NHTH202 QUVZ 8 UPDETKAD

SEARCHING FILE 2021

PROVIDE BY ORWNGE WONKEY TEAN

98\% CORREC1

1. If A and B are disjoint sets then $P(A$
B) $=$

$$
\mathbf{P}(\mathbf{A})
$$

2. If B is a subset of A then $P(A / B)=1$
True
Download More Quizzes Files From
3. $\mathbf{P}\left(\mathrm{A}^{\mathrm{C}} / \mathrm{B}\right)=1-\mathbf{P}(\mathrm{A} / \mathrm{B})$
VUAnswer.com
True
4. If A and B be events with $P(A)=1 / 3 . P(B)=1 / 4$ and $P(A$ intersection $b)=1 / 6$, then $P(A$ $\mathbf{U B})=$ \qquad .
5/12
5. $P(A / B)=P(A n b) / P(B)$, where \qquad .

$$
\mathbf{P}(\mathbf{B})>0
$$

6. Total degree of a graph G is \qquad .
2(Number of edges of G)
7. Let $E\left(X^{2}\right)=6, u^{2}=2$, then standard deviation is \qquad .

2

8. If A and B be events with $P(A)=1 / 3$. $P(B)=1 / 4$ and $P(A$ intersection $b)=1 / 6$, then $\mathbf{P}(\mathbf{A} / \mathbf{B})=$ \qquad 2/3 Download More Quizzes Files From
VUAnswer.com

9. A closed walk is the walk that starts and ends at the same vertax

True
10. Total degree of \mathbf{G} is an odd number

Download More Quizzes Files From

 FalseVUAnswer.com
11. If X and Y are random variable, then $E(a X)$ is equal to aE(X)
12. A simple graph is a graph that does not have any loop.

True
13. Conditional probability of A given B is defined as \qquad .

$$
\mathbf{P}(\mathbf{A} \cap \mathbf{B}) / \mathbf{P}(\mathbf{B})
$$

14. If X and Y are independent random variables and a and b are constant, then $\operatorname{Var}(\mathbf{a X}+b \mathbf{Y})$ is equal to

Download More Quizzes Files From

$$
A^{\wedge} 2 \operatorname{Var}(X)+b^{\wedge} 2 \operatorname{Var}(Y)
$$

VUAnswer.com
15. A random variable is also called a

Chance variable
16. If the random variable X denotes the number of heads when three distict coins are tossed, then X assumes the value

$$
\mathbf{0 , 1 , 2 , 3}
$$

17. If X and Y are random variables, then $E(X-Y)$ is equal to

$$
\mathbf{E}(\mathbf{X})-\mathbf{E}(\mathbf{Y})
$$

18. A random variable is also called a Stochastic variable

True
19. Which of the followings is the probability of getting a 6 when a dice is tossed?

1/6
20. A random variable is also called a

Chance variable or stochastic varaible

21. If $\mathrm{E}(5)=5$, then find arithmetic mean will be

Download More Quizzes Files From
VUAnswer.com
22. Conditional probability of B given A is defined as \qquad .

$$
\mathbf{P}(\mathbf{A} \cap \mathbf{B}) / \mathbf{P}(\mathbf{A})
$$

23. If A is a subset of B then $P(A$ I $B)=P(A) / P(B)$

True

24. A graph is regular if every vertex has the \qquad degree

Same
25. If the standard deviation of the data set is 4 then the value of the variance is 16
26. What is the probability of the number of one head when two fair coins are tossed?

2/4
27. A simple graph is a graph that does not have any loop

True
28. If A and B are disjoint sets then $P(A / B)=$ \qquad ?

$$
\mathbf{P}(\mathbf{A})
$$

29. A complete graph on n vertices is a simple graph in which every is connected to every other vertex. Download More Quizzes Files From

True VUAnswer.com
30. There are three bus lines between A and B, and two bus lines between B and C. Find the number of ways a person can travel round trip by bus from A to C by way of \mathbf{B} ?

