Equation of tangent plane to $z = xy\sin(xy)$ at $\left(1, \frac{\pi}{2}\right)$ is -----

Download More Quizzes Files From

$$z=\frac{\pi}{2}x-y+\frac{\pi}{2}$$

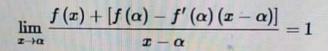
$$z=-\frac{\pi}{2}x+y+\frac{\pi}{2}$$

$$z = \frac{\pi}{2}x - y - \frac{\pi}{2}$$

$$z = \frac{\pi}{2}x + y - \frac{\pi}{2}$$

In \mathbb{R}^2 , if the function of one variable is differentiable at $x = \alpha$, the curve y = f(x) is approximated by $f(\alpha) + f'(\alpha)(x - \alpha)$ so that -----

$$\lim_{x \to \alpha} \frac{f\left(x\right) - \left[f\left(\alpha\right) + f'\left(\alpha\right)\left(x - \alpha\right)\right]}{x - \alpha} = 0$$



$$\lim_{x\to\alpha}\frac{f\left(x\right)-\left[f\left(\alpha\right)+f'\left(\alpha\right)\left(x-\alpha\right)\right]}{x-\alpha}=1$$

$$\lim_{x\to\alpha}\frac{f(x)+[f(\alpha)-f'(\alpha)(x-\alpha)]}{x-\alpha}=0$$

Equation of tangent plane to z = 2x + 3y - 1 at (1, -1) is -----**Download More Quizzes Files From** VUAnswer.com z = 2x - 3y + 13 z = 2x - 3y - 1z = 2x + 3y - 1z = -2x + 3y - 1

X

In \mathbb{R}^3 , if the function of two variable is differentiable at $(x, y) = (\alpha, \beta)$, then the curve z = f(x, y) is approximated by $f(\alpha, \beta) + f_x(\alpha, \beta)(x - \alpha) + f_y(\alpha, \beta)(y - \beta)$ such that;

$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{{f_{x}}^{2}+{f_{y}}^{2}}}=0$$

$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{{f_{x}}^{2}+{f_{y}}^{2}}}=1$$

$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=1$$

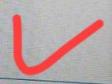
$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=0$$

In \mathbb{R}^n , a function f is said to have the local minimum point at X=A, if the following inequality holds $\forall X \in D_f \cap S_{\varepsilon}(A)$.

Download More Quizzes Files From

$$f(A) \geqslant f(X)$$

$$f(X) \geqslant f(A)$$



Equation of tangent plane to $z = xy \sin(xy)$ at $\left(1, \frac{\pi}{2}\right)$ is -----

$$z = \frac{\pi}{2}x + y - \frac{\pi}{2}$$

$$z = \frac{\pi}{2}x - y - \frac{\pi}{2}$$

$$z=-\frac{\pi}{2}x+y+\frac{\pi}{2}$$

$$z=\frac{\pi}{2}x-y+\frac{\pi}{2}$$

Download More Quizzes Files From VUAnswer.com

August 2021) In \mathbb{R}^3 , the equation of tangent plane to the surface $z=x^2+y^2-1$ at (-1,1) is ----z = -2x + 2y + 3z = 2x - 2y + 3**Download More Quizzes Files From** VUAnswer.com z = -2x + 2y - 3z=2x+2y-3*

In \mathbb{R}^n , a function f is said to have the local minimum point at X = A, if the following inequality holds $\forall X \in D_f \cap S_e(A)$.

rect option .

$$f(A) \ge f(X)$$

$$f(X) \ge f(A)$$

repercent when our though

In \mathbb{R}^3 , if the function of two variable is differentiable at $(x,y)=(\alpha,\beta)$, then the curve z=f(x,y) is approximated by $f(\alpha,\beta)+f_x(\alpha,\beta)(x-\alpha)+f_y(\alpha,\beta)(y-\beta)$ such that

se correct option

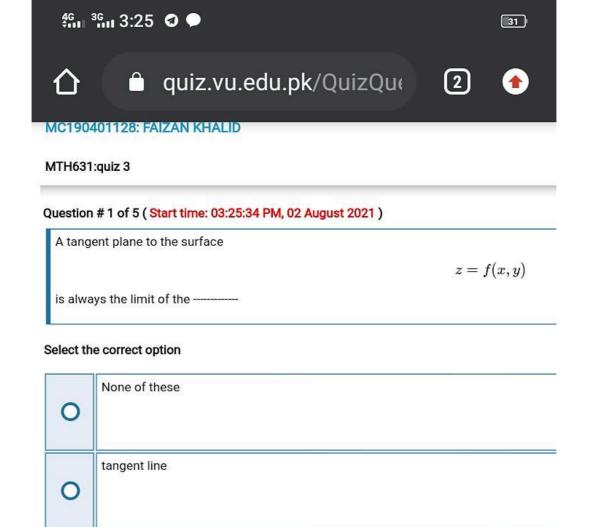
$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{\varepsilon}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=\mathbf{0}$$

