

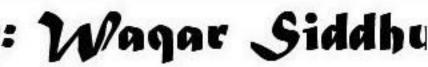
PAST PAPERS BY WAQAR SIDDHU

More in PDF From

Get All Solutions.

research	ATH601	Operations	Research	
----------	--------	------------	----------	--

111	Too T operations Research	
Que	stion No : 1 of 52	
The	e cost matrix in assignment problem is always diagonal matrix	
Ansv	wer (Please select your correct option)	VuAn
0	square matrix	correct
С	identity matrix	
0	zero matrix	Made bu


Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

Que	tion No : 2 of 52
Wh	ch of the following binary operation in assignment problem among all the elements in the given profit matrix from the highest element in the matrix
Ans	ver (Please select your correct option)
C	Subtraction <u>correct</u>
С	Division
С	Multiplication
С	Addition Made by:

Marks: 1 (Budgeted Time 1 Min)

Question No : 3 of 52

During a replacement if the value of money decreases at the rate of 3% then the present worth factor of unit amount to be spent after one year is given by

Answer (Please select your correct option)

0	4		Made by:
c	0.9708	correct	
0	0.333		
c	0.25		

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No : 4 of 52

In sequencing problems, the Johnson's algorithm in finding the optimal ordering of *n* jobs through 3 machines can be applied, if the problem is converted into following number of machines problems

Answer (Please select your correct option)

0	2	Made by:
c	2×3 = 6	
c	3n1	
0	3n <u>CC</u>	prrect

BC08040074

Marks: 1 (Budgeted Time 1 Min)

ATH601	Operations	Research
--------	------------	----------

Question No : 5 of 52

If the money carries a rate of interest of 12% per year, the present worth factor of one rupee due in one year is

Answer (Please select your correct option)

c	13	n	hade by:
С	0.0769		
C	0.89285	correct	
C	0.08333		

BC08040074

Marks: 1 (Budgeted Time 1 Min)

ATH601	Operations	Research
--------	------------	----------

Question No : 6 of 52

Degeneracy in a 5×6 transportation problem occurs when the number of occupied cell is less than

Answer (Please select your correct option)

	ero	
191		Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601 Operations Research	ŧ.
----------------------------	----

NIF	HOUT Operations Research	
Que	stion No : 7 of 52	
We	e go in probabilistic replacement model when period between installation and failure is	
Ansv	wer (Please select your correct option)	VuAn
c	varying exponentially	
0	varying linearly	<u>ct</u>
0	Constant	
0	is not constant (varying arbitrarily)	Made by:

Marks: 1 (Budgeted Time 1 Min)

MTH	1601 Operations Research	
Que	stion No : 8 of 52	
Any	z set of non negative allocations (X $_{ m ij}$ $>$ 0) which satisfies the row and column sum is called a	solution.
Ansv	ver (Please select your correct option)	VuA
0	feasible	
0	non basic feasible	
c	basic infeasible	
0	optimal <u>correct</u>	Made by

Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

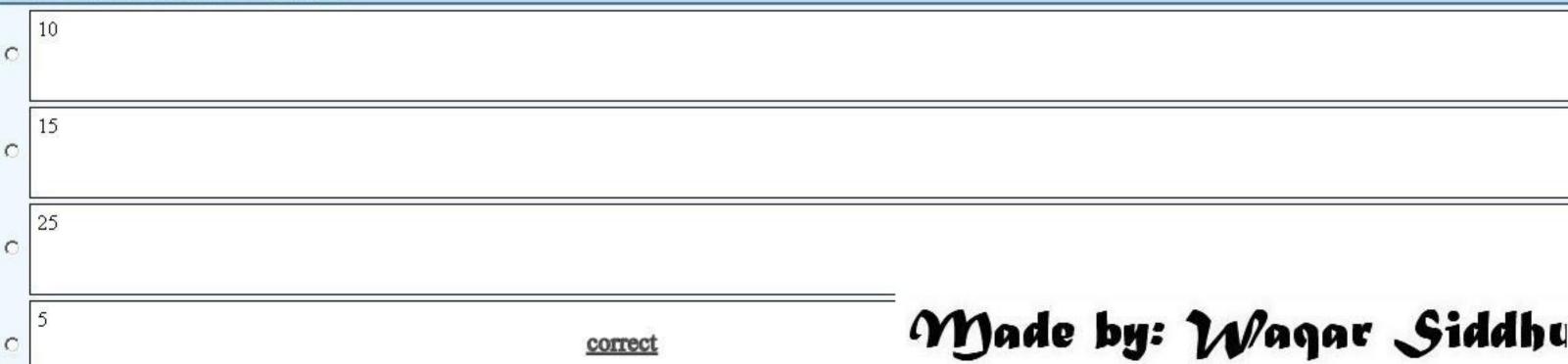
Questio	n No	:90	of 52
---------	------	-----	-------

