0

All and the second seco

Download More Quizzes Files From

VUAnswer.com

	-quiz mou	quiz distribut (1) di ran, so mison crez
Question	# 3 of 5 (Start time: 11:08:22 AM, 03 March 2022)	Total Marks: 1
The Mo	oment of inertia of a hollow sphere having mass M and radius a is given by	
L		
Select the	e correct option	Reload Math Equations
0	$I = \frac{1}{2}Ma^2$	
0	$I = Ma^2$	
0	$I = \frac{2}{5}Ma^2$	
0	$I = \frac{2}{3}Ma^2$	

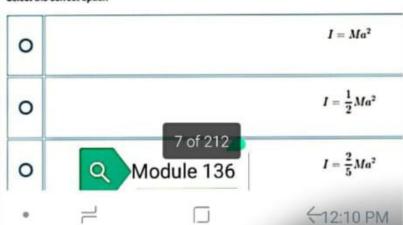
Download More Quizzes Files From

VUAnswer.com

MTH622:QUIZ NO.3 Quiz Start Time: 11:06 AM, 03 March 2022.

Question # 4 of 5 (Start time: 11:09:44 AM, 03 March 2022.)

Consider a right circular cone of density ρ , radius α and height h is composed of elementary circular discs of small thickness each parallel to the base of the cone. Choose the z-axis as the axis of symmetry and consider a typical disc of radius r and width δz them mass of the disc is


the or to be to be the control of the section.

Usman Peer Zada 11 photos

Question # 5 of 10 (Start time: 03:02:20 PM, 23 February 2021)

The Moment of inertia of a solid sphere having mass M and radius a is given by

Select the correct option

pg150

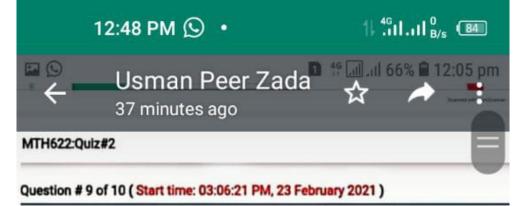
Download More Quizzes Files From

VUAnswer.com

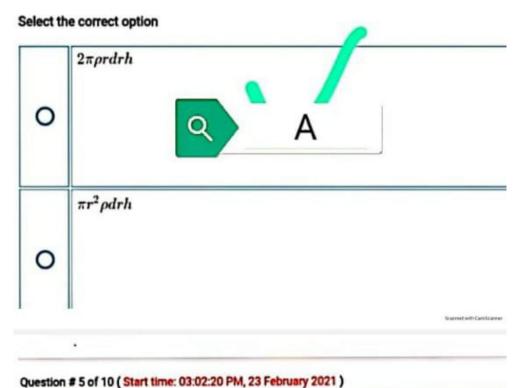
Question # 1 of 10 (Start time: 09:03:47 PM, 23 February 2021)

The Moment of mertia of a hollow sphere having mass M and radius a is given by

Select the correct option

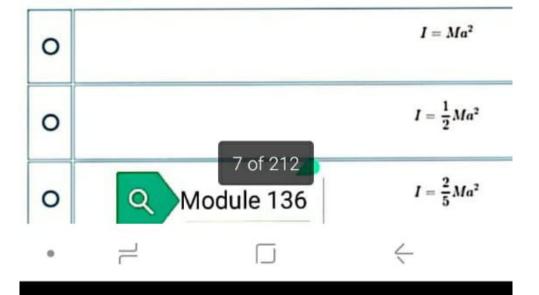

MTH622:Quiz#2

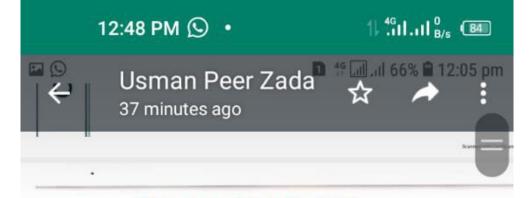
0		$I = Ma^2$
0		$I = \frac{1}{2}Ma^2$
0		$I = \frac{2}{5}Ma^2$
0	Module 155, pg106	$I=\frac{2}{3}Ma^2$


MTH622:Quiz#2

Question # 9 of 10 (Start time: 03:06:21 PM, 23 February 2021)

The mass of a cylindrical shell of density ho_r , height h thickness dr and radii