$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{{f_{x}}^{2}+{f_{y}}^{2}}}=1$$

$$\lim_{(x,y)\to(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=1$$

$$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{f_{x}^{2}+f_{y}^{2}}}=0$$

Download More Quizzes Files From



Download More Quizzes Files From

VUAnswer.com

normal plane

secant plane

0

0

In \mathbb{R}^2 , if the function of one variable is differentiable at $x = \alpha$, then the curve y = f(x) is approximated by $f(\alpha) + f'(\alpha)(x - \alpha)$ so that

ect option

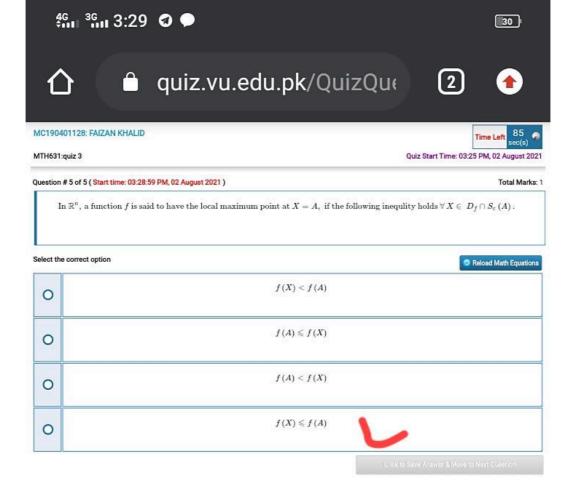
$$\lim_{x \to \alpha} \frac{f\left(x\right) + \left[f\left(\alpha\right) - f'\left(\alpha\right)\left(x - \alpha\right)\right]}{x - \alpha} = 1$$

$$\lim_{x \to \alpha} \frac{f(x) + \left[f(\alpha) - f'(\alpha)(x - \alpha)\right]}{x - \alpha} = 0$$

$$\lim_{x \to \alpha} \frac{f\left(x\right) - \left[f\left(\alpha\right) + f'\left(\alpha\right)\left(x - \alpha\right)\right]}{x - \alpha} = 1$$

$$\lim_{x \to \alpha} \frac{f(x) - \left[f(\alpha) + f'(\alpha)(x - \alpha)\right]}{x - \alpha} = 0$$

Territoria di sentino di Caratta



Download More Quizzes Files From VUAnswer.com

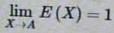
August 2021)

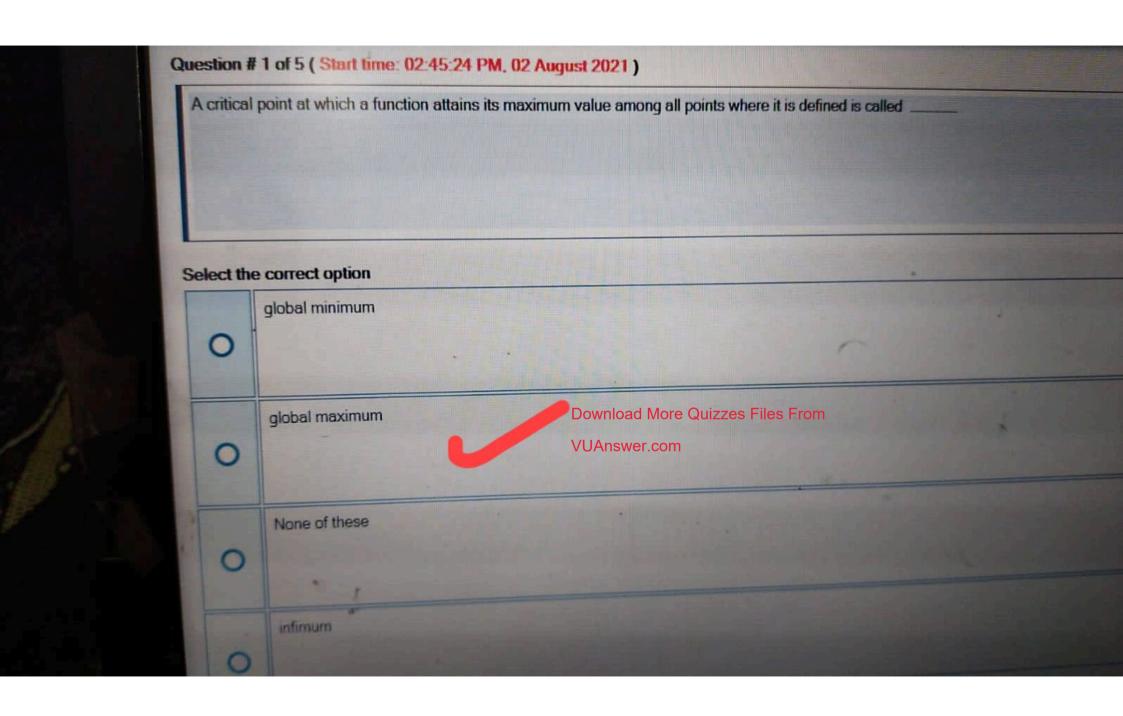
In
$$\mathbb{R}^3$$
, a function $f(x,y)$ is differentiable at $A=(\alpha,\beta)$, if $f(X)=f(A)+f_x(A)(x-\alpha)+f_y(A)(x-\alpha)+E(X)(|X-A|)$ such that --