Answer	Please select	your correct option)
	1 10000 001000	Joan bonoor opnon j

0	Degenerate	correct	
0	Multiple Solutions		
c	Non degenerate		
0	Alternative Optima		Made by

Marks: 1 (Budgeted Time 1 Min)

negative allocation, then it is said to be



Question No : 10 of 52

Consider the following cost table:

Destinations					
		D1	D2	D3	Supply
Source	S1	5	1	2	25
	S2	7	2	4	10

Answer (Please select your correct option)

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601 Operations Research Question No: 10 of 52 SI 5 2 25 Source S2 7 10 2 4 \$3 3 3 5 15 10 20 20 Demand Answer (Please select your correct option) 10 C 15 C 25

C

5

C


BC08040074

Marks: 1 (Budgeted Time 1 Min)

	F		1	Destinations		1.	
			D1	161 174	D3	Supply	
	Source	S1	5	1	2	25	
		S2	7	2	4	10	VuAn
Answe	er (Please sele	ct your corre	ct option)				
0	I, II and III						
0	[only						
0	II only						
0	III only						
	I and II only				correct		— Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Que	stion No : 11 of	52					
		S 3	3 10	3	5	15	
	-	Demand	10	20	20		
	Using Vogel's <i>I</i> These below are wer (Please sel	e the three ce	lls which can be ne	ext cell:			VuAns
.0	I, II and III	eet your cont	set option y				
0	I only						
o	II only						
o	III only						
0	I and II only						— Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601 Operations Research	
Question No : 11 of 52	
I S3 \rightarrow D2 II S2 \rightarrow D2 III S1 \rightarrow D3	
Which one is the correct option?	VuAr
Answer (Please select your correct option)	
C I, II and III	
C I only	
c I only	
C III only	
I and II only	Made by

Marks: 1 (Budgeted Time 1 Min)

MTH601 Operations Research	
----------------------------	--

111	Toper actoris research	
Que	stion No : 12 of 52	
We	e go in probabilistic replacement model when period between installation and failure is	
Ansv	wer (Please select your correct option)	VuAn
0	varying exponentially	
0	varying linearly	
c	Constant	
	is not constant (varying arbitrarily)	Mode bu

Marks: 1 (Budgeted Time 1 Min)

Question No : 13 of 52

If the mean arrival and mean service rates are 4 and 7 respectively in a queue then expected waiting time in the system is

Answer (Please select your correct option)

0	COL	rect
c		
С		
0		Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

WTH601 Operations Resear	ch
--------------------------	----

Question No : 14 of 52

In a	a bank, every 15 minutes one customer arrives for cashing the cheque. Th	ne staff in the payment counter takes only 10 minutes for serving a cust	on
Anes	swer (Please select your correct option)	VuAr	ł
0	6 per hour	correct	_
0	4 per hour		
С	10 per hour		
0	1/6 per hour	Made by	

BC08040074

Marks: 1 (Budgeted Time 1 Min)