The mass of a cylindrical shell of density ho, height h thickness dr and radius r is

The Moment of inertia of a solid sphere having mass M and radius a is given by

Select the correct option

Question # 5 of 10 (Start time: 03:02:20 PM, 23 February 2021)

The Moment of inertia of a solid sphere having mass M and radius a is given by

Select the correct option

0		$I = Ma^2$
0		$I=\frac{1}{2}Ma^2$
0	Module 136	$I = \frac{2}{5}Ma^2$
0		$I = \frac{2}{3}Ma^2$

Scarced with Cardical

Download More Quizzes Files From

VUAnswer.com

2:Quiz#2

on # 7 of 10 (Start time: 02:53:13 PM, 23 February 2

niform solid sphere

Question # 3 of 5 (Start time: 11:08:22 AM, 03 March 2022.)

Total Marks: 1

The Moment of inertia of a hollow sphere having mass M and radius a is given by

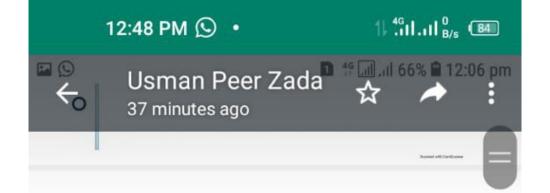
Select the correct option

Reload Math Equations

0

$$I = \frac{1}{2}Ma^2$$

0


$$I = Ma^2$$

C

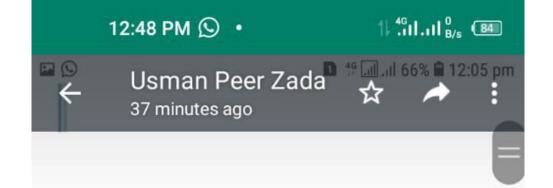
$$I = \frac{2}{5}Ma^2$$

O

$$I = \frac{2}{3}Ma^2$$

MTH622 Quiz#2

Question # 4 of 10 (Start time: 02:50:38 PM, 23 February 2021)


The Moment of inertia of a solid cylinder having mass M and radius a is given by

Select the correct option

Download More Quizzes Files From VUAnswer.com

Scanned with CamScann

Scanned with CamScanner

MTH622:Quiz#2

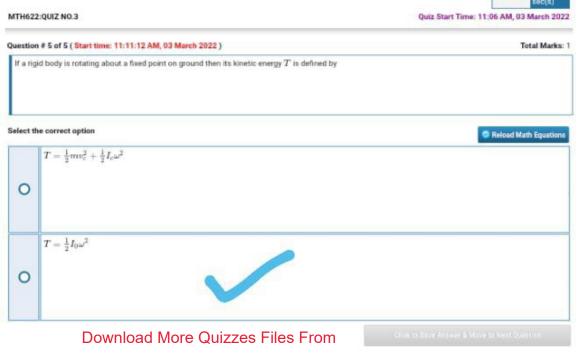
Question # 1 of 10 (Start time: 02:57:34 PM, 23 February 2021)

The Moment of inertia of a hollow cylindrical shell having mass M and radius a is given by

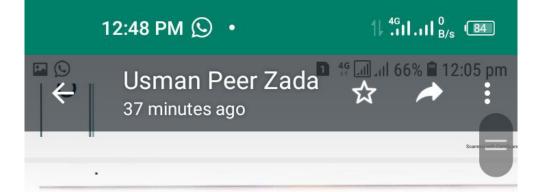
Select the correct option

0	Module 142, pg81	$I = Ma^2$
0		$I = \frac{1}{2}Ma^2$
0		$I = \frac{2}{5}Ma^2$
0		$I = \frac{2}{3}Ma^2$

Scarned with Care


stz#2

3 of 10 (Start time: 03:00:19 PM, 23 February 2021)


licles of masses m,2m and 3m are held in a rigid light framework at points (0,1,1), $(1,\pm)$. Find I_{yy}

orrect option

m

VUAnswer.com

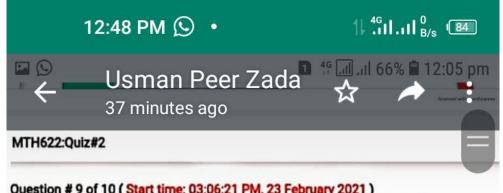
Question # 5 of 10 (Start time: 03:02:20 PM, 23 February 2021)

