7
é

bbbl 46444

e

e Py Gy S ¥ sy v G/ PR A AR AT ALY 9
Q=

v

STV S S R S

*/Gr

For More Visit

WWW. VUAnswer com
X

% @3’@/

% (}\J\P

Chapter 7

V\/\)\V "\\“\0
eedy Algorithms

(//‘ (‘/ //n’lpzo\/én'/" 50(((?”((}

An'c oLmIzatton problem is one in which you want to find, not just a solution, but the best soluti

Search techniques look at many possible solutions. E. g. dynamic programming or beﬁl_tlﬂ:_l_ie_arch AT
greedy algorithm™ sometimes works well for optimization problems

A greedy algorithm works in phases. At each phase
4 « ~ .

et ¥
<\

4
/(./l /Loz/ / /)W}QS(?)D/CLCWQ}' {\/cfé /)%

P00 () 0 lo s
ou take the béstglioéhZa‘h oejt tightnow, without regard for future consequences

¢ You hope that by choosing a local optimum at each.-,ste,p;jyg‘x‘lm‘yyi"l‘!‘;g}g_BR;?,};;} global optimum.”

For some - problem, greedy approach always gets optunum’\l_’_q_r_gmgls_,_g@dv finds good, but not alwa\ s

“best/If so, it is called agreedy heuristicfor approximation. For still others, greedy approach can do very
‘poorly.

7.1 Example: Counting Money

Suppose you want to count out a certain amount of money, using
coins. A greedy algorithm to do this would be;:
does not overshoot.

the fewest possible bills (notes) and
at each step, take the largest possible note or coin that

- $- :
while (N > o]{t/ N =2 Alrudbel 5 /(apaf)

give largest denomination coin <N
reduce N by value of that coin
}
“Consider the currency in U.S.A. There are paper notes for one.dollar,
dollars, fifty dollars and hundred dollars. The notes are

cents (called a “nickle™), ten cents (call
currency notes

five dollars, ten dol|
also called “bllls” The
eda (111}_34) and twenty five cents (a

are five IVe rupees, ten rupees, fifty rupees, hundred rupees, five hy

ars, twent\
coins are one cent, fiye

quarter™). [n Paknstan the
indred rupees and tholisand

97
For More Visit

www.VUAnswer.com

Scanned with CamScanner

bl AL £ S

\

[The general coin change problem can be solved using Dynamic Programming. Set up a Table,

CHAPTER 7. GREEDY ALGORITHMS
g i ive change of $6.39 (si
rupees. The coins are one rupee and two rupees. Suppose you are asked to give change of $6.39 (six

dollars and thirty nine cents), you can choose:

5note v i

v

©5

e

1

e a$1 note to make $6 |

', 0/71,'/%7 Aot

j% g‘qwk(“.'

/bu

* a25 cents coin (quarter), to make $6.25
(Vg -

e a 10 cents coin (dime), to make $6.35

—

o four 1 cents coins, to make $6.39

X el v?&iﬂ“p‘ |

o >
Notice how we started with the highest note, $5, before moving to the next lower denomination.
Formally, the Coin Change problem is: Given k denominations d; ,d2, ..., diand given N, find a way of W
writing . ;
IN = ird; +iads + -+ igdi | >
H
such that - yj}
11 +1i3+ -+ 1 is minimized.
The “size” of problem isk. o
= y
The greedy strategy works for the coin change problem but not always. Here is an example where it fails. .
Suppose, in some (fictional) monetagy system, “ krons” come in 1 kron, 7 kron, and 10 kron coins Using &
a greedy algorithm to count out 15 krons, you would get A 10 kron piece Five 1 kron pieces, for a total of .
15 krons This requires six coins. A better solution, however, would be to use two 7 kron pieces and one 1 <

kron piece This only requires three coins The greedy algorithm results in a solution, but not in an optimal
solution) ’ ‘

? 9

Ihé greedy approach gives us an optimal solution when the coins are all powers of a fixed denoniingtion.

NE=4D 4 DL 3D 2 e 4, DY

9

Note that this is N represented in based D. U.S.A coins are multiples of 5: 5 cents, 10 cents and 25 cents.