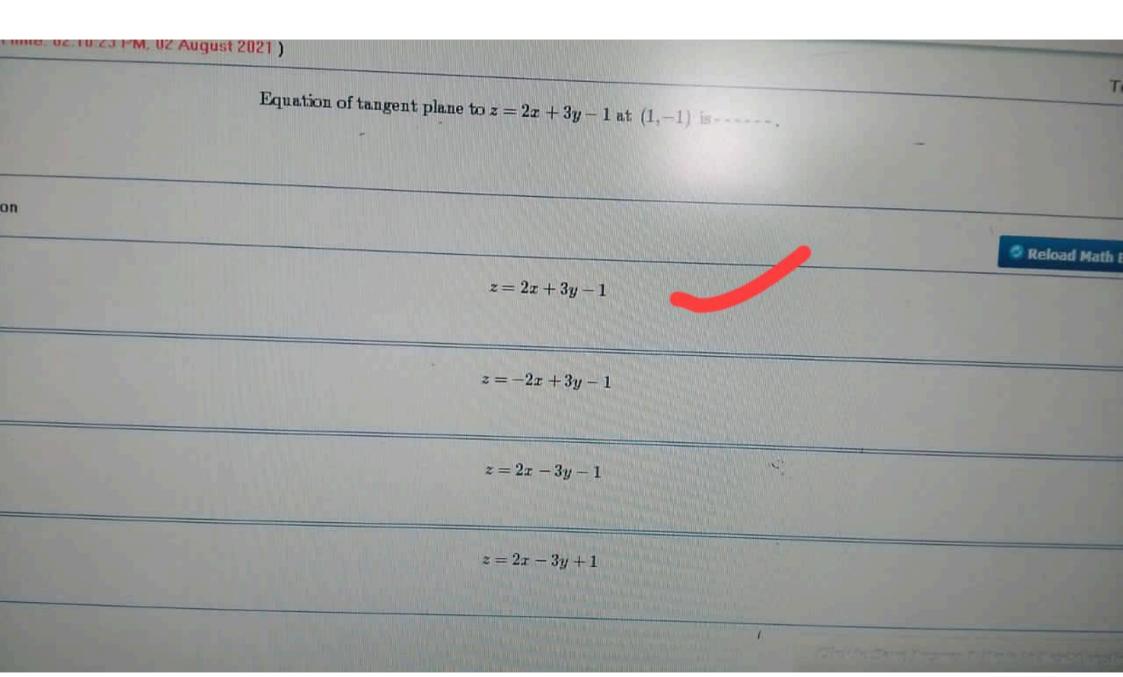
$$\lim_{X\to A}E(X)=\infty$$

$$\lim_{X\to A}E\left(X\right)=f\left(A\right)$$

$$\lim_{X\to A}E\left(X\right) =0$$





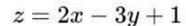


Download More Quizzes Files From

4:04 AM, 02 August 2021)

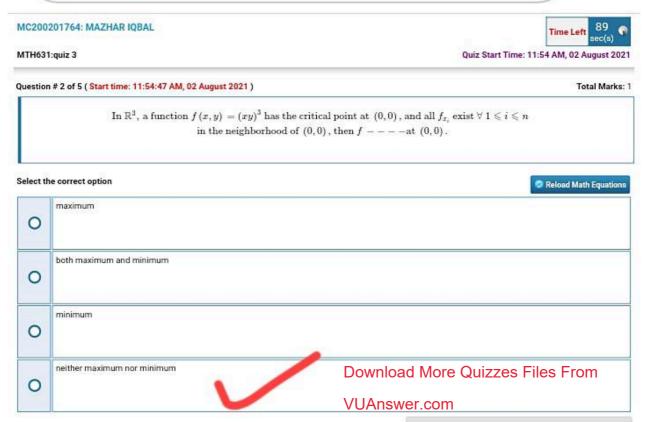
Equation of tangent plane to z = 2x + 3y - 1 at (1, -1) is -----.