The Moment of inertia of a solid sphere having mass M and radius a is given by

Download More Quizzes Files From

VUAnswer.com

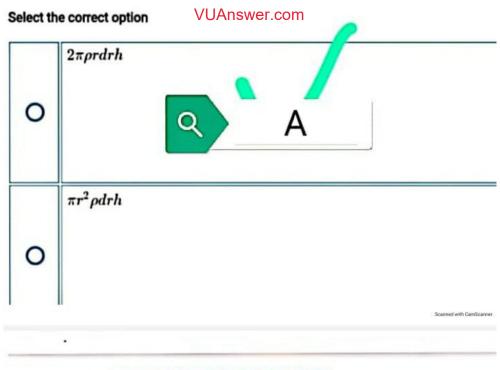
Select the correct option


0		$I = Ma^2$
0		$I=\frac{1}{2}Ma^2$
0	Q Module 136	$I = \frac{2}{5}Ma^2$
0		$I=\frac{2}{3}Ma^2$

Scanned with CamSca

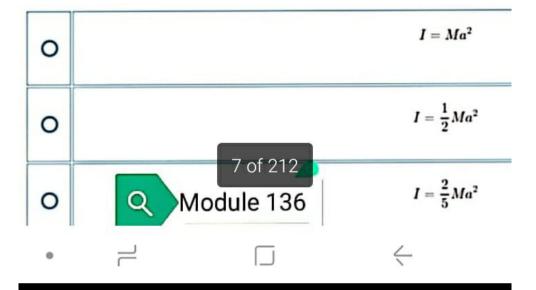
2:Quiz#2

on # 7 of 10 (Start time: 02:53:13 PM, 23 February 2


niform solid sphere

Question # 9 of 10 (Start time: 03:06:21 PM, 23 February 2021)

The mass of a cylindrical shell of density ho, height h thickness dr and radius r is


Download More Quizzes Files From

Question # 5 of 10 (Start time: 03:02:20 PM, 23 February 2021)

The Moment of inertia of a solid sphere having mass M and radius a is given by

Select the correct option

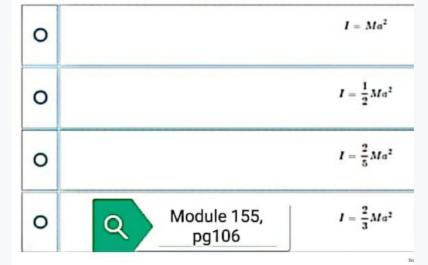
Usman Peer Zada 11 photos

Question # 5 of 10 (Start time: 03:02:20 PM, 23 February 2021)

The Moment of inertia of a solid sphere having mass M and radius a is given by

Select the correct option

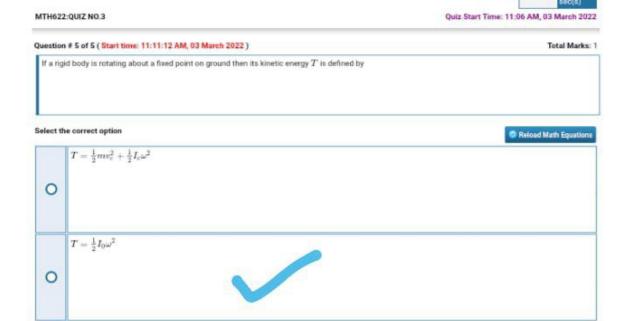
0		$I = Ma^2$
0		$I = \frac{1}{2}Ma^2$
0	7 of 212 Module 136	$I = \frac{2}{5}Ma^2$
•	۲ ()	<12:10 PM

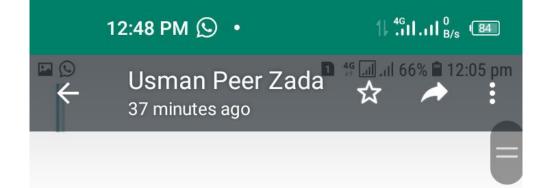


MTH622:Quiz#2

Question # 1 of 10 (Start time: 09:03:47 PM, 23 February 2021)

The Moment of mertia of a hollow sphere having mass M and radius a is given by


Select the correct option


MTH622:Quiz#2

Question # 9 of 10 (Start time: 03:06:21 PM, 23 February 2021)

The mass of a cylindrical shell of density ho_r , height h thickness dr and radii