7.1.1 Making Change:\Dynamic Programming Solution)

/

9 ¢

-

) § §

® © @ @ 9 § ¢

C[1..k,0..N] in which the rows denote available denominations, d;: (1 €1 < k) and columns denote the
amount from 0. .. N units, (0 < j < N). C[i,j] denotes the minimum number of coins, required to pay
an amount j using only coins of denominations 1 to i. C[k, N] is the solution required.

S

To pay an amount j units, using coins of denominations 1 to i, we have two choices:

L. either chose NOT to use any coins of denomination i,

2. or chose at least one coin of denomination 1, and also pay the amount (j —dy).

Scanned with CamScanner

99

7.2. GREEDY ALGORITHM: HUFFMAN ENCODING

To pay (j — di) units it takes Cli,j — di coins. Thus,
Cli,j) =14 Cli,j — dd
{ to minimize the number of coins used,
C[i.j] = min(ClL—1,jl, 1+ Cli,j ~ l])

in change problem.

Since we wan

Here is the dynamic programming based algorithm for the co

COINS(N)
1 d(1.n] ={1,4,6} / (coinage, for example) 0[
fori=1to k o ‘
doc[i,0] <0 P(L(é ,,[,[(For More Visit
fori=1to k ‘
doforj=1to N
doif(i=1&j < dfi]) 71/ By
then c(i,j] — oo /y
else if (i=1)
then cli,j] & 1+c[1,j —d[M]
else if (j < d[i])
then c(i,j] — cfi—1,j]
else cli,j] — min (cli—1,j],1+cfi,j —dfill)

www.VUAnswer.com

Lo — O \O & 1\ W £ Uity

return c[k, N]

7.1.2 Complexity of Coin Change Algorith M,L@,I{ omcfige‘ _
/ 7
Greedy Algonthm (non-optimal) takes O(k) time. Dynamic Programming takes O(kN) tlme ‘Note that

N N can be as large as 7% 50 the dynamic programming algorithm is really exponentlal in /L 5 E(, 2.3
5 e

2 |
xeﬁ/ﬁ 7.2 Greedy Algorithm: Huffman Encoding

The Huffman codes provide a method of encoding data efficiently. Normally, when characters are coded
using standard codes like ASCII: Each character is represented by a fixed-length codeword of bits, e: 2484

‘.ii&gs_ggr_g_}ﬂe_l_cter Fixed-length codes are popular because it is very easy to break up a string into its
individual characters, and to access individual characters and substrings by direct indexing. However,
fixed-length codes may not be he most efficient from the perspectlve of minimizing the total quantity of

 data. ASCT € bt Code
 Consider the string abacdaacac if'the string is coded with ASCII codes, the message length would be

10x8= &\’ts We will see shortly that the same string encoded with a variable length Huftman
encoding scheme will produce a shorter message.

D/"/rr}o (ﬁ/";) j Mesttpe (J*)

ol 53
oi_(/’)/ r) AN& %;\iﬂ

)
ot 7/Lmyress,)w%“@€u/ - Z/

£ . soanatin b e AT P i i —

Scanned with CamScanner

] / /s /(’_z,/z‘f L”’U,.,,J /C// /; Z"D
”) . . ;

_ 2B kg L//') i i 3

oiss (g g -/ e A s <z

m ﬁﬁ 6:) v @/,C%X;PTZZR@ ngl(S{)'JY ALGORITH_\R

I A
4) L5 2)) (j:/
/ l 7.2.1 Huffman Encoding Algorithm

s

<

. . oe string, determine the fre Ueney, .
Here is how the Huffman encoding algorithm works. Given a message > Quency of

g [his can be done by parsing the 2
i ility haracter in the message. ok e
occurrence (relative probability) of each ¢ be probabil T e
message an<(i counting how many time each character (or symbol) appears. The probability UMb

ace. The frequencies and
of occurrence of a character divided by the total characters in the message q

probabilities for the example string * abacdaacac™ are

))

\4
: ; QQ WO\C\ character a‘/' T

—~ % T
/ qu}l&()/ 0 ;Zﬁi'ffi» 05 0.l1 0.
s
\ﬁ\/

Next, create binary tree (leaf) node for each symbol (character) that occurs with nonzero frequency Set
node weight equal to the frequency of the symbol. Now comes the greedy part: Find two nodes with
smallest frequency. Create a new node with these two nodes as children, and with w cight equal to the
sum of the weights of the two children. Continue until we have a single tree. .