$$z = 2x + 3y - 1$$

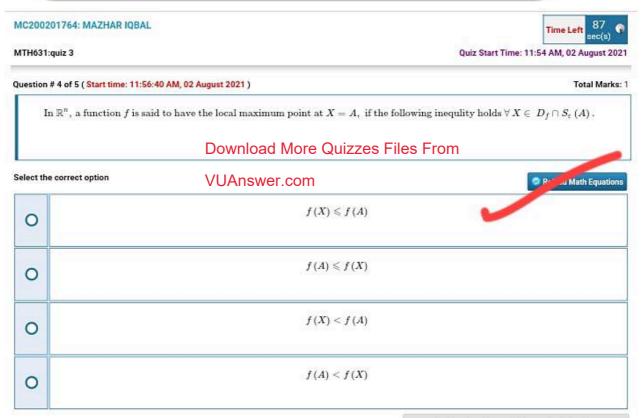


$$z = -2x + 3y - 1$$

$$z = 2x - 3y - 1$$



Click to Save Answer & Move to Next Question



Click to Save Answer & Move to Nest Question

In \mathbb{R}^n , a function f has the local extreme point in the neighborhood of X=A, and all f_{x_i} exist $\forall \ 1\leqslant i\leqslant n$, then - - - - - .

Download More Quizzes Files From

$$f(A) \neq 0$$

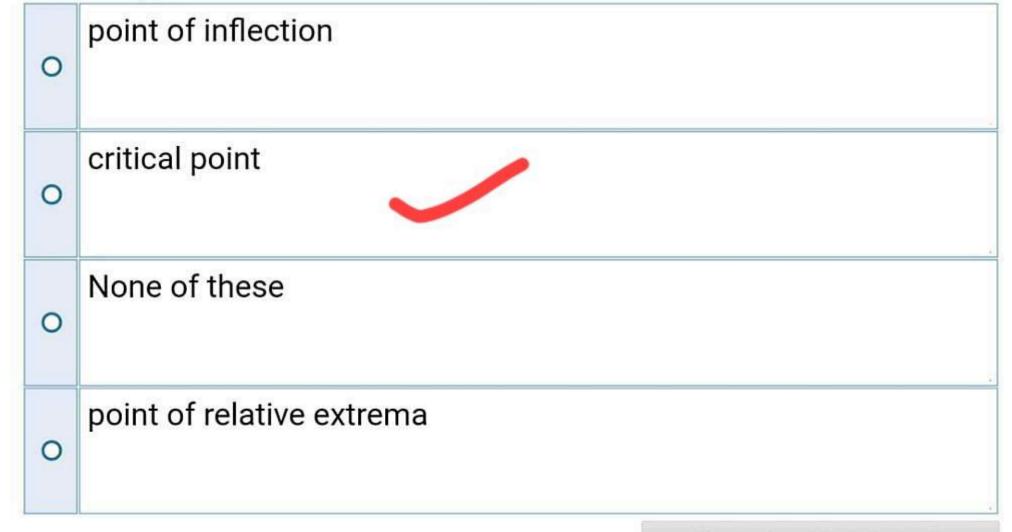
$$f_{x_i}\left(A
ight)
eq 0 \; orall \, 1 \leqslant i \leqslant n$$