6

31. Which of the followings is the product set $A * B * C$? where $A=\{a\}, B=\{b\}$, and $\mathbf{C}=\{\mathbf{c}, \mathrm{d}\}$

$$
\{(\mathbf{a}, \mathbf{b}, \mathbf{c}),(\mathbf{a}, \mathbf{b}, \mathbf{d})\}
$$

32. In how many ways can 6 people be seated on 6 available seats?

33. Among 20 people, 15 either swim or jog or both. If 5 swim and 6 swim and jog, how many jog?

16
34. Compute $\mathbf{C}(\mathbf{8}, 3)$

56
35. Let $X=\{1,2,3\}$,then 2 -combinations of the $\mathbf{3}$ elements of the set X are \qquad ? $\{1,2\} .\{1,3\}$ and $\{2,3\}$
36. $\mathbf{P}(\mathbf{A} \cap \mathrm{B})=\mathbf{P}(\mathrm{A}) . \mathbf{P}(\mathbf{A} / \mathrm{B})$

Download More Quizzes Files From

False

VUAnswer.com
37. If B is a subset of A then $P(A / B)=1$

True
38. An expected value of a random variable is equal to its mean

True
39. If X and Y are independent random variables, then $E(X Y)$ is equal to

$$
\mathbf{E}(\mathbf{x}) \mathbf{E}(\mathbf{y})
$$

40. A random variable is also called stochastic variable

True
41. If A and B are two independent events then $P(A n b)=$

$$
\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})
$$

42. If X is a discrete random variable and $f(x)$ is the probability of X, then the expected value of this random variable is equal to;

$$
\sum \mathbf{x f}(\mathbf{x})
$$

43. The expected value $E(X)$ is obtained by multiplying each value of X by its probability and taking the sum.

Download More Quizzes Files From
VUAnswer.com

Proof by contradiction

54. If one event can occur in n_{1} ways a second event can occur in n_{2} ways, a third event can occur in n_{2} ways, how ways all of the events can occur in the order

$$
\mathbf{N}_{1}+\mathbf{n}_{2}+\mathbf{n}_{3}
$$

55. A non zero integer divides an integer n if and only if there exists an integer k such that \qquad
$\mathrm{N}=\mathrm{dk}$
Download More Quizzes Files From
VUAnswer.com
56. The sequence $1+2+3+4$ \qquad $+\mathbf{n}$ is equal to \qquad .
$\mathbf{N}(\mathbf{n}+1) / \mathbf{2}$
57. The sum of two integers is not an even integer when \qquad .

One is even and one is odd
58. To prove by mathematical induction for $1+2+3+\ldots+n=(n)(n+1) / 2$ for all positive integers, the basis step is \qquad .

$$
1=(1)(1+1) / 2
$$

59. To prove by mathematical induction for $1+5+9+\ldots+(4 n-3)=n(2 n-1)$ for all positive integers, the inductive step is true for $\mathrm{n}=\mathrm{k}$ is \qquad .

$$
1+5+9+\ldots \ldots .+(4 k-3)=k(2 k-1)
$$

60. Proof by \qquad uses the equivalence $\mathbf{p}->\mathbf{q}=\sim \mathbf{q}->\sim \mathbf{p}$

Contraposition

61. The predicate which describes the initial state is called the \qquad of the algorithm Pre-condition
62. The last step of describing algorithms formally is?

An end statement
63. Which of the following is not a method to prove the mathematical statements?

Permutation
64. GCD of (330.156) is?
65. Which of the following is not an irrational number?

Square $\operatorname{root}(4)$
66. The sum of a rational and irrational number \qquad .
Is always an irrational number
67. If n is an odd integer then $n^{\wedge} 3+n$ is \qquad .
68. The \qquad of a predicate variable is the set of all values that may be submitted in place of the variable

Domain

69. For all positive real numbers a and b if $a<b$, then \qquad .

$$
A^{\wedge} 2<b^{\wedge} 2
$$

70. For every prime number $n, n+2$ is prime. Which of the following prime number disproves the above statement. $\mathrm{N}=7$
71. The set of prime number is \qquad .

Infinite set
72. An integer \mathbf{n} is _ if it can be represented as a multiple of 2

Even

73. In inductive property the first iteration of the loop is solved for?

I(K)
74. Which of the following is not a method to prove the mathematical statements? permutation
75. In how many ways a student can choose a course from 2 science courses 3 literature courses and 5 art courses

10

76. In the Direct Proof, we show that if the statement p is true, then the statement q is
\qquad .

True

77. Which of the following is true for $\mathbf{n}=2$?

$$
X^{\wedge} n-y^{\wedge} n \text { is divisible by }(x-y)^{\wedge} 2
$$

78. The sum of any rational number and any irrational number is irrational.

True
79. The set of prime numbers is \qquad .

Infinite set
80. The sum of two odd integers is \qquad --.

Even
81. How many multiples of 5 are there from 10 to 75 ?