mer on an average, then the service rate " μ " =

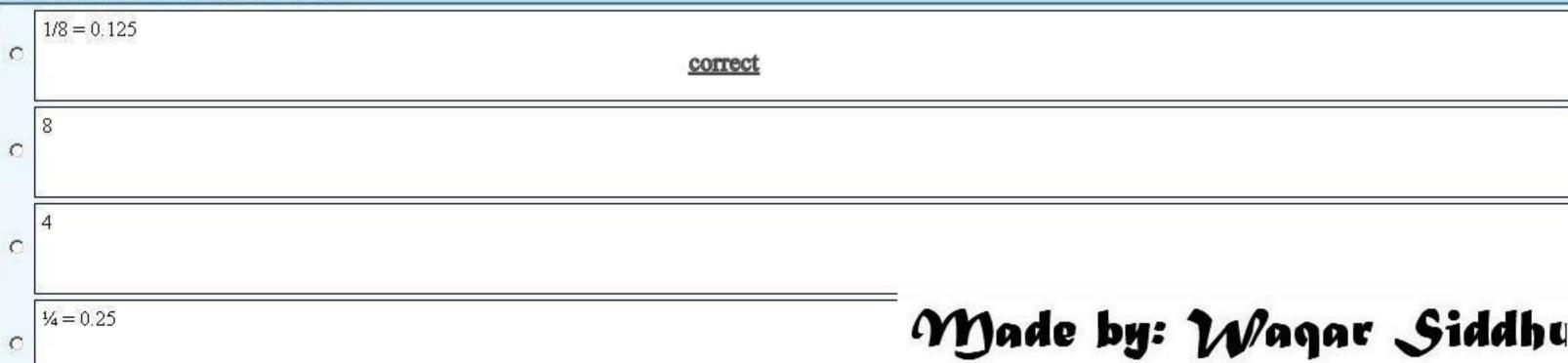
Question No : 15 of 52

A duplicating machine maintained for office use is used and operated by people in the office who need to make copies. Since the work to be copied varies in length (number of pages of the original) and copies required, the service rate is randomly distributed, the arrival rate is 5 per hour and the service rate is 10 per hour then the equipment utilization " ρ " is equal to

Answer (Please select your correct option)

0	0.50	correct	
C	0.20		
c.	5		
c	2	Made b	y:

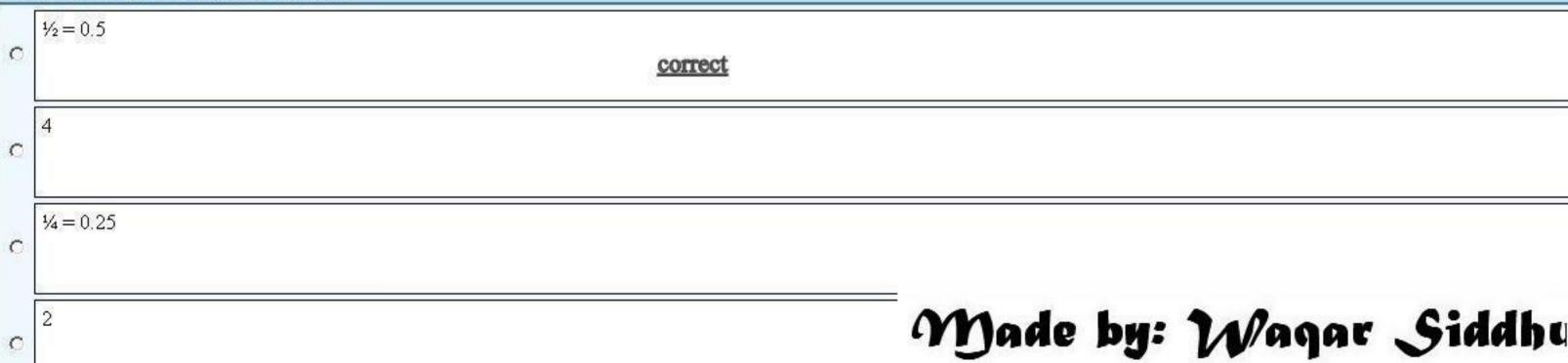
BC08040074


Marks: 1 (Budgeted Time 1 Min)

Question No : 16 of 52

A repairman services three machines. For each machine the time between service requirements is 8 hours following exponential distribution. The time of repair also has the same distribution with a mean of 2 hours. Then the average rate "2" is

Answer (Please select your correct option)


BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No : 17 of 52

A repairman services three machines. For each machine the time between service requirements is 8 hours following exponential distribution. The time of repair also has the same distribution with a mean of 2 hours. Then the mean service time " μ " is

Answer (Please select your correct option)