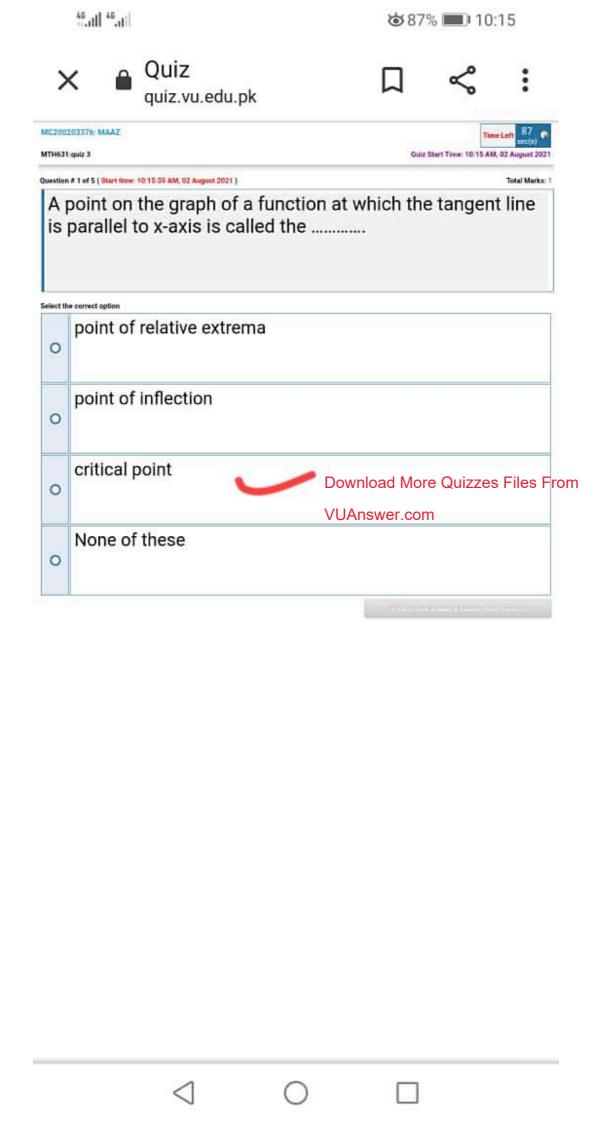
$$f(A) = 0$$

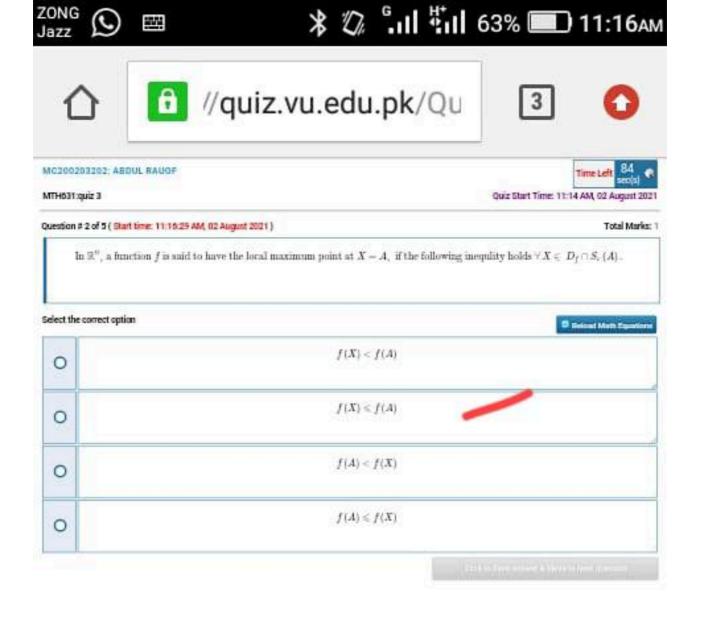
$$f_{x_i}\left(A
ight)=0\,\,orall\,1\leqslant i\leqslant n$$

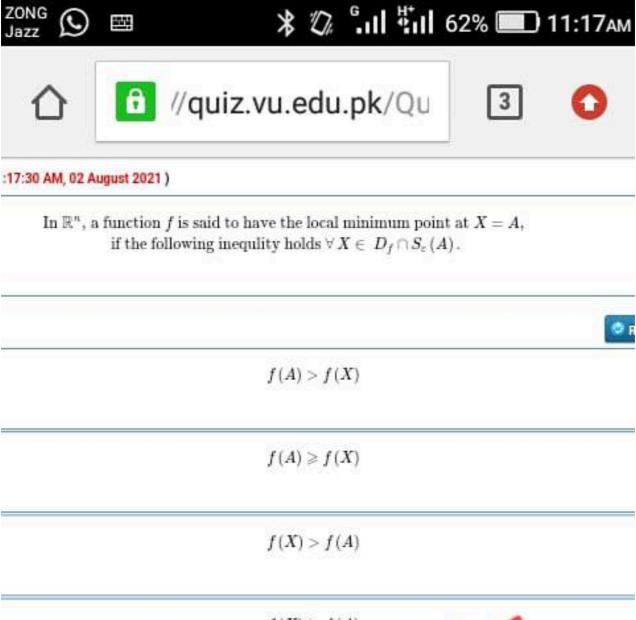
A point on the graph of a function at which the tangent line is parallel to x-axis is called the