14
82. A bit string is a sequence of 0 's and 1's.

True
83. The method of loop invariants is used to prove \qquad of a loop with respect to certain pre and post-conditions.

Correctness

84. \qquad is used to determine number of ordered or unordered arrangement of objects

Counting

Counting is used to:

- Determine number of ordered or unordered arrangement of objects.
- Generate all the arrangements of a specified kind which is important in computer
- simulations.
- Compute probabilities of events.
- Analyze the chance of winning games, lotteries etc.
- 5) Determine the complexity of algorithms.

85. Which of the following is not a rational number.
$\sqrt{7}$

Download More Quizzes Files From

VUAnswer.com
86. While proofing by contradiction the equivalence \qquad is used.

$$
\mathrm{p} \rightarrow \mathrm{q} \equiv(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow \mathrm{c}
$$

87. While proofing by contraposition the equivalence \qquad is used

$$
p \rightarrow q \equiv \sim q \rightarrow \sim p
$$

88. Proof by contradiction is a/an \qquad method of proof.

Indirect

89. Proof by contraposition is a/an \qquad method of proof.

Indirect

90. If \mathbf{n} is divisible by $\mathbf{5}$, then $\mathbf{n}^{\wedge} \mathbf{2}$ is divisible by $\mathbf{2 5}$ is the contraposition of \qquad .
$N^{\wedge} \mathbf{2}$ is not divisible by $\mathbf{2 5}$, then \mathbf{n} is not divisible by 5
91. The quantity $\mathbf{a}-\mathrm{d} . q$ equals the ?

Remainder
92. In inductive step of proof by mathematical induction, the assumption is made for
\qquad .

$$
\mathrm{N}=\mathrm{k}+1
$$

93. How many 4 -bit string contain at least one ' 1 ', 16
94. For all integers $n>0$ $1+2+2^{\wedge} 2+\ldots . .+2^{\wedge} n=$ \qquad

$$
2^{\wedge}(n+1)-1
$$

95. The chairs of an auditorium are to be labeled with two characters, a letter followed by a digit L letters are a and b and numbers are 3 and 5 What is the largest number of chairs that can be labeled differently?

$$
15
$$

96. To prove by mathematical induction for $1+5+9+\ldots+(4 n-3)=n(2 n-1)$ for all positive integers, the basis step is \qquad .

$$
1=1(2(1)-1)
$$

97. The predicate describing the final state is called \qquad .

Post condition of the algorithm
98. The predicate describing the initial state is called \qquad .
Pre-condition of the algorithm
99. If \mathbf{n} is any positive integer then $2^{n} \geq 2(n+1)$ is true for all \qquad -

$$
\mathbf{N} \geq 3
$$

100. The sum of $(6-7$ under root (2)) and (6+7 under $\operatorname{root}(2))$ is

VUAnswer.com
101. GCD of $(8,12)$ will be \qquad .

4

102. In division algorithm ' r ' stands for \qquad

Remainder

103. If the sum of two integers is even the their difference would be _. Even
104. Which of the following is true for $n=1$?

$$
2^{\wedge}(2 n)-1 \text { by } 3
$$

Download More Quizzes Files From
VUAnswer.com

105. To prove by mathematical induction for $1+3+5+\ldots+(2 n-1)=n^{\wedge} \mathbf{2}$ for all positive integers, the basis step is \qquad .
$\mathbf{L H S}=p(1)=\mathbf{2 x} \mathbf{1}=\mathbf{1}, \mathrm{RHS}=\mathbf{1}^{\wedge} \mathbf{2}=\mathbf{1}$
106. The loop is correct if the four properties are true, one of the property is? Eventual feisty of guard
107. The statement $n^{2}>n+3$ is true when \qquad .

$$
\mathbf{N} \geq \mathbf{3}
$$

108. If ' n ' is an odd integer then $n \wedge 3+n$ is \qquad .

Even

109. $(-1)^{\wedge} \mathbf{n}=\mathbf{1}$ for $\mathbf{n}=\left({ }^{\wedge}\right.$ standard for power)

4

110. A boy can choose from 5 train services and 3 bus service to go to his hometown, How many total options he can choose from?

8

111. The method of loop invariants is based on the people of \qquad .

Division algorithm

112. The statement $3^{\mathrm{n}}<\mathrm{n}$! is true when \qquad .

$$
n>6
$$

113. In a city, the bus route numbers consists of a natural number less than 20 , followed by one of the letters A, B, C, D, E and F. How many different bus routes are possible

114. The word algorithm refers to a step-by-step method for performing some action.

True
115. If \mathbf{n} is an odd integer then $3 n+2$ is \qquad .