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No: 18 of 52

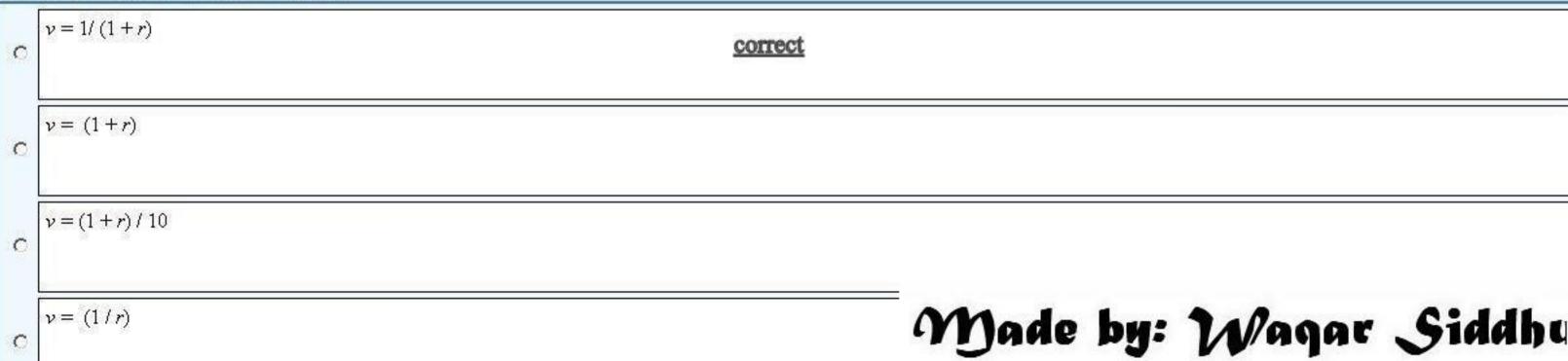
If "Ni" be the Number of replacement made at the end of the i^{th} week and "Pj" be the probability of failure during the i^{th} week, then N₁ = ------

Answer (Please select your correct option)

c	NoPo N2P2	Made by	
C	N ₂ P ₁		
c	NaP1	correct	

BC08040074

Marks: 1 (Budgeted Time 1 Min)

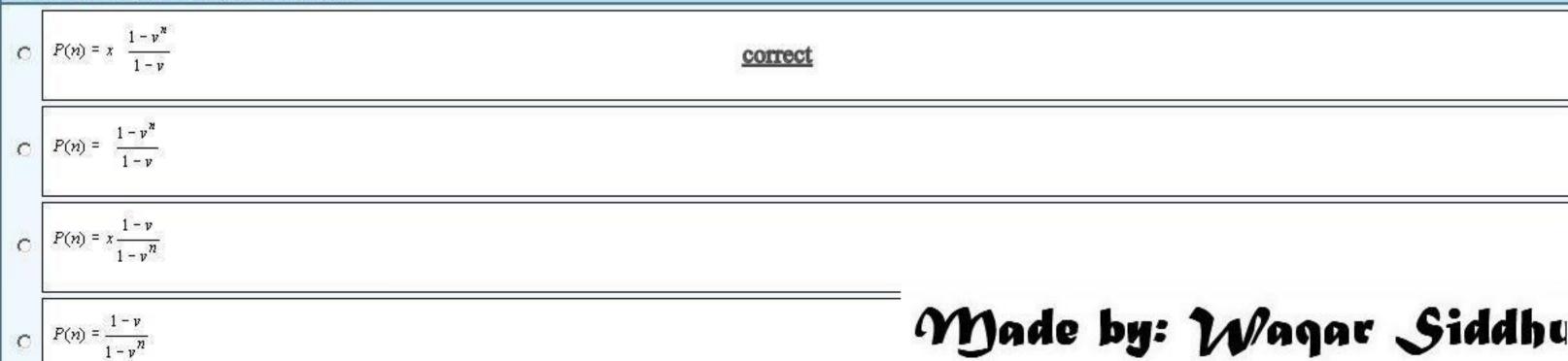


Question No: 19 of 52

The present worth of a rupee to be spent after a year is denoted by v and given by

Answer (Please select your correct option)

BC08040074


Marks: 1 (Budgeted Time 1 Min)

