\}$ are Cauchy, then $\langle x_n,y_n angle$ is	(7) KS71

Select the correct option

- necessarily a Cauchy Sequence in X
- lacksquare not necessarily a Cauchy Sequence in F
- necessarily a Cauchy Sequence in F



lacksquare not necessarily a Cauchy Sequence in X



Quiz quiz.vu.edu.pk

Question # 6 of 10 (Start time: 12:44:52 PM, 27 August 2021) Total Marks: 1 In an inner product space X over the field of Real numbers, for all x,y $\in X$ and $\alpha \in F$, then $\langle x, \alpha y \rangle = 1$ Select the correct option Reload Math Equations $lpha\langle x,y angle$ Not sure $\langle \alpha x, y \rangle$

Click to Save Answer & Move to Next Question

For an inner product space <x+y,z>=......

Select the correct option

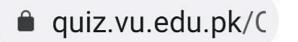
0

0

0

None of these

<x,z> + <y,z>


Download More Quizzes Files From

<x,z> . <y,z>

•

MC190	0400398: IMRAN SAEED BHUTTA	Time Left 88 sec(s)
MTH641:Quiz-3		Quiz Start Time: 12:44 PM, 27 August 2021
Questio	n # 2 of 10 (Start time: 12:45:45 PM, 27 August 2021)	Total Marks: 1
	Inner Product space say X_n if the sequences $\{x_n\}$ $y_n\}$ are Cauchy, then (x_n,y_n) is ——.	
Select t	the correct option	Reload Math Equations
0	not necessarily a Cauchy Sequence in ${\cal F}$	
0	necessarily a Cauchy Sequence in ${\cal X}$	
0	necessarily a Cauchy Sequence in ${\cal F}$	
0	not necessarily a Cauchy Sequence in $oldsymbol{X}$	
		Ginesia Seva Answer 2 May 16 Dest Guestion

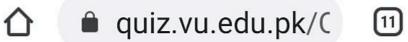
In an inner product space X over the field of Real numbers,for all x,y and $z \in F$, then $\langle \alpha x + \beta y, z \rangle = 0$

Download More Quizzes Files From

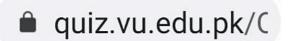
VUAnswer.com

Select the correct option

$$igg|lpha\langle x,z
angle + \overline{eta}\langle y,z
angle$$


$$\alpha\langle x,z\rangle+\beta\langle y,z\rangle$$

MC190	400398: IMRAN SAEED BHUTTA	Time
MTH641:Quiz-3 Quiz Start Time: 12		
Question	n # 3 of 10 (Start time: 12:46:53 PM, 27 August 2021)	
For all	x, y belongs to an an inner product space $\langle lpha x,y angle = \ldots $	
Select th	ne correct option	Reload
0	$lpha\left\langle x,y ight angle$	
0	$lpha \left\langle x,-y ight angle$	
0	$lpha\left\langle -x,y ight angle$	
0	$lpha\left\langle y,x ight angle$	



Question # 9 of 10 (Start time: 12:47:30 PM, 27 August 2021) Total Marks: 1 Every Inner Product space is a Metric Space as well. Select the correct option Reload Math Equations True Download More Quizzes Files From VUAnswer.com False Click to Save Answer & Move to Next Question

•

Question # 10 of 10 (Start time: 12:48:51 PM, 27 August 2021) Total Marks: 1 For all x, y belongs to an an inner product space $\langle \alpha x, y \rangle = \dots \dots$ Select the correct option Reload Math Equations $\alpha \left< -x,y \right>$ 0 $lpha\left\langle x,-y ight angle$ 0 $\alpha \left\langle y,x ight angle$ $\alpha \langle x, y \rangle$