Odd
116. To prove by mathematical induction basis step is \qquad .

The proposition $\mathbf{P}(\mathbf{1})$ is true
117. There are 5 Chinese books and 6 English books, a student wants to select one optional book for both subject, total number of choices will be

30
 Download More Quizzes Files From

VUAnswer.com

118. In division algorithm the pre-condition is?
A is a nonnegative integer and d is a positive integer
119. If there are 5 different optional courses in English and $\mathbf{3}$ different optional in Maths. Choices for a student who to take one optional.

8
120. Number of combination of 3 -bit string that contain exactly there ' 0 ' is
\qquad -

Download More Quizzes Files From
8
VUAnswer.com
121. The sequence $1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}=$ \qquad .

$$
N(n+1)(2 n+1) / 6
$$

122. If ' r ' is a perfect square, then which of the following is the correct representation of ' r '?
$R=k \wedge 2$ for some integer k
123. Which of the following is the representation of an odd integer ' n '?
$\mathbf{N}=\mathbf{2 k + 1}$ for some integer

124. If \mathbf{n} is any positive integer then the sequence $3+6+9+\ldots \ldots \ldots+3 n=$

$$
3 n(n+1) / 2
$$

125. A predicate becomes \qquad when its variables are given specific values.

Sentence

126. The greatest common divisor (gcd) of two integers a and b is the largest integer that divides both a and b. it is called \qquad .

EUCLIDEAN ALGORITHM

127. A predicate is a sentence that contains a finite number of \qquad .

Variables
128. A proof by \qquad is based on the fact that either a statement is true or it is false but not both.

Contradiction

129. The \qquad of a predicate variable is the set of all values that may be substituted in place of the variable Download More Quizzes Files From Domain VUAnswer.com
130. Which of the following statement is true according to the division algorithm?

$$
17=15 \times 3+2
$$

131. The division by zero is allowed in mathematics

True

132. A student can choose a computer project from one of the two lists. The two lists contain 12 and 18 possible projects, respectively. How many possible projects are there to choose from?
133. For integers a, b, c if a divides b and a divides c, then a divides $(a+b)$ True
134. Suppose there are different tea flavors and 5 different biscuit brands. A guest wants to take one tea and one brand of biscuit. How many choices are there for this guest?

13

135. The sequence $1+2+3+4 \ldots \ldots+n$ is equal to \qquad .

$$
N(n+1) / 2
$$

136. The product of two odd integers is \qquad .
odd
137. A student has $\mathbf{3}$ optional courses in mathematics and $\mathbf{5}$ optional courses in physics, how many total choices for him to take one course?

8
138. If the square of an integer is even, then that integer is \qquad .

Even

Download More Quizzes Files From

VUAnswer.com

139. The first step of describing algorithm formally is?

The name of the algorithm, together with a list of input and output variables
140. Set of prime numbers is finite.

> false
141. The sum of two irrational numbers in general \qquad -

Is always a rational number
142. Which of the following is the representation of an odd integer ' n '?
$\mathbf{N}=\mathbf{2 k}+1$ for some integer ' k '
143. In how many ways can 6 people be seated on 6 available seats?

12
Download More Quizzes Files From
VUAnswer.com

Algorithms formally:
 1.The name of the algorithm, together with a list of input and output variables.
 2.A brief description of how the algorithm works.
 3.The input variable names, labeled by data type.
 4.The statements that make the body of the algorithm, with explanatory comments.
 5.The output variable names, labeled by data type.
 6.An end statement.

144. The product of an even and odd integer is \qquad .

Even
144. In the direct proof, we show that if the statement \mathbf{p} is true then the statement q is \qquad .

True
145. \qquad is the mathematics of counting and arranging objects Combinatorics
146. The Contrapositive of ' $5 n+2$ ' is odd, then n is odd is

If \mathbf{n} is even then $\mathbf{5 n + 2}$ is even
147. For All positive real numbers a and b, if $a<b$, then \qquad .

$$
A^{\wedge} 2<b^{\wedge} 2
$$

148. The rational number ' 2 ' is the product of which of the two irrational numbers.

> Under root(2), under root(2)
149. The sum of two integers is even when \qquad .

