

PAST PAPERS BY WAQAR SIDDHU

More in PDF From

Get All Solutions.

Question No : 41 of 52	
Use Wallis sine formula to evaluate $\int_{0}^{\frac{\pi}{2}} \sin^5 x dx$	
Answer (Please <u>click here</u> to Add Answer)	VuAn
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
	Made

Marks: 2 (Budgeted Time 4 Min)

Question No: 42 of 52

Prove whether the	following function is	even,	odd or	neither.
$f(x) = x^3 + x^2$				

Answer (Please click here to Add Answer)

V	u	A	r	1
11220	100	1000	1000	

		$\mathbb{E}[\infty] $	M 🎭 🖬		
Normal	Arial	▼ 12	▼ B I	╯⊻∥∎≡≡≡∣≅≋∉∉	

Marks: 2 (Budgeted Time 4 Min)

0		-42	1000	ML-	100	40	- 5	60
6	ue	su	on	No	- 4	43	OT.	32
100	Contraction of the local division of the loc							

Consider the point
$$\left(\frac{\sqrt{3}}{2}, \sqrt{3}, \frac{1}{2}\right)$$
 in rectangular coordinate system. Find the value of " ρ " in spherical coordinates.

Answer (Please click here to Add Answer)

) d % h f e	∞ ₩ ∞	
Normal	Arial	▼ 12 ▼ B	

Marks: 2 (Budgeted Time 4 Min)

Question No : 44 of 52	
Write down the expression for the arc-length of the curve represented by the vector valued function $r(t) = \cos t$	$t^2\hat{i} + \sin t^2\hat{j}$ where $0 \le t \le \frac{\pi}{2}$. (Do
Answer (Please <u>click here</u> to Add Answer)	VuAns
Normal Arial 12 B Z U E = = = = = = = = = = = = = = = = = = =	
	Made

Marks: 2 (Budgeted Time 4 Min)

o not evaluate the expression).

Question No : 45 of 52	
Use Wallis cosine formula to evaluate $\int_{0}^{\frac{\pi}{2}} \left(\cos^{3} x + \cos^{4} x\right) dx$	
Answer (Please <u>click here</u> to Add Answer)	VuAn
□ □ □ □ □ □ □ □ □ □ □ □ □ □ <t< td=""><td></td></t<>	
<u>ब</u>	Made

Marks: 3 (Budgeted Time 6 Min)

Question No : 46 of 52

Prove whether the following function is even, odd or neither. $f(x) = \sin^2 x \cos 3x$

Answer (Please click here to Add Answer)

V	u	A	ų
0.650	0.00	0.000	199

	6 D. % Pa	▲ ∞ ∞ ▲	I 😼 🖬 🖷 😨 100% 💌	
Normal	Arial	▼ 12	▶ B Z U ■ 写 目 扫 扫 存 存	

Marks: 3 (Budgeted Time 6 Min)

Question No : 47 of 52

Find the region where the function $f(x, y) = \sqrt{9 - x^2 - y^2}$ is continuous.

Answer (Please click here to Add Answer)

V	u	A	n	ſ
1122.0	100	10.00	1.	-

Normal	Arial	▼ 12	<u>в</u> и	U│■言言目│細細症症	

Marks: 3 (Budgeted Time 6 Min)

Question No : 48 of 52	
What is the arc-length of the curve $\vec{r}(t) = (4+3t)\hat{i} + (2-2t)\hat{j}$ when $3 \le t \le 4$?	
Answer (Please <u>click here</u> to Add Answer)	VuAns
Normal Arial 12 BZU EEEEEEEEE	
	Made I
र	- June J

Marks: 3 (Budgeted Time 6 Min)

Question No : 49 of 52

Determine the Fourier co-efficient b_s of the periodic function defined below: f(x) = 2x + 1 $0 \le x \le 2$

Answer (Please click here to Add Answer)

VI	ıА	n
10000	2 10 DBC	11111

Normal	🗾 🖌 Arial	▼ 12	BIU	1 ■三三三 紀記 存住

Marks: 5 (Budgeted Time 10 Min)

Question No : 50 of 52

Determine whether the following vector field \vec{F} is conservative or not.

$$\vec{F}(x, y, z) = (3x + y)\hat{i} + xy^2z\hat{j} + xz^2\hat{k}$$

Answer (Please click here to Add Answer)

