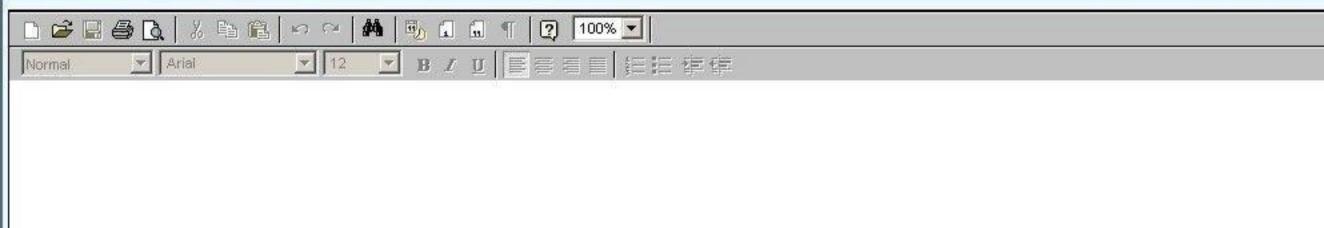


DOWNLOAD SOLVED FINAL

PAST PAPERS BY WAQAR SIDDHU

More in PDF From

VU Answer

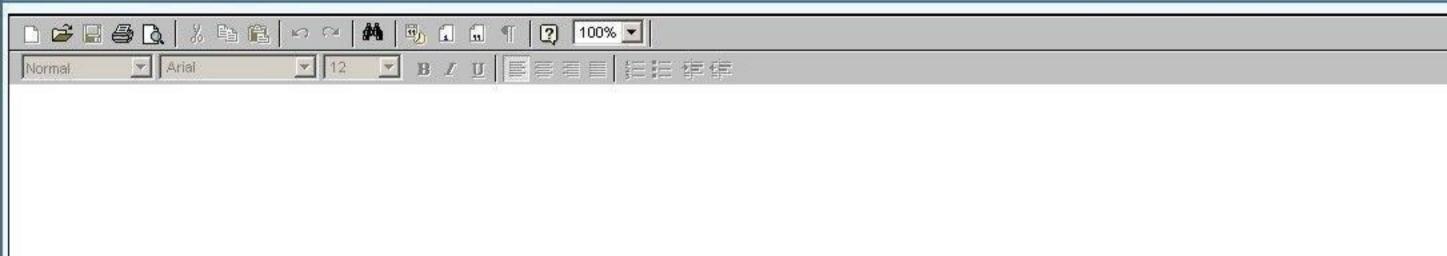

Get All Solutions.

Find the eigenvalues of the following system

$$X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X$$

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

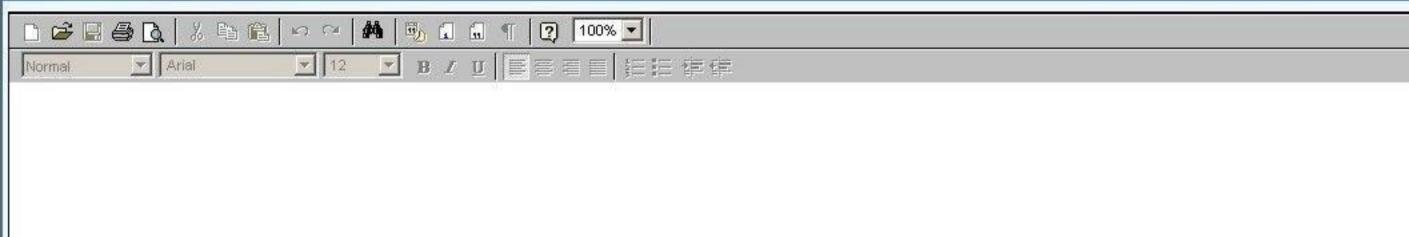


Is generally in matrices following laws hold or not?