Both are even or both are odd
150. Proof by contraposition is based on the logical equivalence between a statement and its.
contrapositive

1. The statement $\mathbf{p} \rightarrow \mathbf{q}$ is logically equivalent to $\sim \mathbf{q} \rightarrow \sim \mathbf{p}$
2. True
3. False
4. Suppose there are 8 different tea flavors and 5 different biscuit brands. A guest wants to take one tea and one brand of biscuit. How many choices are there for this guest?

Download More Quizzes Files From

1. 5

VUAnswer.com
2. 8
3. 13
4. 40
3. The number of the words that can be formed from the letters of the word,"COMMITTEE" are

1. 9 p 9
2. 9C9
3. 9 ! / ($2!2!2!)$
4. None of the given
5. If order matters and repetition is allowed, then which counting method should be used in order to select ' k ' elements from a total of ' n ' elements?
6. K-Selection
7. K-Sample
8. K-combination
9. K-Permuatation
10. ($p \vee \sim p$) is the \qquad .
11. Contradiction
12. Conjunction
13. Tautology
14. Contingency
15. The logical statement $\mathbf{p} \wedge q$ means \qquad .
16. p OR q
17. p NOT q
18. p AND q
19. p XOR q
20. Which relations below are functions?
$R 1=\{(3,4),(4,5),(6,7),(8,9)\}$
R2 $=\{(3,4),(4,5),(6,7),(3,9)\}$
R3 $=\{(-3,4),(4,-5),(0,0),(8,9)\}$
$R 4=\{(8,11),(34,5),(6,17),(8,19)\}$
21. R1 and R3 are functions
22. R1 and R2 are functions
23. R2 and R4 are functions
24. R3 and R2 are functions
25. A student can choose a computer project from one of the two lists. The two lists contain 12 and 18 possible projects, respectively. How many possible projects are there to choose from?
26. 12
27. 18
28. 30
29. 216
30. If r is a positive real number, then the value of r in 3.r.r $=-27 r$ is \qquad .
31. -9
32. +9
33. 0
34. None of the given
35. Find the number of the word that can be formed of the letters of the word "ELEVEN".
36. 120
37. 110
38. 220
39. None of the given
40. For the following relation to be a function, x can not be what values?
$R=\{(2,4),(x, 1),(4,2),(5,6)\}$
41. x cannot be 2,4 or 5
42. x cannot be 4, 1 or 6
43. x cannot be 2, 4 or 6
44. x cannot be 1,2 or 6
45. An integer \boldsymbol{n} is a perfect square if and only if
\qquad for some integer k.
46. $n=2 k$
47. $n=k^{\wedge} 2$
48. $n=$ square-root of k
49. $n=k^{\wedge} 3$
50. Which of the following statements is true according to the Division Algorithm?
51. $17=5 \times 1+12$
52. $17=5 \times 3+2$
53. $17=5 \times 4-3$
54. $17=5 \times 5-8$
55. Let $X=\{2,4,5\}$ and $Y=\{1,2,4\}$ and R be a relation from X to Y defined by $R=\{(2,4),(4,1),(a, 2)\}$. For what value of ' a ' the relation R is a function ?
56. 1
57. 2
58. 4
59. 5
60. ' p is equivalent to q ' means \qquad .
61. p is not necessary but p is sufficient for q.
62. p is neither necessary nor sufficient for q.
63. p is necessary and sufficient for q.
64. p is necessary but not sufficient for q.
65. Which of the followings is the product set $A * B * C$? where $A=\{a\}, B=\{b\}$, and $C=\{c, d\}$.
66. $\{(a, b, c),(a, b, d)\}$
67. $\{(a, c, b),(a, d, b)\}$
68. $\{(b, c, a),(b, d, a)\}$
69. $\{(c, b, a),(d, b, a)\}$
70. In how many ways a student can choose one of each of the courses when he is offered 3 mathematics courses, 4 literature courses and 2 history courses.
71. 9
72. 24
73. 288
74. 14
75. Let $X=\{1,2,3\}$, then 2 -combinations of the 3 elements of the set X are \qquad ?
76. $\{1,2\},\{1,3\}$ and $\{2,3\}$
77. $\{1,2\},\{2,1\},\{1,3\},\{3,1\},\{2,3\}$, and $\{3,2\}$
78. $\{1,2\},\{2,1\},\{1,3\}$ and $\{2,3\}$
79. $\{1,2\},\{2,1\},\{1,3\}$ and $\{3,1\}$
80. Determine values of x and y, where $(2 x, x+y)=$ $(8,6)$.
81. $x=3$ and $y=5$
82. $x=4$ and $y=2$
83. $x=6$ and $y=12$
84. $x=4$ and $y=12$
85. A Random variable is also called a \qquad .
86. Chance Variable
87. Constant
88. Let $f(x)=3 x$ and $g(x)=x+2$ define functions f and g from R to R, then ($f . g$)(x) is \qquad .
89. $2 x-2$
90. $3 x+2$
91. $4 x+2$
92. $3 x^{2}+6 x$
93. If X and Y are independent random variables, then $E(X Y)$ is equal to
94. $\mathrm{E}(\mathrm{XY})$
95. $X E(Y)$
96. $Y E(X)$
97. $E(x) E(y)$
98. The method of loop invariants is used to prove of a loop with respect to certain pre and post-conditions.
99. falseness
100. correctness
101. What is the minimum number of students in a class to be sure that two of them are born in the same month?
102. 11
103. 12
104. 13
105. 14
106. $P(0,0)=$ \qquad
107. 0
108. 1
109. 2
110. undefined
111. (-2)! $=$
112. -2
113. 0
114. 2