V	u	A	n	¥

	5 Q / % B	n ⊂ A		
Normal	Arial	▼ 12	<u>ви</u> [

Marks: 5 (Budgeted Time 10 Min)

uestion	No	: 51	of 52	

Using second partial derivative test show that the function $f(x, y)$	y = xy(24 - x - y) is maximum at $x = 8, y = 8$.
---	---

Answer (Please click here to Add Answer)

VuAnswers.com

	1 5 D. % Pa (1 0 0 4	
Normal	Arial		■考考目 扫扫存存

Marks: 5 (Budgeted Time 10 Min)

0			ML-	. 53	- 6 6 3
U	ues	tion	NO	: 32	of 52
100	COLOR DOLLARS				

→	•	•	•	
Let $r(t) = t^2$	į +	$t j + (t^2 \cdot$	-5) k.	Find t, such that $r(t)$ and $r'(t)$ are perpendicular to each other.

Answer (Please click here to Add Answer)

V	u	A	n
	1000	Contraction of the	1.

			I 🗒 🖬 🖬 🖷 😨 🔟	
Normal	Arial	▼ 12	B / U E E E I	

Marks: 5 (Budgeted Time 10 Min)

Question No: 41 of 52

Determine whether the following differential is exact or not.

 $dz = 4x^3y^3 dx + 3x^4y^2 dy$

Answer (Please click here to Add Answer)

	1 5 D. % Pb	▲ □ ○ ○ ▲	🐴 📆 🖬 🕯	
Normal	Arial	▼ 12	BI	

0	Question No : 42 of 52	
	Evaluate	
	$\int \cos nx dx$	
	J_{x} where n is an integer other than zero.	
		VuAn
4	Answer (Please <u>click here</u> to Add Answer)	V UAII
	Normal Arial 了12 了 B Z U 圖書書目 結結律律	
		Mada
		Made

Question No : 43 of 52	
Prove whether the following function is even, odd or neither. $f(x) = x^2 - 4 \sin x$	
Answer (Please <u>click here</u> to Add Answer)	VuAn
Normal Arial 12 B Z U E = = = = = = = = = = = = = = = = = =	
	Mode

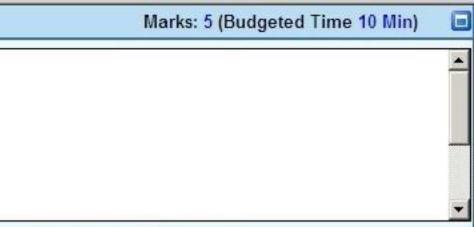
Question No : 44 of 52	
Given $a^{r} \times b^{1} = 3xi + 2yj + xk$ and $c^{r} = 7xi + 4yk$. Find scalar triple product of these vectors.	
Answer (Please <u>click here</u> to Add Answer)	S
Normal Y Arial Y 12 Y B Z U 圖書書圖 註註 提作	
Made	ł
	-

Question No : 45 of 52	
What is the arc-length of the curve $\vec{r}(t) = (4+3t)\hat{i} + (2-2t)\hat{j} + (5+t)\hat{k}$ when $3 \le t \le 4$?	
Answer (Please <u>click here</u> to Add Answer)	VuAns
Normal Y Arial Y 12 Y B Z U 屋 三 目 記 日 存 存	
	Model
	Made I

Question No : 46 of 52			
Find $div \vec{F}$, if $\vec{F} = (3x + y)\hat{i} + xy^2z\hat{j} + (xz^2)\hat{k}$			
Answer (Please <u>click here</u> to Add Answer)	VuAns		
Normal Y Arial Y 12 Y B Z U 臣言言言語語語律律			
	Made k		
4	- Dune b		

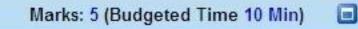
Question No : 47 of 52	
Determine the Fourier co-efficient a_0 of the periodic function defined below: $f(x) = 2x + 1$ $0 \le x \le 2$	
Answer (Please <u>click here</u> to Add Answer)	VuAns
🗅 😂 🖬 🚳 🐧 🖇 🏔 🗠 ా 🛛 👭 🗐 🖬 🖷 🦷 😨 100% 💌	
Normal Arial II B I U 医香香香香菇 存在	
	Made k

Question No : 48 of 52	
A line, in three dimensional space, passes through the point $(3, -4, 2)$ and parallel to the vector $\vec{n} = 4\hat{i} + 3\hat{j} + 6\hat{k}$. V	Write down the equation of thi
Answer (Please <u>click here</u> to Add Answer)	VııAns
	V GIIIIL
□ □	
	Made I


Marks: 3 (Budgeted Time 6 Min)

-

his line in parametric and symmetric form.