- 1- Associative Law
- 2- Distributive Law
- 3- Commutative Law

Answer (Please click here to Add Answer)

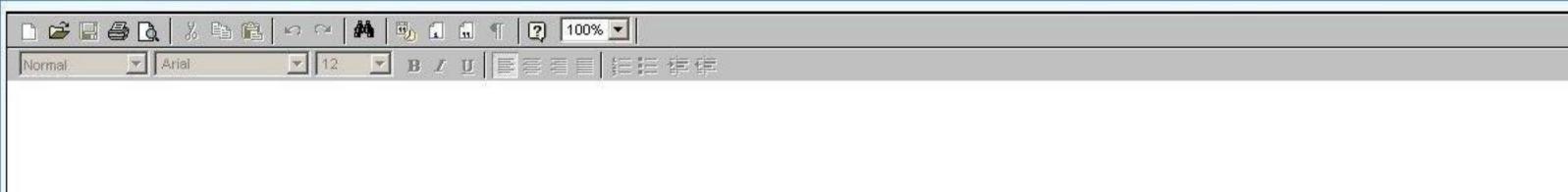
VuAnswers.com



Solve the differential equation:

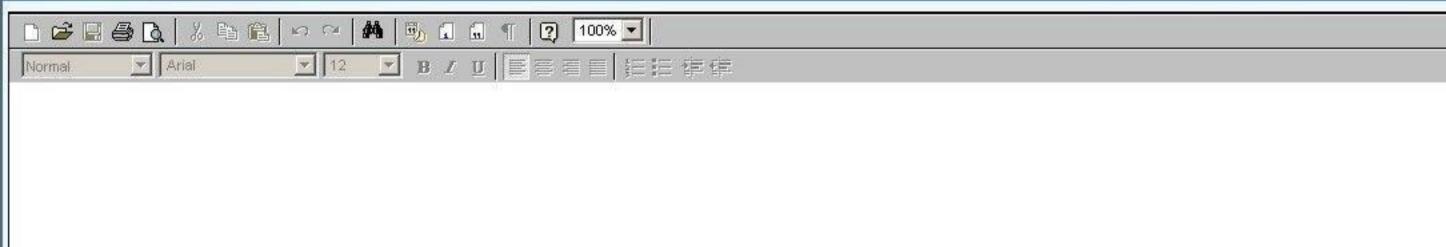
$$\frac{dy}{dx} = \frac{x^2}{2y}$$

Answer (Please <u>click here</u> to Add Answer)


VuAnswers.com

Find the complementry solution for the DE $y''-4y'+4y=2e^{2x}$?

Answer (Please click here to Add Answer)


VuAnswers.com

When roots of indicial equation differ by a positive integer then explain the case when $r_1 = r_2$, where r_1 and r_2 are roots of the indicial equation.

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

State Principal of superposition of set of solution vectors of a homogeneous system.

Answer (Please click here to Add Answer)

VuAnswers.com

Answer (Please click here to Add Answer)

VuAnswers.com

Find the general solution of the given differential equation on $(0, \infty)$

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \frac{1}{64})y = 0$$

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

Write the following system in matirx form

$$\frac{dx}{dt} = x - y + z + t - 1$$
$$\frac{dy}{dt} = 2x + y - z - 3t^{2}$$

$$\frac{dy}{dt} = 2x + y - z - 3t$$

Answer (Please click here to Add Answer)

VuAnswers.com

What is indicial equation and exponent in the differential equation xy'' + 3y' - y = 0 with x=0 regular singular point?

Answer (Please click here to Add Answer)