4. Undefined

27. If \mathbf{p} is false and \mathbf{q} is true, then $\sim \mathbf{p} \leftrightarrow \mathbf{q}$ is \qquad .
28. True
29. False
30. Let $\mathbf{p} \rightarrow \mathbf{q}$ be a conditional statement, then the statement $\mathbf{q} \rightarrow \mathbf{p}$ is called \qquad .
31. Inverse
32. Converse
33. Contrapositive
34. Double conditional
35. There are three bus lines between A and B, and two bus lines between B and C. Find the number of ways a person can travel round trip by bus from A to C by way of B ?
36. 5
37. 6
38. 10
39. 36
40. The total number of terms in an arithmetic series 0 $+5+10+15+\ldots .+50$ are \qquad .
41. 9
42. 10
43. 11
44. infinite
45. The set of prime numbers is \qquad .
46. finite set
47. infinite set
48. continuous set
49. None of the given
50. If $\mathbf{A}=$ Set of students of virtual university then \mathbf{A} has been written in the \qquad .
51. Tabular form
52. Set builder form
53. Descriptive form
54. A is not a set
55. If A and B are disjoint finite sets then $n(A \cup B)=$
\qquad -
56. $n(A)-n(B)$
57. $n(A)+n(B)-n(A \cap B)$
58. $n(A)+n(B)$
59. $n(A)+n(B)+n(A \cap B)$
60. Reductio and absurdum' is another name of
\qquad .
61. Direct Method of proof
62. proof by contradiction
63. proof by contapositive
64. None of the given
65. The disjunction $\mathbf{p} \vee \mathbf{q}$ is False when \qquad .
66. p is False, q is True.
67. p is True, q is False.
68. p is True, q is True.
69. p is False, q is False.
70. $\sim(P \rightarrow q)$ is logically equivalent to \qquad .
71. $p \wedge \sim q$
72. $p \vee \sim q$
73. $\sim p \wedge q$
74. $\sim p \vee q$
75. Let A and B be subsets of U with $n(A)=12, n(B)=$ 15, $n\left(A^{\prime}\right)=17$, and $n(A$ intersection $B)=8$, then
n(U) $=$ \qquad .
76. 27
77. 20
78. 35
79. If X and Y are random variables, then $E(a X)$ is equal to
80. $\mathrm{E}(\mathrm{aX})$
81. $a E(X)$
82. aX
83. None of the given
84. The negation of "Today is Friday" is
85. Today is Saturday
86. Today is not Friday
87. Today is Thursday
88. None of the given
89. Among 20 people, 15 either swim or jog or both. If 5 swim and 6 swim and jog, how many jog?
90. 6
91. 16
92. 24
93. 46
94. The functions $f o g$ and g of are always equal.
95. TRUE
96. FALSE
97. Let \mathbf{p} be True and q be True, then ($\sim p \wedge q)$ is
\qquad .
98. t (where t is tautology.)
99. c (where c is contradiction.)
100. True