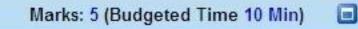
uestion No : 49 of 52				
Using definite integral, find area of the region bounded by the curves of $y = x^2 + 1$ and $y = 5$				
Answer(Please <u>click here</u> to Add Answer)	VuAns			
□ 🖆 🖬 🚭 💫 │ 从 🖻 🛍 ∽ ♀ 斜 勁 🖬 🖷 「 ? 100% 💌				
Normal Arial 12 B Z U 医音音目 语语律				
	Made k			

Question No : 50 of 52	
Show that Laplace transform of the function	
$f(t) = 1 \qquad \text{is}$	
$\frac{1}{s}$ where s is a constant for the integration and s > 0.	
S	
Answer (Please <u>click here</u> to Add Answer)	VuAn
D 😂 🖬 🚳 📐 🕺 🛍 🛍 🗠 👓 👫 🗐 🖬 🖷 🦷 😨 100% 💌	
Normal Y Arial Y 12 Y B Z U 医音音目 語語 律律	
	Made

-

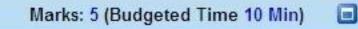
Question No : 51 of 52

Determine whether the following vector field \vec{F} is conservative or not.


$$\vec{F}(x, y, z) = (4x - z)i + (3y + z)j + (y - x)k$$

Answer (Please click here to Add Answer)

		100		_
		1 T T T	-	
v		-		
•	-			
100 M	and the second se	Concession of the local division of the loca	and the second value of th	-


		🛍 🗠 🗠 🖊 🖷	₺ 🖬 ୩ 🤉 100% 💌	
Normal	Arial	▼ 12 ▼	B / U ■ 冨 冨 国 毎 倖 倖	

-

Question No : 52 of 52	
Consider the point (-5, 5, 6) in rectangular coordinate system. Convert it into Spherical coordinates.	
Answer (Please <u>click here</u> to Add Answer)	VuAns
Normal ▲ Arial ● 12 ● B Z U ■ 三目目目目目目目	
ब	Made I

-

Question No : 41 of 52	Marks: 2 (Budgeted Time 4 Min)	
Use Wallis cosine formula to evaluate $\int_{0}^{\frac{\pi}{2}} \cos^{6} x dx$		
	TT T	7
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	
Normal ▲ Arial ▲ 12 ■ B Z U ■ 三目目目目目目		
<u>र</u>	Made by: Waqar Sidd	h

Question No: 42 of 52

Prove whether the following function is even, odd or neither.
$f(x) = x^3 + x^2$

Answer (Please click here to Add Answer)

		100	_
v	11	А	n
v		-	
-			-

The second se	CARL CLOSED AND CARL CLOSED AND AND AND AND AND AND AND AND AND AN		
Normal 🗾 Arial	▼ 12 ▼ 1	B Z U ■ = = = = = = = = = = = = = = = = =	


Question No : 43 of 52	Marks: 2 (Budgeted Time 4 Min)	
Let $f(x, y) = \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$. Is the function defined at (1, 1)? If yes, what is its value and if no, give the reason.		1
		*
Answer (Please <u>click here</u> to Add Answer)	rs.com	
Normal Maial		
Made by:	Waqar Sidd	lha

Question No : 44 of 52	Marks: 2 (Budgeted Time 4 Min)	
Evaluate the following limit. $\lim_{t \to \frac{x}{4}} \left[(\cos t)\hat{i} + (\sin t)\hat{j} \right]$		*
		-
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	
Normal Arial 12 B Z U E = = = = = = = = = = = = = = = = = = =		
	Made by: Waqar Sidd	hu