Select the correct option

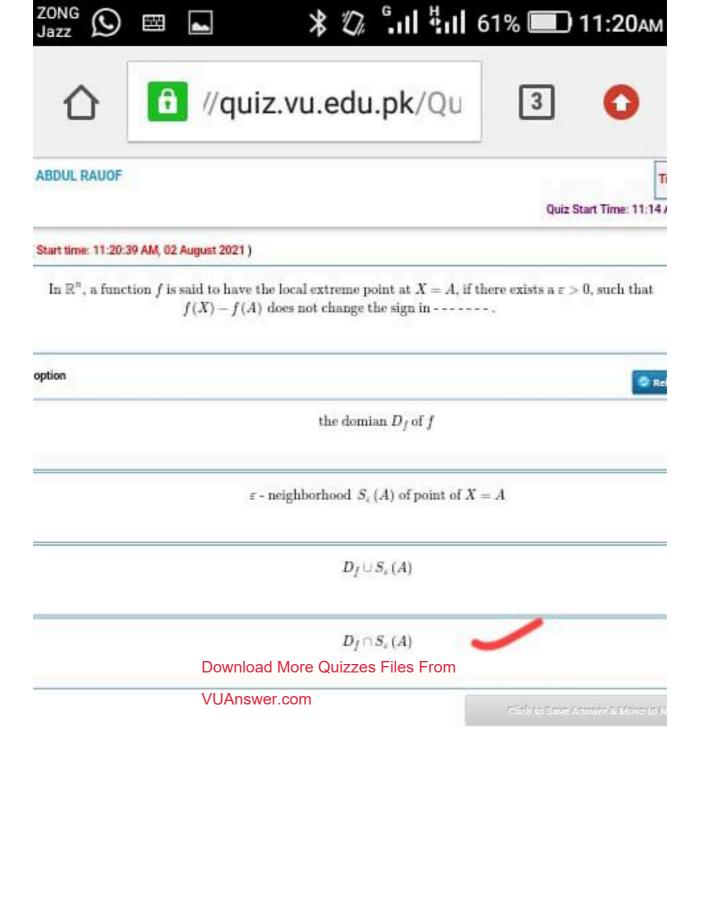




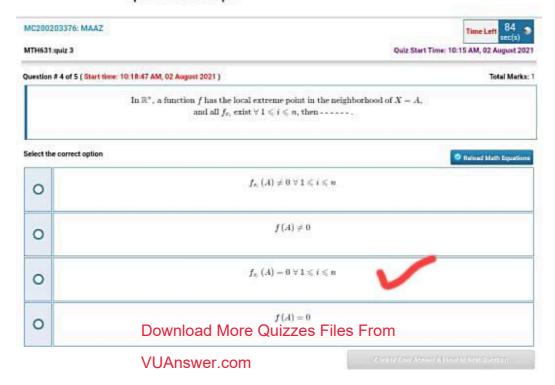


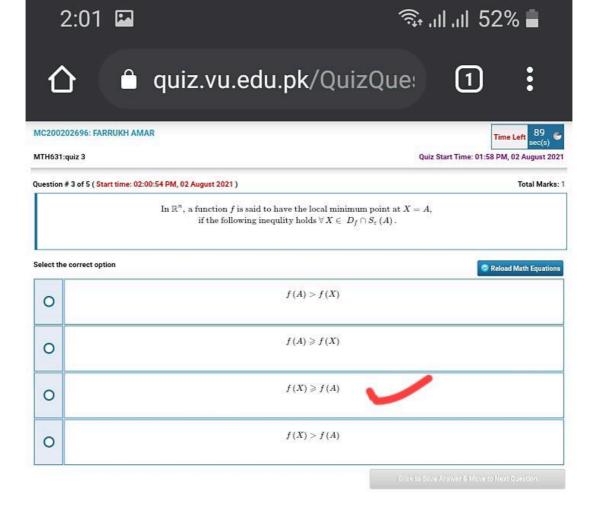


Download More Quizzes Files From

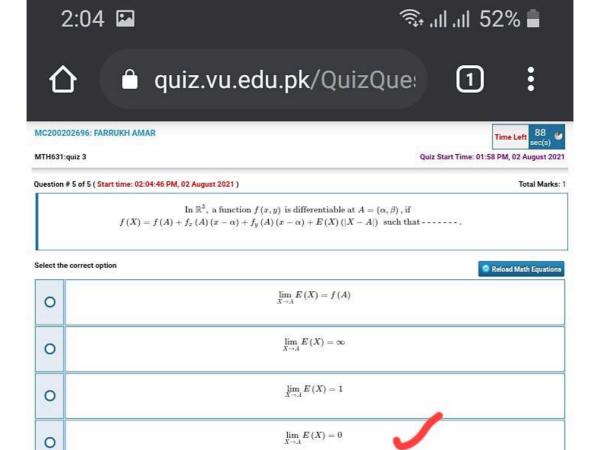


quiz.vu.edu.pk

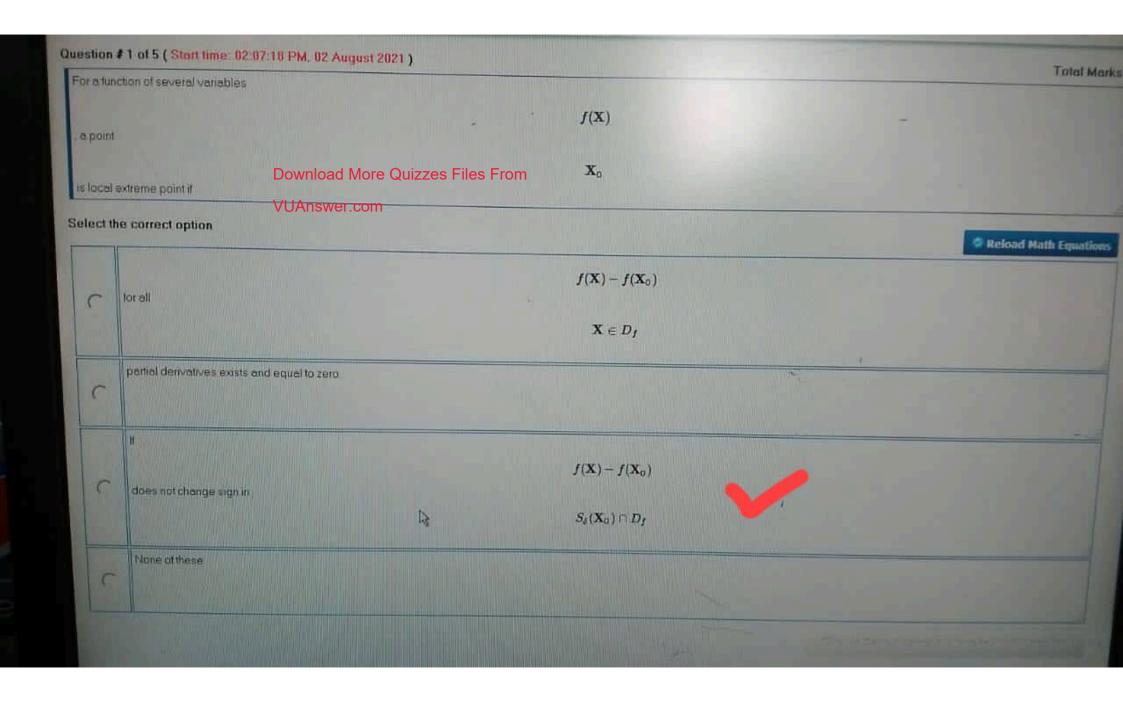




^ G 6 1 +



Click to Save Answer & Move to Nort Question



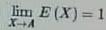
Reload Math Equ

In
$$\mathbb{R}^3$$