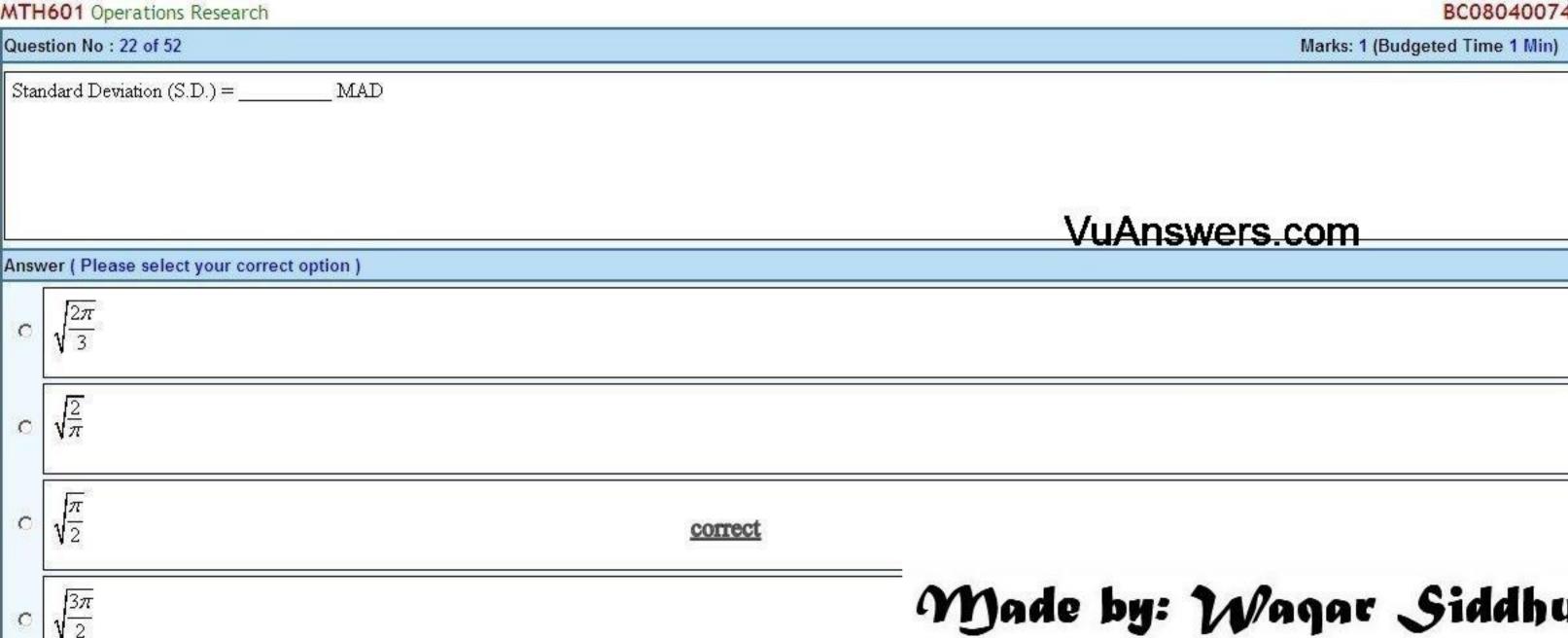
Question No : 20 of 52

Formula for a geometric series " $x + vx + v^2x + ... + v^{n-1}x$ " is

VuAnswers.com

Answer (Please select your correct option)

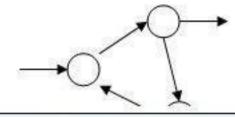
BC08040074


Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

	HOUT Operations Research		
)ue	estion No : 21 of 52		
Pro	oduct of 'item cost' and 'ordered item' is		
Insi	wer (Please select your correct option)		VuAn
0	Crash cost		
C	Cost period	correct	
С	Set up cost		
c	Shortage cost		Made by:

Marks: 1 (Budgeted Time 1 Min)


MTH	H601 Operations Research	
Que	stion No : 23 of 52	
MA	4D = S.D.	
Ansv	wer (Please select your correct option)	VuAr
c	$\sqrt{\frac{2}{\pi}}$	correct
C	$\sqrt{\frac{\pi}{2}}$	
С	$\sqrt{\frac{2\pi}{3}}$	
С	$\sqrt{\frac{3\pi}{2}}$	Made by

Marks: 1 (Budgeted Time 1 Min)

Question No : 24 of 52

The following network is an example of

Answer (Please select your correct option)

C	Dangling	correct
С	Cycling	
0	Dummy	Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

ATH601	Operations	Research
--------	------------	----------

3	i marine	100 million (* 1940)	A1	20		50
u	ues	tion	NO	: 25	OT	DZ.
100						

For any activity backward pass computations provide its

Answer (Please select your correct option)

0	Earliest start times		
o	Latest start times	correct	
0	Moderate start times		
0	Completion time		Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

ATH601	Operations	Research
--------	------------	----------

Question No: 26 of 52

Best possible time estimate that a given activity would take under normal conditions which often exist, is called