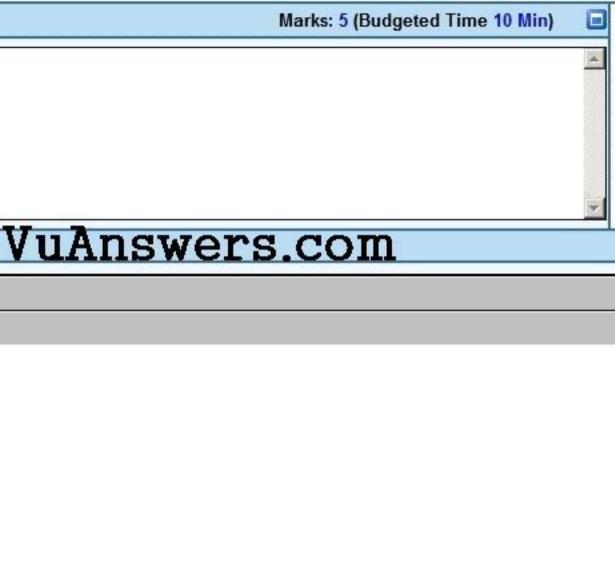
Question No : 45 of 52	Marks: 3 (Budgeted Time 6 Min)
Determine the fourier co-efficient a_0 , of periodic function defined by $f(x) = x$ $0 \le x \le 1$	
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com
	Made by: Waqar Siddhu

Question No : 46 of 52	
Use Wallis sine formula to evaluate $\int_{0}^{\frac{\pi}{2}} (\sin^{3} x + \sin^{4} x) dx$	
Answer (Please <u>click here</u> to Add Answer)	Vu/
Normal ▲ Arial ▲ 12 ▲ B Z U ■ 言言目言語 作作	

Question No : 48 of 52	Marks: 3 (Budgeted Time 6 Min)	
What is the arc-length of the curve $\vec{r}(t) = 3\cos t \hat{i} + 3\sin t \hat{j}$ when $0 \le t \le 2\pi$?		-
		Y
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	
Normal ✔ Arial ✔ 12 ✔ B Z U ■ 言言目 註 註 律 律		
	Made by: Waqar Sidd	h

Question No: 49 of 52

Consider a periodic function defined by f(x) = 3x $-\pi \leq x \leq \pi$


Find whether the given function is even or odd? (i)

(ii) Determine Fourier Co-efficients a_0 , a_n and b_n

Answer (Please click here to Add Answer)

	₿ ₿. % % %	10 0 I	👫 🗓 🖬 🖷 😨 100% 💌	
Normal	Arial	▼ 12	▶ B Z U ■写言目 担任律律	

Question No : 50 of 52

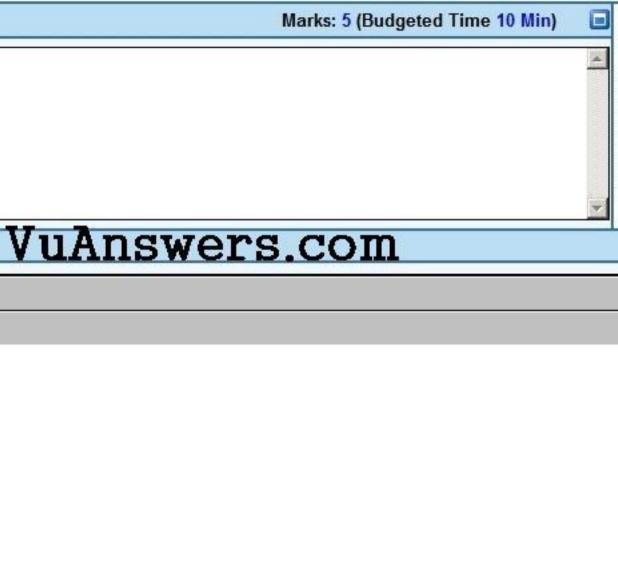
Determine whether the following vector field \vec{F} is conservative or not. $\vec{F}(x, y, z) = (3x + y)\hat{i} + xy^2z\hat{j} + xz^2\hat{k}$

Answer (Please click here to Add Answer)

VuAns	100.00	17	100	
V UAIIS		-		10000
V ULLII,				

		<u>1</u> ∽ ∼ 4	B) 🖬 🖷 🕇 📿 🔟	× 🔽
Normal	Arial	▼ 12 ▼	в и ц 🔳 🚍 ≡ ≡	扫描 律律

Question No : 51 of 52	Marks: 5 (Budgeted Time 10 Min)	
Find Equation of a Tangent plane to the surface $f(x, y, z) = x^2 + 3y + z^3 - 9$ at the point (2, -1, 2)		4
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	
▶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		
	Made by: Waqar Sidd	ha


0			6 S	AL.	10.00	63		53
	ue	SU	on	IN	D:	52	OT	32
	112200							

I	→	• •	•	° .	$\rightarrow \rightarrow$	
I	Let $r(t) =$	$t^2 i +$	t j + ($(t^2 - 5) k$.	Find t, such that $\vec{r(t)}$ and $\vec{r'(t)}$ are perpendicular to each other.	