o
o
(=%

)

[OF]
e

Finding two nodes with the smallest frequency can be done efficiently by placing the nodes in a
heap-based priority queue. The min-heap is maintained using the frequenciel. When a new node is
created by combining two nodes, the new node is placed in the priority queue. Here is the Huftman tree
building algorithm.

| HUFFMAN(N, symbol[1 N, freq1..N])
I fori=11t N
dot TrceNodc(symboUij, freqli])
pq.insert(t, freq(i]) V priority queue
fori=11t N-1
do x = pq.remove(): Y = pq.remove|
z ¢~ new TreeNode
z.left « x; z.right « y
z.freq « x.freq + y.freq
pq.insert(z, z.freq);
return pq.remove{); // roos

O\’JO&\:c\u\auN

—

Figure 7.1 shows the tree built for the example messaoe “abacdaacac™

Scanned with CamScanner

101

ALGORITHM: HUFFMAN ENCODING

7.2. GREEDY

gid 0o

i

Prefix Property:
The codewords assigned to characters by the Huffman algorithm have the property
prefix of any other:

vt no codeword is a

character a b c d |
frequency | 5 1 3]

probability [0.5] 0.1] 0.3 | 0.1}
codeword | 0 | 110 10 | 11 f

{"The prefix property is evident by the fact that codewords are leaves of the binary tree. Decoding a prefix

Ccode is simple. We traverse the root to the leaf letting the. mput 0 or 1 tell us which’ branch to takes

Expected encoding length:

If a string of n characters over the alphabet C ={a,b,c, d} is encoded using 8-bit ASCII, the length of
encoded string is 8n. For example, the string “abacdaacac” w1[1 require 8 x 10 = 80 bits. The same

string encoded with th Huffman codes will yield !

al b |ajc| d |aja;c a‘c
ol1olol10|111]0]0|10}0]10

This is just 17 bits, a significant saving!. For a string of n characters over this alphabet, the expected

encoded string length is s
n(05-1401-3403-2+0.1-3)=17n /|

In general, let p(x) be the probability of occurrence of a character, and let d+(x) denote the length of the
codeword relative to some prefix tree T. The expected numbex of bits needed, té emode a text with n
characters is given by - d

Scanned with CamScanner

For More Visit

www.VUAnswer.com

CHAPTER 7. GREEDY ALGORITHMg

Huffman Encoding: Correctness

[Huffman algorithm uses a greedy approach to generate a prefix code T that minimizes the expectéd
length B(T) of the encoded string. In other words, Huffman algorithm generates an optimum prefix code.
The question that remains is that why is the algorithm correct?

Recall that the cost of any encoding tree T is

B(T)=n)_ p(x)dr(x)
xeC |
Our approach to prove the correctness of Huffman Encoding will be to show that any tree that differs
from the one constructed by Huffman algorithm can be converted in_tg one t_hat is equallt(? H‘_'ff_mjlf! s tree
without increasing its costs.[NGte that the binary tree constructed by Huffman algorithm is & full binary
e 1O oin € ¢

Claim: NGOLC

Consider two characterj xandy }vith the smallest probabilities. Then there is optimal code tree in which

tmli@’at the maximum depth in the tree.
Proof: SY /
SR (< =

Let T be any optimal prefix code tree with two siblings b and c at the maximum depth of the tree. Such a
tree is shown in Figure 7.2Assume without loss of generality that

p(b) < p(c) and p(x) <p(y)
= —Spepaility Lot €

MRre)>

1\ Writen Ao Yfakk

Grall il
C/w”ff& Fo

Scanned with CamScanner

-

7.2 GREEDY ALGORITHM: HUFFMAN ENCOI

ING 103

Since b and ¢ are at the deepest level of the tree, we know that

) 2 dlx)) and " d(c) > dly) 1 (dis the depth)

Thus we have

{6~ ptx) o
and
rd(b) —d(x) 20

Hence their product is non-negative. That is,
(p(b) = p(x)) - (d

Now swap the positions of x and b in the tree

This results in a new tree T'