VuAnswers.com

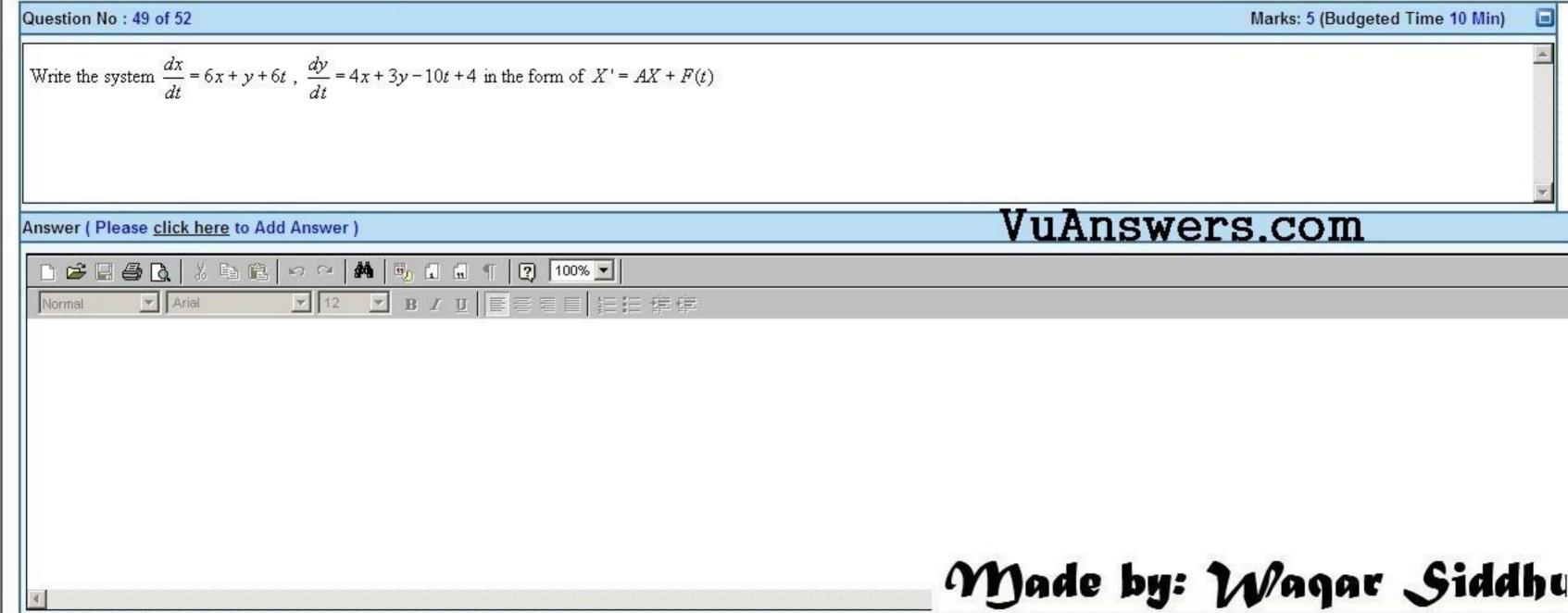
Determine the order and state the linearity of each of the following differential equations.

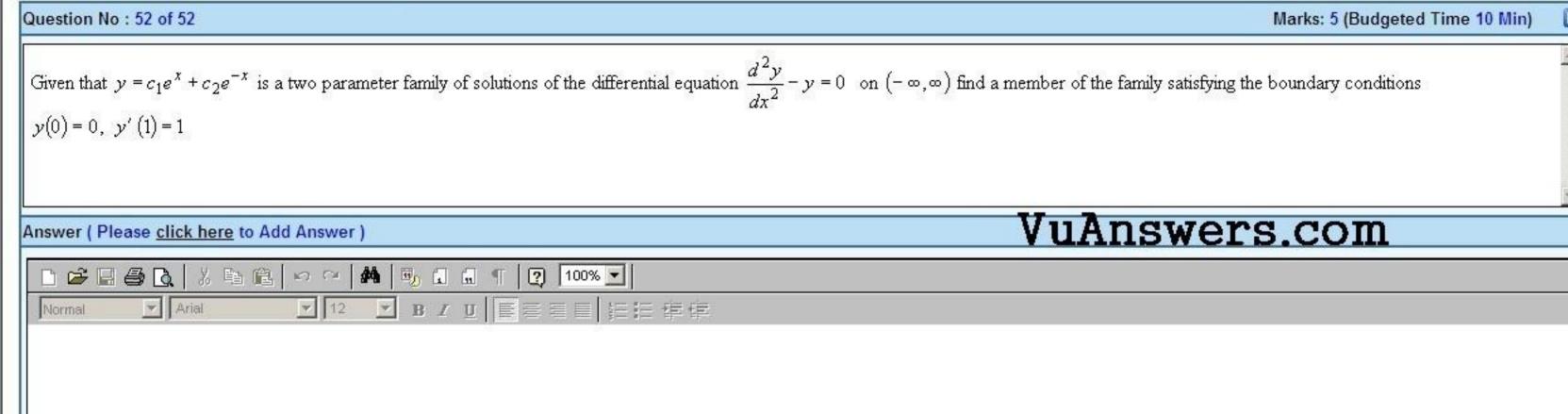
1)
$$\left(\frac{d^3y}{dx^3}\right)^4 + 2\frac{dy}{dx} = \sin x$$