Answer (Please click here to Add Answer)

	The second		
Normal Ar	al 💌 12 💌 B	B Z U I E = = E I = E ∉ ∉	

Question No : 41 of 52	Marks: 2 (Budgeted Time 4 Min)	0
Use Wallis sine formula to evaluate $\int_{0}^{\frac{\pi}{2}} \sin^5 x dx$		4
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	-
	Vulliswei S.com	
□ ☞ ■ ● Q X ■ ● P P M ● Q I ■ T Q 100% ▼ Normal ✓ Arial ✓ 12 ● B Z U ■ ■ 目 目 目 目 目 目		
		1
	Made by: Waqar Sidd	ŋ

Marks: 2 (Budgeted Time 4 Min) swers.com

Question No: 42 of 52

Marks: 2 (Budgeted Time 4 Min) VuAnswers.com

Question No: 43 of 52

State the condition when
$$\iint_{\mathbb{R}} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \iint_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$
 where R is the region of integration.

Answer (Please click here to Add Answer)

	1 6 D. % Pa (8 ∽ ~ #		
Normal	Arial		BZU ≡≡≡≡ ≡≡≢≢	

Marks: 2 (Budgeted Time 4 Min) swers.com

Question No: 44 of 52

Find derivative of the following vector-valued function.

$$\vec{r}(t) = e^{t^2} \hat{i} + t^2 \hat{j} + \sec 2t \hat{k}$$

Answer (Please click here to Add Answer)

37		T	-	
V	u	А	П	ŀ
	-			-

		Ê ∽ ~ #	₺ 🖬 ୩ 🛛 🕄 🚺	
Normal	Arial	▼ 12 ▼	в и ц 📕 🚍 🚍 🗏 🗄 🛱 🛊	

Marks: 2 (Budgeted Time 4 Min) swers.com

Question No : 45 of 52	
Use Wallis sine formula to evaluate $\int_{0}^{\frac{\pi}{2}} (\sin^{3} x + \sin^{4} x) dx$	
Answer (Please <u>click here</u> to Add Answer)	VuAr
Normal Y Arial Y 12 Y B Z U 臣言言目 註記 作作	

4

Marks: 3 (Budgeted Time 6 Min) nswers.com

Question No: 46 of 52

Find Laplace transform of the function $F(t)$ if $F(t) = e^{2t} \sin 3t$	
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com
▶ ● ● ● X Anial ● ● A ● ● I ■ T ● 100% ▼ Normal ● Arial ● 12 ● B Z U ■ 三 三 三 三 臣 臣 臣	
	Made by: Waqar Siddhu

Marks: 3 (Budgeted Time 6 Min) swers.com

Question No : 47 of 52	
Find the critical point for the given function $f(x, y) = 6x^2 + xy - 2y^2$ along the line $y = 3x + 1$	at which the absolute extrema of the function can occ
Answer (Please <u>click here</u> to Add Answer)	ViiAns
	V GIIII
Normal Y Arial Y 12 Y B Z U ■ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ	
	Made

Marks: 3 (Budgeted Time 6 Min)

swers.com

Question No : 48 of 52	Marks: 3 (Budgeted Time 6 Min)	
What is the arc-length of the curve $\vec{r}(t) = 3\cos t \hat{i} + 3\sin t \hat{j}$ when $0 \le t \le 2\pi$?		*
		-
Answer (Please <u>click here</u> to Add Answer)	VuAnswers.com	
Normal ▼ Arial ▼ 12 ▼ B Z U ■ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ		
	Made by: Waqar Sidd	h