Answer (Please select your correct option)

c	Most Likely time estimate	
C	Pessimistic time estimate	correct
С	Smallest time estimate	
C	Activity time estimate	Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH	H601 Operations Research		
Que	Question No : 27 of 52		
In I	PERT, activity time estimates are distributed according to		
Ansy	wer (Please select your correct option)	VuAn	
C	Beta Distribution	correct	
С	Normal Distribution		
с	Poisson distribution		
С	Binomial Distribution	Made by	

Marks: 1 (Budgeted Time 1 Min)

ATH	1601 Operations Research		
Que	Question No : 28 of 52		
Sol	ution region for the constraint $y \leq 0$ is the		
Ansv	ver (Please select your correct option)		VuAi
0	Half plane below y-axis		
C	Half plane below the line: $y = 0$		
С	Set of all those points where ordinates are non-positive		
6	All are equivalent	correct	Made bu

C

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

Que	Question No : 29 of 52		
In a	a linear Programming Problem (LPP), which of the following must be hold?		
Ansv	wer (Please select your correct option)		VuAn
С	Only objective function is linear		
o	Both objective function and constraints are linear	correct	
с	Only constraints needs to be linear		
	At least one of objective function or constraint should be linear		Mode hu:

Marks: 1 (Budgeted Time 1 Min)

Question No : 30 of 52

If a company manufacture 'x' units of product 'A' and 'y' units of 'B' with associated profits of Rs.5 and Rs.3 then which of the following is the objective function to maximize is the profit?

VuAnswers.com

Answer (Please select your correct option)

0	z = 5x + 3y	correct	Made by:
c	z = 3x - 5y		
c	z = 5x - 3y		
0	z = 15xy		

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH	H601 Operations Research		
Que	stion No : 31 of 52		
The	e variable is chosen by examining the	e cost coefficents in the objective function.	
Ansv	wer (Please select your correct option)		VuAn
С	entering	correct	
с	leaving		
с	positive slack		
С	negative slack		Made by

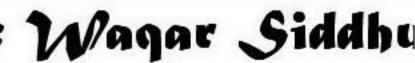
Marks: 1 (Budgeted Time 1 Min)

ATH	ATH601 Operations Research			
Que	Juestion No : 32 of 52			
Wh	ile solving a linear programming problem by big M – Method, traditionally the	<u>variables are chosen</u> in the initial basic feasible solution.		
Ansy	wer (Please select your correct option)	VuAn		
C	neagtive slack			
С	positive slack			
С	entering			
C	artificial	ect Made by:		

Marks: 1 (Budgeted Time 1 Min)

Question No : 33 of 52

In the big-M method, if the introduced


variables do not leave the basis in the final iteration, then this indicates that the give linear programming problem cant be optimized.

Answer (Please select your correct option)

0	entering		
9)	positive slack		
0	negative slack		
0	artificial	correct	Made by:

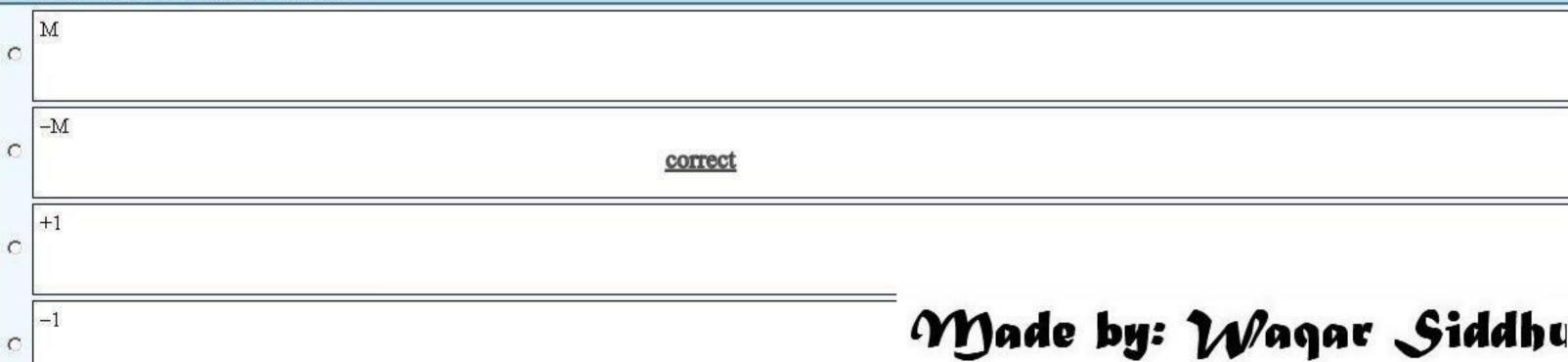
BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