Download More Quizzes Files From VUAnswer.com

Scanned with CamScanner

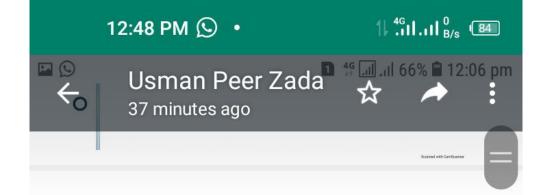
MTH622:Quiz#2

Question # 1 of 10 (Start time: 02:57:34 PM, 23 February 2021)

The Moment of inertia of a hollow cylindrical shell having mass M and radius a is given by

Select the correct option

0	Module 142,	$I=Ma^2$
	pg81	1 _ 1 M-2
0		$I = \frac{1}{2}Ma^2$
0		$I = \frac{2}{5}Ma^2$
0		$I=\frac{2}{3}Ma^2$


Scanned with Cam

stz#2

3 of 10 (Start time: 03:00:19 PM, 23 February 2021)

licles of masses m,2m and 3m are held in a rigid light framework at points (0,1,1), (1,1), fly. Find I_{yy}

correct option

MTH622:Quiz#2

Question # 4 of 10 (Start time: 02:50:38 PM, 23 February 2021)

The Moment of inertia of a solid cylinder having mass M and radius a is given by

Select the correct option

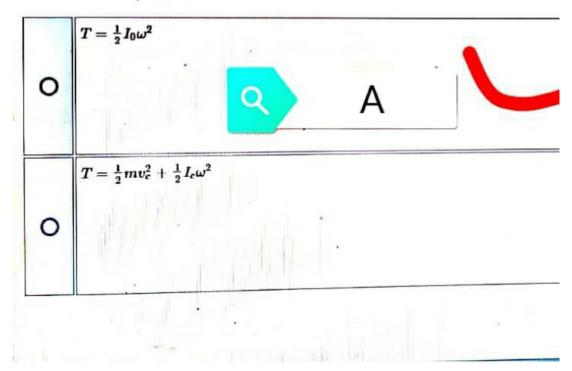
Download More Quizzes Files From VUAnswer.com

Scanned with CamScann

uestion	n # 1 of 5 (Start time: 11:06:36 AM, 03 March 2022)	Total Marks:
Kinetic	c energy T of a rigid body in a planar motion, is defined by	
Select th	he correct option	Reload Math Equations
0	$T=rac{1}{2}I_0\omega^2$	
0	$T=rac{1}{2}mv_{arkappa}^2+rac{1}{2}I_c\omega^2$	

n # 4 of 5 (Start time: 11:09:44 AM, 03 March 2022)	Total Marks:
der a right circular cone of density $ ho$, radius a and height h is composed of elene. Choose the z-axis as the axis of symmetry and consider a typical disc of radius a .	
ne correct option	Reload Math Equations
$\delta m = \rho 2\pi r \delta z$	
$\delta m = \rho \pi r^2 \delta z$	
	for a right circular cone of density ρ , radius a and height b is composed of eleme. Choose the z-axis as the axis of symmetry and consider a typical disc of radius a and a are considered as a and a and height b is composed of element a and a are considered as a and a and height a is composed of element a and a and height a is composed of element a and a a

perpendicular					
perpendicutar		0			
		perpendicular			
		0			
Cities to David Arts man & Mining to No et C	Chick to Band Arts and & Mings to Nort Quan			Charles No. of Asset	er & Moore to Newt 9



Scanned with CamScanner

Question # 6 of 10 (Start time: 09:54:50 AM, 05 August 2021)

If a rigid body is rotating about a fixed point on ground then its kinetic energy $m{T}$ is defined by

Select the correct option

77 of 212

Scanned with CamScanner

Question # 3 of 5 (Start time: 11:08:22 AM, 03 March 2022.)