For More V|S|t

. ' ‘)
www.VUAnswer.com K/ V 7°
ity

(b)=d(x)) 20 ¢

i
il

Scanned W|th CamScanner

o ‘

Figure 7.4: Prefix tree T’ after x and b are swapped

Let’
s see how the cost changes. The cost of T’ is

B(T) = B(T) —p(x)d(x) + p(x)d(b) — p(b)d(b) +p(b)d(x)
=BM +p(x)d(b) - d(x)] — p(b)[d(b) — d(x)]
=B(T) = (p(b) - p(x))(d(b) — d(x))
| SB}(T) because (p(b) — p(x))(d(b) — d(x)) > 0

ri/cters x and y with the

> 9\'}3[#@(‘.
Jy()(!coﬁ I A 5l Jir Lo

2

/(ﬁ“(//) V/Leac/f Uu/ L,«JJ>

Scanned with CamScanner

7.3. ACTIVITY SELECTION 105

smallest probabilities. Then there is optimal code tree in which these two characters are siblings at the
maximum depth in the tree.

The claim we just proved asserts that the first step of Huffman algorithm is the proper one to perform (the

greedy step). The complete proof of correctness for Huffman algorithm follows by induction on n.
C laim:wuﬂ‘man algoriinm produces the optimal prefix code tF@c.] . U’Jf 6,&’5 H Y\ff‘ :
induction on n, the number of characters. For th basis case, n = 1, the tree

Proof: The proof is by L,

consists of a single leaf node, which is obviously

' de o vethe i
Arl (. & e

optimal. We want to show it is true with exactly n

characters.
Suppose we have exactly n characters. The previous claim states that two characters x and y with the

lowest probability will be siblings at the lowest level of the tree. Remove x and y and replace them with a

new character z whose probability is\ﬁ'(z]“:;ﬁfx) + p(yJy Thus n — 1 characters remain.
nvert T into prefix

Consider any prefix code tree T made with this new set of n — 1 characters. We can co
S 11 ! - ~ . . « e .

code tree T’ for the original set of n characters by replacing z with nodes x and y. This is essentially

undoing the operation where x and y were removed an replaced by z. The cost of the new tree T" is Jg

~— - P@&_@v & M

B(T') = B(T) —p(z)d(z) + p(x){d(z) + 1] + p(y)d(z) + 1]
=B(T) — (p(x) + p(v))d(z) + (p(x) + p(v))ld(z) + 1]
=B(T) + (p(x) +p(y))[d(z) + T — d(z)]]
=B(T) +p(x) +p(y)

—

Bﬁv\b’u\ '\wé{?a&o\ﬂ‘\i a\\oA('

The cost changes but the change depends in no way on the structure of the tree TH(T is forn — Is
) P B

characters). Therefore, to minimize the cost of the final tree T’, we need to build the tree T onm—1

wtilllﬂlly. By induction, this is exactly what Htlfﬁnﬂ_zll'gm’itbmﬁoes. Thusthggnaltree? is
foptimal.” ' <

.)/L , ! ! {)
dc H73 Activity Selection
[The activity scheduling is a simple scheduling problem for which the greedy algorithm approach providés
., Gn) of T activities that are to be scheduled to use

anoptimal solutioi. We are given a set S = {a;, as, ..
irce. Eachi activity_a; must be started at a given start time s; and ends at a given finish'time f1.
P - Am—— e e—

e given in a single lecture hall. The start and end times
have be set up in advance. The lectures are to be scheduled. There is only one resource (e.g.. lecture hall)
Some start and finish times may overlap. Therefore, not all requests can be honored. We say that two

activities g; and a; are non-interfering if their start-finish intervals do not overlap. Le,
(si, f1) N (sj, f;) = 2. The activity selection problem is to select a maximum-size set of mutually

non-interfering activities for use of the resource.
So how do we schedule the largest number of activities on the resource? Intuitively, we do not like long

some reso
An example is that a number of lectures are to b

: /o6,
‘e é/.wﬁ'm’”’*f)o‘ii//i fdd

/o - A e
‘>/ /)Z ,/d [o (J//,, v 5 . ' ; /),)
/% /) M},},ﬂ&/ W}/‘h,[// /U/J Vy//é B o = & Cf de/d