10000	Question No : 34 of 52			
Zer	o valued artificial variables may appear as	variables in the final solution, when one or more of the original constraints equations is rec		
		VuAn		
C	ver (Please select your correct option)			
c	basic	correct		
с	slacks			
0	surplus			
0	artificial	Made by:		

Marks: 1 (Budgeted Time 1 Min)


dundant.

Question No : 35 of 52

By using Two phase method to solve a linear programming problem, in phase I, a new objective function is formed by assigning on left hand side, zero to every original variable (including slack and surplus variables) and ------ to each of the artificial variables.

Answer (Please select your correct option)

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No : 36 of 52

For the linear programming problem;

 $\begin{array}{l} \operatorname{Max} Z = 2x + 3y \\ \operatorname{Subject to} \\ x \ge 2 \\ y \le 3 \\ z > y \ge 0 \end{array} \right\} \xrightarrow{x - s_1 + A = 2} \\ \Rightarrow y + s_2 = 3 \\ z > y \ge 0 \\ z > y \le 1 = 2 \quad A \ge 0 \end{array}$

Answer (Please select your correct option)

Max Z = 2x + 3y + AC MinZ = 2x + 3y + A0 MaxZ = AC MinZ = A0

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No : 36 of 52

For the linear programming problem;

 $\begin{array}{c} \operatorname{Max} Z = 2x + 3y \\ \operatorname{Subject to} \\ x \ge 2 \\ y \le 3 \\ x > 0 \end{array} \right\} \xrightarrow{x - s_1 + A = 2} \\ \Rightarrow y + s_2 = 3 \\ x > 0 \\ x > 1 = 2 \xrightarrow{A \ge 0} \end{array}$

Answer (Please select your correct option)

Max Z = 2x + 3y + AC MinZ = 2x + 3y + A0 MaxZ = AO MinZ = AC correct

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No : 36 of 52

 $\begin{array}{c} y \leq 3 \\ x, y \geq 0 \end{array} \Rightarrow \begin{array}{c} y + s_2 = 3 \\ x, y, s1, s2, A \geq 0 \end{array}$

Which of the following is associated objective function of the 1st phase?

Answer (Please select your correct option)

Max Z = 2x + 3y + AC MinZ = 2x + 3y + A0 MaxZ = AO MinZ = Acorrect C

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No: 37 of 52

The inequality $2x + 3y \ge 18$ is equivalent to

Answer (Please select your correct option)

0	$2x + 3y \le -18$		
C	-2 <i>x</i> - 3 <i>y</i> ≥18		
C	$-2x - 3y \ge -18$		
С	$-2x - 3y \le -18$	correct	Made by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601	Operations	Research
---------------	------------	----------

Question No: 38 of 52

In which of the following models, Simplex algorithm is not preferred to use due to laborious computations?

Answer (Please select your correct option)

C	Transportations models	
С	Degenerate Linear models	correct
С	Non-degenerate Linear models	
С	Dual or unbounded linear models	Made by

BC08040074

Marks: 1 (Budgeted Time 1 Min)

Question No: 39 of 52

Transportations models consist of ------ like the production centers and ----- which may be the sales centers.



Answer (Please select your correct option)

C	(sinks, sources) (sources, sinks)			
C	(origins, sources)	correct		
с с	(sinks, destinations)		Made	by:

BC08040074

Marks: 1 (Budgeted Time 1 Min)

MTH601 (Operations	Research
----------	------------	----------

4111	The operations research	
Que	estion No : 40 of 52	
То	o convert the transportation problem into a maximization model we have to	
Ansv	swer (Please select your correct option)	VuAn
0	write the inverse of the coefficient matrix	
С	multiply the feasibility condition by -1	
c	multiply the coefficient matrix by -1	
C	We can't convert the transportation problem into a maximization problem, as it is basically a minimization prob	e by:

Marks: 1 (Budgeted Time 1 Min)

ORE PAST PAPERS BY WAQAR SIDDHU

Provide Solved in PDF From