Total Marks: 1

The Moment of inertia of a hollow sphere having mass M and radius a is given by

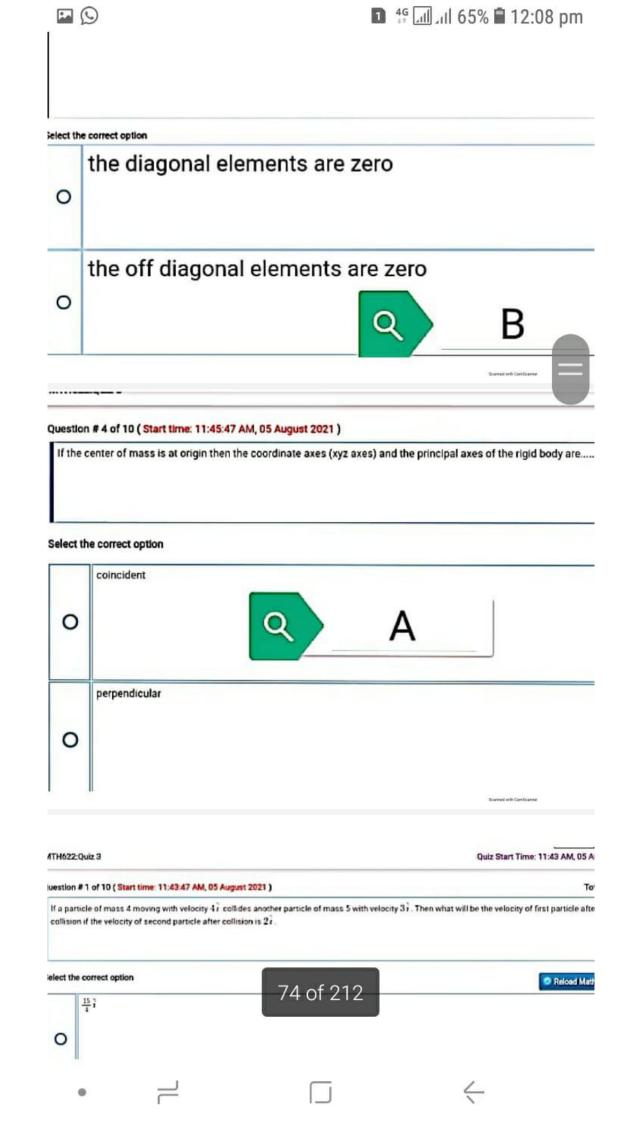
Select the correct option

Reload Math Equations

0

$$I = \frac{1}{2}Ma^2$$

0


$$I = Ma^2$$

C

$$I = \frac{2}{5}Ma^2$$

O

$$I = \frac{2}{3}Ma^2$$

MTH622:Quiz 3

Question # 6 of 10 (Start time: 11:47:02 AM, 05 August 2021)

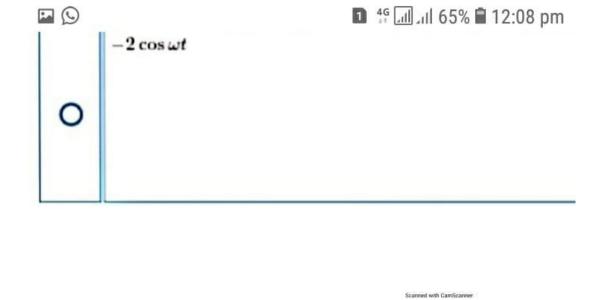
Kinetic energy T of a rigid body in a planar motion, is defined by

Select the correct option

$$T = \frac{1}{2}I_0\omega^2$$

$$T = \frac{1}{2}mv_c^2 + \frac{1}{2}I_c\omega^2$$

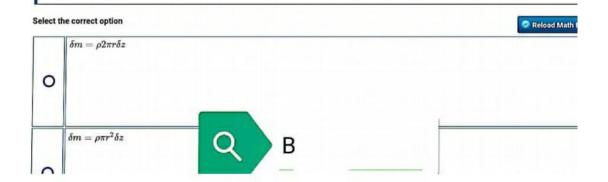
Scanned with CamScanner


MTH622:Quiz 3


Quiz Start Time: 11:43 AM, 05 August 2021

Question # 10 of 10 (Start time: 11:49:33 AM, 05 August 2021)

Total Marks: 1


For an elastic body, the distance between two particles.....under the action of applied force

Tota

Consider a right circular cone of density ho, radius a and height h is composed of elementary circular discs of small thickness each parallel to the base the cone. Choose the z-axis as the axis of symmetry and consider a typical disc of radius r and width δz them mass of the disc is

MTH622:Quiz 3

Question # 3 of 10 (Start time: 12:56:21 PM, 05 August 2021)

If a body rotates about some external fixed point it is called revolution

Select the correct option

O Q71 of 212A