> i / / ’ 5 o ” g I ¢
" V/ZI?U’.SCMKJ -fu‘ufe""/ e 5/7/')) "c’TLLpU’J - I,;M\'m
i e e e, PR L S BN T S M
dlite rSE Cay oy /) Lo g I T
: DT eSSBS s e T ﬂ

Fan "{@VAL&. Ya :
Scanned with CamScanner

For More Visit

w
ww.VUAnswer.com CHAPTER 7. GREEDY,«\LGORITHMS |

106

i Ler requests. This sug
activities Because they occupy the resource and keep us ff}”" ho_n;;;;i%::}(l. p— 2) G dulzlgi?ts the
orcedy strategy: REp atedly select the activity with {hie smallestdaratio ~1ﬁl_ ulefit
greedy strategy: REPEAtety scheduled activities. UN ortunately, this turns out

provided that it does not interfere with any previously

eir finish times. Select the activip,

ctivities by th es. S¢
t interfere with this first job,

hat do no

to be non-optimal
Here is a simple greedy algorithm that works: Sort th? ac
that finishes first and schedule it_Then, among all activilies t

schedule the one that finishes first, and so on.

[scepuLE(all..N])
sort af1..N] by finish times
prev e 1, // most recently scheduled
4 fori=2to N
do if (afi].start > afprev].finish)
then A — AuUali]; prevéei
2]

D —

SN Wi

Figure 7.5 shows an example of the activity scheduling algorithm. There are eight activities to be
scheduled. Each is represented by a rectangle. The width of a rectangle indicates the duration of an
activity. The eight activities are sorted by their finish times. The eight rectangles are arranged to show the
sorted order. Activity a; is scheduled first. Activities a2 and a; interfere with a; so they ar not selected.

The next to be selected is a. Activities as and ag interfere with aq S0 are not chosen. The last one to be

chosen is a;. Eventually, only three out of the eight are scheduled.
Timing _a_,nglysis: Time is dominated by sorting of the activities by finish times. Thus the complexity i

)
2
7|

et g L R T et

Scanned WitHﬁyCafvn‘S‘c‘:énner

Figure 7.5: Example of greedy activity scheduling algorithm

A\ &%

\ r

-0

7.3.1 Correctness of Greedy Activity Selection

: 2>
M Ul/}'@alﬂ\/)j)j Py 2 /L’J}
Our proof of correctness is based on showma that the first choice made by the algorithm is the be
possible. And then using induction to show that the algorithm is globally optimal. The proot structure is
e
noteworthy because many greedy correctness proofs are based on'the same idea:|Show that any other
solution can be converted into the greedy solution without increasing the cost

- \ ‘A
H . \ g&Q !&‘
Claim: T\N-Q % CQ
LetS ={a,,q;,..

,) of n activities, sorted by increasing finish times, that are to be scheduled to use
i et ! RALE B 1
some résource. Then there is an optimal schedule in which activity a; is scheduled first.

Proof:

—

Let A be an optimal schedule. Let x be the activity in A with the smallest finish time. 1f x = a, then we
are done. Otherwise, we form a new schedule A’ by replacing x with activity a,

TS ——

NI ghoald et b€ 2%8(app

For More Visit

www.VUAnswer.com

vr“hﬁv—r e

Scanned W|th CamScanner

fr'é'éﬁb»lddduuuuquuuuuubu'ﬁ‘o(o’»'o"'l”‘b“"““‘

740 FRACTIONAL KNAPSACK PROBLEM 109
"

The Lmd\ .\lmmhm Ll\(.\ an optimal whmun to the activity »ahululuw pmhlu"

et et e e

Proof:

The proof s by induction on the number of activities. For the basis case, if there are no activities, then the
greedy algorithm is trivially optimal. For the induction step. let us assume that the greedy algorithm is
optimal on any set of activities of size strictly smaller than ST and we prove the result for S. Let S” be the
set of activities that do not interfere with activity ay, That is

Any solution for S’ can be made into a solution for S by simply adding activity a,, and vice versa.
Activity ay is in the optimal schedule (by the above previous claim). It follows that to produce an optimal
schedule for the overall problem. we should first schedule a, and then append the optimal schedule for
S’. But by induction (since |S'| < [S]), this exactly what the greedy algorithm does.