4. False

43. Let g be a function defined by $g(x)=x+1$. Then the composition of $(\mathrm{g} \circ \mathrm{g})(\mathrm{x})$ is \qquad .
44. x
45. $x+1$
46. $x+2$
47. $x^{2}+2 x+1$
48. The converse of the conditional statement 'If I live in Quetta, then I live in Pakistan' is \qquad .
49. If I live in Pakistan, then I live in Quetta.
50. If I live in Pakistan, then I do Not live in Quetta.
51. If I do Not live in Quetta, then I do Not live in Pakistan
52. If I do Not live in Quetta, then I live in Pakistan
53. Let $A=\{2,3,5,7\}, B=\{2,3,5,7,2\}, C=$ Set of first five prime numbers. Then from the following which statement is true ?
54. $A=B$
55. $A=C$
56. $B=C$
57. All the three sets are equal.
58. If A and B be events with $P(A)=1 / 3, P(B)=1 / 4$ and $P(A \cap B)=1 / 6$, then $P(A \cup B)=$ \qquad .
59. $2 / 3$
60. $5 / 12$
61. $1 / 24$
62. $1 / 2$
63. A student is to answer five out of nine questions on exams. Find the number of ways that can choose the five questions.
64. 216
65. 316
66. 126
67. None of the given
68. If X and Y are independent random variables and a and b are constants, then $\operatorname{Var}(a X+b Y)$ is equal to
69. $a \operatorname{Var}(X)+b \operatorname{Var}(Y)$
70. $(a+b)[\operatorname{Var}(X)+\operatorname{Var}(Y)]$
71. $\operatorname{Var}(a X)+\operatorname{Var}(b Y)$
72. $a^{\wedge} 2 \operatorname{Var}(X)+b^{\wedge} 2 \operatorname{Var}(Y)$
73. Let R be the universal relation on a set A then which one of the following statement about R is true?
74. R is not symmetric
75. R is not reflexive
76. R is not transitive
77. R is reflexive, symmetric and transitive.
78. The conjunction $p \wedge q$ is True when \qquad .
79. p is True, q is False
80. p is False, q is True
81. p is True, q is True
82. p is False, q is False
83. Find the number of distinct permutations that can be formed using the letters of the word "BENZENE"
84. 120
85. 220
86. 320
87. 420
88. In how many ways a student can choose a course from 2 science courses, 3 literature courses and 5 art courses.
89. 30
90. 10
91. 1440
92. 240
93. A tree is normally constructed from \qquad .
94. right
95. center

3. left to right

4. right to left
5. A non-zero integer \mathbf{d} divides an integer \mathbf{n} if and only if there exists an integer k such that \qquad .
6. $\mathrm{n}=\mathrm{d} / \mathrm{k}$
7. $n=d k$
8. $n=d+k$
9. $n=d-k$
10. If A and B are any two sets, then $A-B=B-A$
11. True
12. False
13. Let $f(x)=x^{2}+1$ define functions f from R to R and $c=2$ be any scalar, then c.f(x) is \qquad .
14. 2
15. $x^{2}+1$
16. $2 x^{2}-1$

