1. There are 5 white balls and 4 black balls. In how many ways can we select 3 white and 2 black balls?
A. 40
B. 50
C. 60
D. 30

Page no 254 Lecture 35 Handouts Example 4

2. The number of terms in the expansion of the binomial $(p+q)^{\wedge} n$ is
A. n
B. $\mathrm{n}-1$
C. $\mathrm{n}+1$
D. 2n

Page no 256 Lecture 35 Handouts

3. When a coin is tossed once, the probability of getting head is
A. 0.55
B. 0.52
C. 0.50
D. 0.51
4. A worker out of 500 gets a prize by lottery. What is the chance of any one individual say Zain being selected?
A. 1/500
B. $500 / 500$
C. $1 / 600$
D. $-1 / 500$

Page no 257 Lecture 35 Handouts (Same example 600 changed to 500)

5. The following formula for probability $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ is called:
A. The law of addition
B. The law of subtraction
C. The law of multiplication
D. None of these
6. When two events are mutually exclusive, the probability of either one of those occurring is the sum of individual probabilities. This is the called the
A. AND Rule
B. OR Rule
C. OR-AND Rule
D. AND-OR Rule

Page no 261 Lecture 36 Handouts

7. Probability of occurrence of an event $\mathrm{A}=$ \qquad (Where $\mathrm{X}=$ Number of outcomes favorable to event A and n=total number of outcomes)
A. nX
B. n / X
C. X / n
D. None of these

Page no 258 Lecture 35 Handouts Example 2

8. The moving averages can be used for:
A. better graph
B. forecasting purpose
C. middle value
D. Median
9. Which of these numbers cannot be a probability?
A. 0.5
B. 1.001
C. 0
D. 1
10. Which of the following is the mathematical form of the product of all the whole numbers from ' 1 ' to ' n '?
A. $n!=n$
B. $n!=(1.2 .3 / n)$
C. $n!=1 \times 2 \times 3 \times \ldots n$
D. $n!=(n / 3 \times 2 \times 1)$