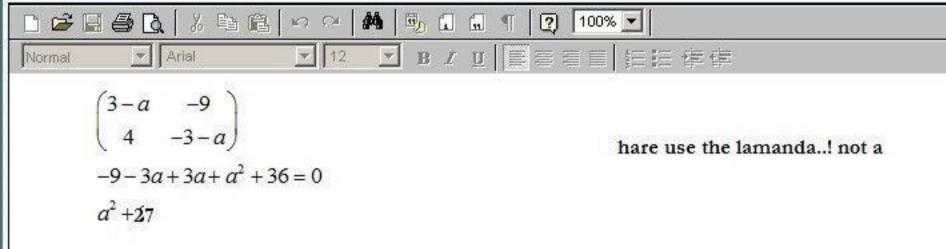
$$2) \quad \frac{dy}{x} - 2xy = x^2 - x$$

Answer (Please click here to Add Answer)

VuAnswers.com

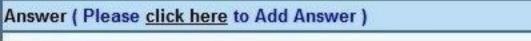






Find the eigenvalues of the following system

$$X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X$$


Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

Is generally in matrices following laws hold or not?

- l Associative Law
- Distributive Law
- Commutative Law

VuAnswers.com

yes,
$$A + B + C = A + (B + C) = (A + B) + C$$
 (Associative law of addition)

Define regular and irregular singular points?

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

Normal ▼ Arial ▼ 12 ▼ B I U ■ 写言 ■ 提注 连律

Definition: Regular and Irregular Singular Points

A Singular point $x = x_0$ of the given equation $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ is said to be a regular singular point if both $(x - x_0)P(x)$ and $(x - x_0)^2Q(x)$ are analytic at x_0 . A singular point that is not regular is said to be an irregular singular point of the equation.

∞ ≈ M 🗓 🕻 ¶ 💽 100% 🕶

$$\frac{dy}{dx} = \frac{x^2}{2y}$$

Normal

Answer (Please <u>click here</u> to Add Answer)

▼ 12 ▼ B / U | 屋屋着屋 舞舞 摩摩

VuAnswers.com

$$2\int y \, dy = \int x^2 \, dx$$
$$y^2 = \frac{x^3}{3} + c$$

▼ Arial

Write down the procedure of solution of the system of differential equations by "Operator Method".

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

☐ This method of solution of a system of linear homogeneous or linear nonhomogeneous differential equations is based on the process of systematic elimination of the dependent variable.

- ☐ This elimination provides us a single differential equation in one of the dependent variables that has not been eliminated
- .
 --->>This equation would be a linear homogeneous or a linear non-homogeneous differential equation and can be solved by employing one of the methods discussed earlier to obtain dependent variables.

Notice that the analogue of multiplying an algebraic equation by a constant is operating on a differential equation with some combination of derivatives.

Find the general solution of the given differential equation on $(0, \infty)$

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \frac{1}{64})y = 0$$

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com

Write the following system in matirx form

$$\frac{dx}{dt} = x - y + z + t - 1$$
$$\frac{dy}{dt} = 2x + y - z - 3t^{2}$$

$$\frac{dy}{dt} = 2x + y - z - 3t$$

Answer (Please click here to Add Answer)

VuAnswers.com

Answer (Please click here to Add Answer)

VuAnswers.com

page 297

Determine the order and state the linearity of each of the following differential equations.