, a function $f(x,y)$ is differentiable at $A=(\alpha,\beta)$, if $f(X)=f(A)+f_x(A)(x-\alpha)+f_y(A)(x-\alpha)+E(X)(|X-A|)$ such that

lect the correct option

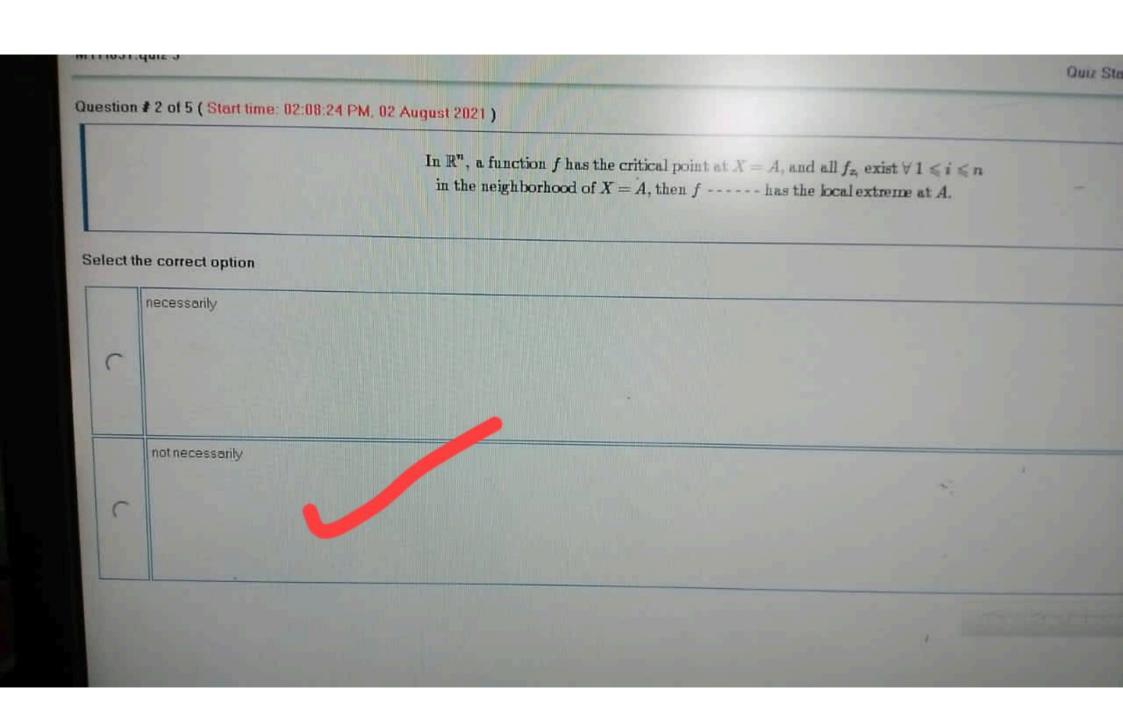
Download More Quizzes Files From

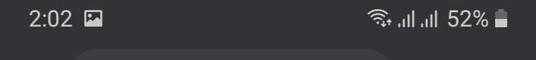
$$\lim_{X\to A}E\left(X\right) =0$$



$$\lim_{X\to A}E\left(X\right)=f\left(A\right)$$

$$\lim_{X\to A}E\left(X\right) =\infty$$





Market Cook of the Section of Asset

MTH631:quiz 3

MC200202696: FARRUKH AMAR

Time Left sec(s)