4. $2 x^{2}+2$

57. Let R be a relation on a set A. If R is symmetric then its compliment is \qquad .
58. Reflexive
59. Irreflexive
60. Symmetric
61. Antisymmetric
62. $R=\{(a, 1),(b, 2),(c, 3),(d, 4)\}$ then the inverse of this relation is \qquad .
63. $\{(a, 1),(b, 2),(3, c),(4, d)\}$
64. $\{(1, a),(2, b),(3, c),(4, d)\}$
65. $\{(a, 1),(2, b),(3, c),(4, d)\}$
66. $\{(1, a),(b, 2),(3, c),(4, d)\}$
67. Let $f(x)=3 x$ and $g(x)=3 x-2$ define functions f and g from R to R. Then $(f+g)(x)=$ \qquad .
68. -2
69. $6 x+2$
70. $6 x-2$
71. $6 x . x-2$
72. The set \mathbf{Z} of all integers is \qquad .
73. uncountable
74. countable
75. If $\mathbf{p} \leftrightarrow \mathbf{q}$ is True, then \qquad .
76. Only p is True.
77. Only q is True.
78. p and q both are True.
79. None of the given.
80. Let $A=\{1,2,3\}$ and $B=\{2,4\}$ then number of functions from A to B are \qquad .
81. 6
82. 8
83. 16
84. 64
85. The switches in parallel act just like \qquad .
86. NOT gate
87. AND gate
88. OR gate
89. XOR gate
90. One-to-One correspondence means the condition of
\qquad .
91. one-One
92. identity
93. onto
94. one-One and onto
95. There are $\mathbf{5}$ girls students and 20 boys students in a class. How many students are there in total ?
96. 4
97. 15
98. 25
99. 100
100. Real valued function is a function that assigns
\qquad to each member of its domain.
101. negative real number
102. positive real number
103. only a real number
104. any arbitrary real number
105. A predicate becomes \qquad when its variables are given specific values.
106. sentence
107. statement
108. algorithm
109. iteration
110. Let $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$ be True premises in a given Truth Table. If the conjunctions of the Conclusion with each of p1, p2, p3 are True, then the argument is \qquad .
111. False
112. True
113. Invalid
114. Valid
115. In how many ways can 6 people be seated on 6 available seats?
116. 120
117. 6
118. 12
119. 720
120. x belongs to A or x belongs to B, therefore x belongs to \qquad .
121. A intersection B
122. A union B
123. A difference B
124. A symmetric difference B
125. The converse of the conditional statement $\mathbf{p} \rightarrow \mathbf{q}$ is
126. $q \rightarrow p$
127. $\sim q \rightarrow \sim p$
128. $\sim p \rightarrow \sim q$
129. None of the given
130. Which of the followings is the product set $\mathbf{A} * \mathbf{B} * \mathbf{C}$? where $A=\{a\}, B=\{b\}$, and $C=\{c, d\}$.
131. $\{(a, b, c),(a, b, d)\}$
132. $\{(a, c, b),(a, d, b)\}$
133. $\{(b, c, a),(b, d, a)\}$
134. $\{(c, b, a),(d, b, a)\}$
135. Range of the relation $\{(0,1),(3,22),(90,34)\}$ is
136. $\{0,3,90\}$
137. $\{1,22,34\}$
138. $\{0,1,3\}$
139. $\{0,1,3,22,90,34\}$
140. How many possible outcomes are there when a fair coin is tossed four times?
141. 4
142. 8
143. 16
144. 32
145. The contrapositive of the conditional statement 'If it is Sunday, then I go for shopping' is \qquad .
146. I do Not go for shopping, then it is Not Sunday.
147. I go for shopping, then it is Sunday.
148. I do Not go for shopping, then it is Sunday.
149. I go for shopping, then it is Not Sunday.
150. A set is called finite, if and only if, it is the or there is \qquad .
151. empty set, onto
152. empty set, one-to-one
153. one-to-one, onto
154. empty set, bijective
155. If p is false and q is false, then $\sim p$ implies q is
156. True
157. False
158. Let $A=\{1,2,3,4\}$ and $B=\{7\}$ then the constant function from A to B is \qquad .
159. Onto
160. One to one
161. Both one to one and onto
162. Neither one to one nor onto
163. If f and g are two one-to-one functions, then their composition that is gof is one-to-one.
164. TRUE
165. FALSE
166. If $\mathbf{p}=$ It is raining, $q=$ She will go to college "It is raining and she will not go to college" will be denoted by
167. $p \wedge \sim q$
168. $\mathrm{p} \wedge \mathrm{q}$
169. $\sim(p \wedge q)$
170. $\sim p \wedge q$
171. If a function ($g \circ f$)(x): $X \rightarrow Z$ is defined as ($g \circ f$)(x) $=g(f(x))$ for all $x \in X$. Then the function \qquad is known as composition of f and g.
172. ($\mathrm{f} \circ \mathrm{g}$)
173. $f^{-1}(g(x))$
174. $(g \circ f)$
175. $g^{-1}(f(x))$
176. A box contains 5 different colored light bulbs. Which of the followings is the number of ordered samples of size 3 with replacement?
177. 8
178. 15
179. 125
180. 243
181. The disjunction of p and q is written as \qquad .
182. $\mathrm{p} \vee \mathrm{q}$
183. $\mathrm{p} \wedge \mathrm{q}$
184. p XOR q
185. None of the given
186. The functions ' f ' and ' g ' are inverse of each other if and only if their composition gives \qquad .
187. constant function
188. identity function
189. bijective function
190. injective function
191. What is the truth value of the sentence?
'It rains if and only if there are clouds.'
192. True
193. False
194. Let R be a relation on a set A. If R is reflexive then its compliment is \qquad .
195. Reflexive
196. Irreflexive
197. Symmetric
198. Antisymmetric
199. Let R be a relation on a set A. If R is reflexive then its compliment is \qquad .
200. Reflexive
201. Irreflexive
202. Symmetric
203. Antisymmetric
204. Which of the followings is the factorial form of 5 . 4?
205. $5 / 3$
206. $5!/ 3$
207. $5!/ 3$!
208. $5 / 3$!
(prepared by izhar ullah khan whatasapp (923401933460)