1)
$$\left(\frac{d^3 y}{dx^3} \right)^4 + 2 \frac{dy}{dx} = \sin x$$

$$2) \quad \frac{dy}{x} - 2xy = x^2 - x$$

Answer (Please <u>click here</u> to Add Answer)

Answers to Above Exercises

- 1. order 3, non linear.
- 2. order 1 , linear.
- 3. order 1, non linear.
- 4. order 2 , linear.

VuAnswers.com

- $(\frac{d^3y}{dx^3})^4 + 2\frac{dy}{dx} = \sin x$
 - $\frac{dy}{dx} 2 x y = x^2 x$
 - $\frac{dy}{dx} \sin y = -x$

solution?

For differential equation x(x-1)y'' + (3x-1)y' + y = 0 if $y_1 = \sum_{k=0}^{\infty} x_k = 1 + x + x^2 + \dots = \frac{1}{1-x}$; $|x| \le 1$

is one solution about regular singularity x = 0, then which method will be use to find 2^{nd}

Answer (Please click here to Add Answer)

VuAnswers.com

frobenius, i think and.

$$y_2 = y_1(x) \int \frac{e^{-\int P dx}}{y_1^2} dx$$

VuAnswers.com

Marks: 2 (Budgeted Time 4 Min)

Any two solution vectors X1 and X2 are linearly dependent if and only if one of the two vectors is a constant multiple of the other.

Made by: Wagar Siddhu

Answer (Please click here to Add Answer)

▼ Arial

X 陶 隐

Normal

What is Legendre's differential equation

Lecture 34

Legendre's Differential Equation

A second order linear differential equation of the form

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

is called Legendre's differential equation and any of its solution is called Legendre's function. If n is positive integer then the solution of Legendre's differential equation is called a Legendere's polynomial of degree n and is denoted by $P_n(x)$.

We assume a solution of the form $y = \sum_{k} C_k x_k$

$$(1-x^2)y'' - 2xy' + n(n+1)y =$$

VuAnswers.com

If the complementary solution of the following differential equation is $c_1 \sin 2x + c_2 \cos 2x$, then what will be the general form of its particular solution:

$$\frac{d^2y}{dx^2} + 4y = \cos 2x$$

Answer (Please click here to Add Answer)

VuAnswers.com

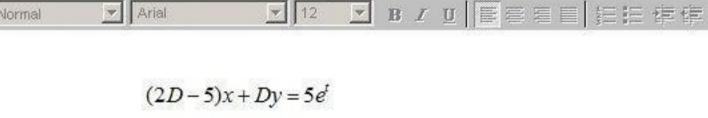


yp = Asin2x + Bcos2x

y'' + P(x)y' + Q(x)y = 0Can the power series method be directly applied if the coefficients P(x) and Q(x) for the differential equations are not polynomials? If P(x) = Sin x and Q(x) = Cos x, then how we solve it?

Answer (Please click here to Add Answer)

VuAnswers.com


Write the homogenous system of differential equations

$$2\frac{dx}{dt} - 5x + \frac{dy}{dt} = \frac{t}{2}$$
$$\frac{dx}{dt} - x + \frac{dy}{dt} = \frac{t}{2}$$

Answer (Please click here to Add Answer)