Quiz Start Time: 01:58 PM, 02 August 2021

Question # 4 of 5 (Start time: 02:02:43 PM, 02 August 2021)

Total Marks:

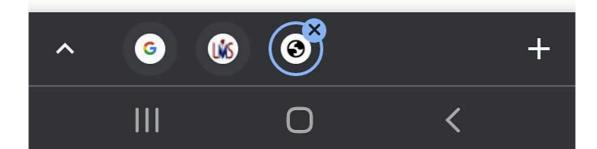
In \mathbb{R}^3 , if the function of two variable is differentiable at $(x,y)=(\alpha,\beta)$, then the curve $z=f\left(x,y\right)$ is approximated by $f\left(\alpha,\beta\right)+f_z\left(\alpha,\beta\right)\left(x-\alpha\right)+f_y\left(\alpha,\beta\right)\left(y-\beta\right)$ such that;

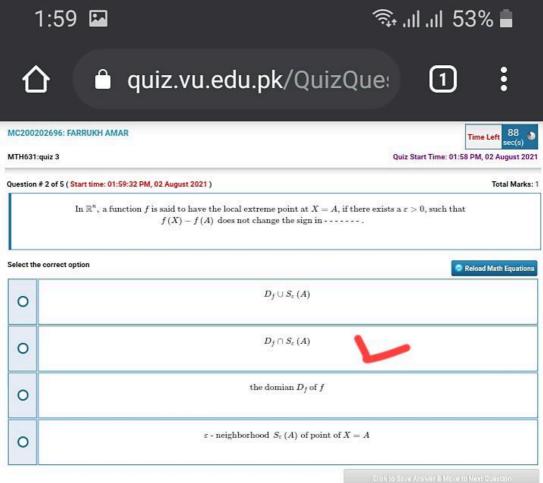
Select the correct option

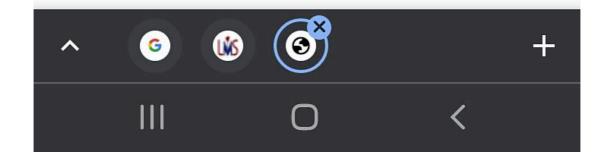
Reload Math Equations

0	$\lim_{\left(x,y ight) ightarrow\left(lpha,eta ight)}rac{f\left(x,y ight)-\left[f\left(lpha,eta ight)+f_{x}\left(lpha,eta ight)\left(x-lpha ight)+f_{y}\left(lpha,eta ight)\left(y-eta ight)}{\sqrt{\left(x-lpha ight)^{2}+\left(y-eta ight)^{2}}}=1$
0	$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{{f_{x}}^{2}+{f_{y}}^{2}}}=0$
0	$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=0$
0	$\lim_{\left\langle x,y\right\rangle \rightarrow\left(\alpha,\beta\right)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{{f_{x}}^{2}+{f_{y}}^{2}}}=1$

Click to Sale Answer & More to Next Orienton







Question # 5 of 5 (Start time: 10:24:54 AM, 02 August 2021)		
A function may be at a point		
	X_0	
even if its first partial derivatives are not continuous at		
	X_0	
,		
Select the correct option		
	piecewise convergent	
0		
	uniformly convergent	
0		
0	differentiable	
O		
0	None of these	

:

Quiz Start Time: 02:38 PM

(Start time: 02:40:59 PM, 02 August 2021)

In \mathbb{R}^3 , if the function of two variable is differentiable at $(x, y) = (\alpha, \beta)$, then the curve z = f(x, y)is approximated by $f(\alpha, \beta) + f_x(\alpha, \beta)(x - \alpha) + f_y(\alpha, \beta)(y - \beta)$ such that;

:t option

$$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{f_{x}^{2}+f_{y}^{2}}}=1$$

$$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{f_{x}^{\;2}+f_{y}^{\;2}}}=0$$

$$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{x}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=1$$

$$\lim_{(x,y)\rightarrow(\alpha,\beta)}\frac{f\left(x,y\right)-\left[f\left(\alpha,\beta\right)+f_{z}\left(\alpha,\beta\right)\left(x-\alpha\right)+f_{y}\left(\alpha,\beta\right)\left(y-\beta\right)\right]}{\sqrt{\left(x-\alpha\right)^{2}+\left(y-\beta\right)^{2}}}=0$$

Chock to Six of Arts Arie & Mexical of No.