Marks: 3 (Budgeted Time 6 Min) swers.com

Marks: 5 (Budgeted Time 10 Min) Question No: 49 of 52 -Determine the Fourier co-efficient b, of the periodic function defined below: f(x) = 2x + 1 $0 \le x \le 2$ VuAnswers.com Answer (Please click here to Add Answer) 😂 🖬 🚳 🔃 🕺 🛍 🛤 📾 🖓 🖬 🖷 🝸 100% 🔽 ✓ 12 ✓ B Z U ■ 三百日 短短律律 ▼ Arial Normal Made by: Waqar Siddhu

Question No : 50 of 52

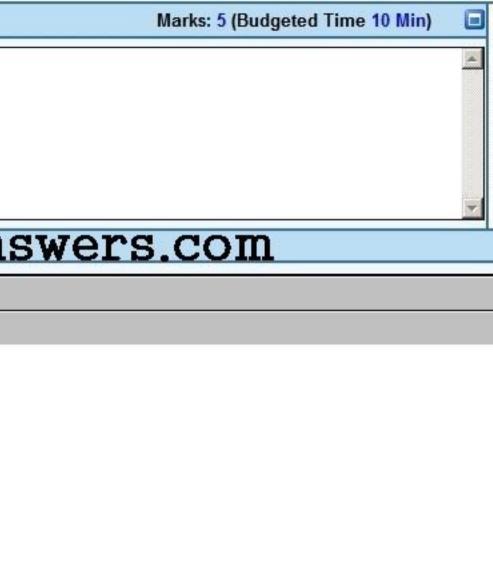
Determine whether the following vector field \vec{F} is conservative or not.

$$\vec{F}(x, y, z) = x^2 z \hat{i} + y^2 x \hat{j} + (y + 2z) \hat{k}$$

Answer (Please click here to Add Answer)

37		7	-	La c
V	u	А	п	ŀ
				-

the second		Ê ∽ ~ #	B 1	
Normal	💌 🖌 Arial	💌 12 💌	BIU	

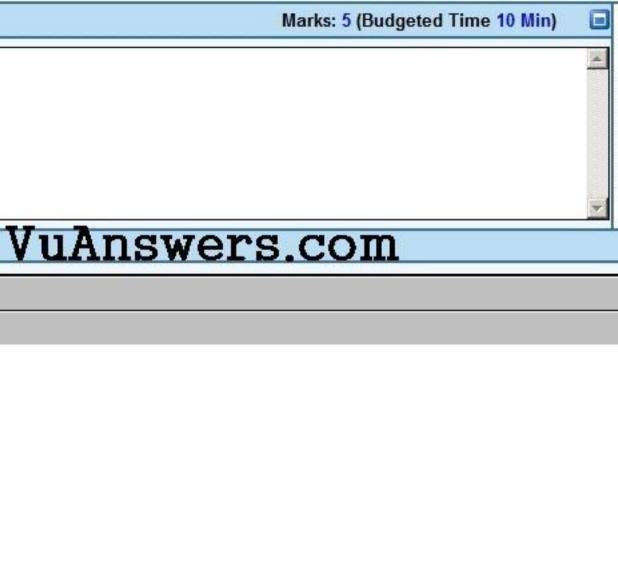


Made by: Waqar Siddhu

Question No : 51 of 52

If $f(x, y) = (x - 4) \ln(xy)$	
Find both first order partial derivatives.	
Answer (Please <u>click here</u> to Add Answer)	ViiAns
	V UIIIII
Normal ▲ Arial ● 12 ■ B Z U ■ 目目目目目目	
	Made
٢	- Луиме

by: Waqar Siddhu


0					81	22.	63		ES	۰.
	ue	SI	10	n	Ν	0	52	OT	32	4
	112200									

I	→	• •	0	° .	$\rightarrow \rightarrow$	
I	Let $r(t) =$	$t^2 i +$	t j + ($(t^2 - 5) k$.	Find t, such that $\vec{r(t)}$ and $\vec{r'(t)}$ are perpendicular to each other.	

Answer (Please click here to Add Answer)

The second	CANADA AND A REAL AND A	👫 🗓 🖬 🖷 🖸 100% 💌	
Normal	Arial 💌 12	▶ B Z U ■ 書 言 目 拒 拒 倖 倖	

Made by: Waqar Siddhu

MORE PAST PAPERS BY WAQAR SIDDHU

Provide Solved in PDF From