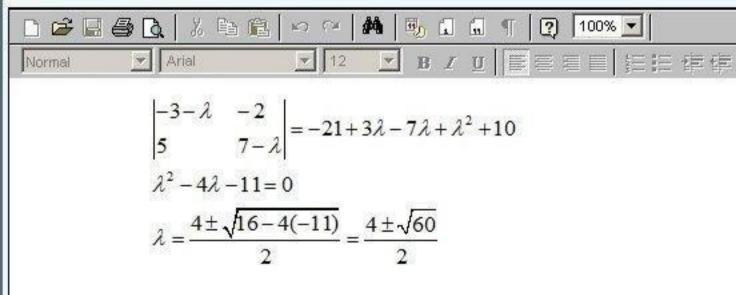
▼ Arial

VuAnswers.com

 $(D-1)x + Dy = e^t$

Made by: Wagar Siddhu

Normal

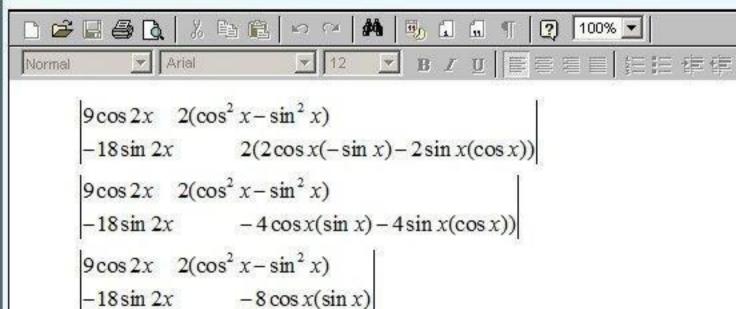

Find the characteristic equation of coefficient matrix of the following system

$$\frac{dx}{dt} = -3x - 2y$$

$$\frac{dy}{dt} = 5x + 7y$$

Answer (Please click here to Add Answer)

VuAnswers.com



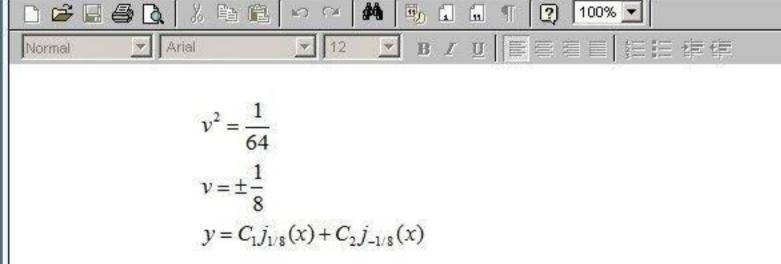
Determine whether the following functions are linearly dependent or linearly Independent?

$$y_1 = 9\cos(2x)$$
, $y_2 = 2\cos^2 x - 2\sin^2 x$

Answer (Please click here to Add Answer)

VuAnswers.com

 $-8\cos x(\sin x)[9\cos 2x] + 18\sin 2x[2(\cos^2 x - \sin^2 x)]$

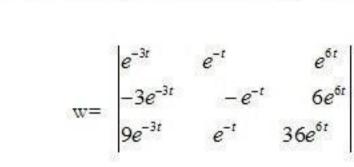

independent

Find the general solution of the given differential equation on $(0, \infty)$

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - \frac{1}{64})y = 0$$

Answer (Please <u>click here</u> to Add Answer)

VuAnswers.com



Find the wronskian of the Differential equation $y'''-2y''-21y'-18y=3+4e^{-t}$ using variation of parameter and the root of the auxiliary equation is $m_1=-3$, $m_2=-1$, $m_3=6$?

Answer (Please click here to Add Answer)

▼ Arial

VuAnswers.com

$$w3 = \begin{bmatrix} e^{-3t} & e^{-t} & 0 \\ -2a^{-3t} & -a^{-t} & 0 \end{bmatrix}$$

Made by: Wagar Siddhu

Normal

Write the following system in matirx form

$$\frac{dx}{dt} = -3x + 4y + e^{-t}\sin 2t$$

$$\frac{dy}{dt} = 5x + 9y + 4e^{-t}\cos 2t$$

Normal

Answer (Please click here to Add Answer)

▼ Arial

VuAnswers.com

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ 5 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \sin 2t \\ 4\cos 2t \end{bmatrix} e^{-t}$$

Answer (Please click here to Add Answer)

VuAnswers.com

MORE PAST PAPERS BY WAQAR SIDDHU

Provide Solved in PDF From

VU Answer

Get All Solutions.