~

',P d &’;U/fu) ot oty b V\O,/UJ/&L/&@@)U/LJ,({I

Ly wdww/ﬂwawkf’ i
7.4 Fractional Knapsack Problem ‘

Earlier we saw the 0-1 knapsack problem. A knapsack can only carry W total weight. There are n items;

the i item is worth v; and weighs w;. Items can either be put in the knapsack or not. The goal was to
maximize the value of items without exceeding the total weight limit of W. In contrast. in the fractional

Knapsack problem, the setup is exactly the same. But, one is allowed to take fractrion of an item for a
fracti “the weight and fraction of value. The 0-1 knapsack problem is hard to solve. However, there is
a mnple an _ﬁ(ﬁcxent f’rce%i) algorithm for the fractional knapsack problem.

bet Pi= V{/ Wy denotet € value per unit weight ratio for item iz Sort the items in decreasing order of p,.

Add items in decreasing order of p;. I the item fits, we take it all. At some point there is an item that

does not fit in the remaining space. We take as much of this item as possible thus filling the kmpﬂul\
completely.

oo)
A o)) C'/WZ”))(/Bnﬁe//p’U) 05 }/U/g/f@f) CU/
O,)/U’/ L"'J// =

\ &

For More Visit
- wwwiVUAnswer.com

" Scanned with CamScanner

| ﬁ] | ‘
k-'napsack‘ $30 ¢2

Figure 7.8: Greedy solution to the fractional knapsack problem

b oke
' 73y 5 /B Z/)) e
| /(/’d@&SU&UfU/!'M%) Gopd
. s , S‘b' ;
. G
?(f’)")w(f‘}“@d»aﬂﬁd?#m ¢ i wys &
=
AV TR

/ / (:J
(/’LU/(J}% U[pa///g’r.b/;ﬁg«:/‘?’é

It is easy to see that the g

\\’it{lﬂglﬁo_fggd, silver and bronze, one (thief?) wouyld
take as muych silver a

S possible and finally
little less gold so that one coy]

al knapsg
probably take
as much bronze

ack roblem. Given g room
as much gold ag possible. Then
as possible. It woulq never benefit to take 4
d replace it with an equal weight of bronze,
We can also observe that the greedy algorithm s not optimal for the 0-1 Knapsack problem, Consider
the example shown in the Figure 7.9

- Ifyou were to sort the items by pi, then YOu would first take the
items of weight 5, then 20, and then (since the item of weight 40 does not
item of weight 30, for t

fit) you woulg settle for the
ofal value of $30 + g 00 +$90 = $220. On the ot
greedy, and ignored the item o

her hang. I you had been less
Fweight 5, thep You could take the jemq of weights 20 and 40 for a tota
value of $100+$160 = $260. This is shown in Figure 7.10.

For More Visit

www.VUAnswer.com

Scanned with CamScanner

47

R N

v s L gt

y

[

) H‘WO

a¢

\ %hapter 3 .

' e W R 8 o P
Graphs

-

We begin a major new topic: Graphs. Graphs are important discrete structures because they are a flexible
mathematical model for many application problems, Any time there is a set of objects and there is some

sort of “connection™ or “relationship™ or - mlc dulon between pairs of objects, a graph is a good way 10
model this. E les of I be found i
1s. Examples of this can be found in compulu and communication networks transportation

networks. e.g., roads VLSI, lOﬂlL__c_u_cmLs_unIdcu mcslm Im Shdp(. duurlplmn in computer- .udul (luslyn
and GIS plLLCanCE consuamtﬂ in scheduling systems. jy

— a./)~ "L
A graph G = (V, E) consists of a finite set of vertf{:s V (or no/ es))ag:J ¥, gl!nany/mlatl on V c‘l”ad
‘edges. ETs a set o'fpalrs from V. Ifa pair is ordered, we have a d:recled graph. For unora’ered pait, we

zﬁave an undirected graph
V7 c/p?;

Reed b

b e 6 b 6w e e

Scénned with CamScanher

CHAPTER 8. GRApyy
114

adjacent vertices

/‘:3> 1&2

1&3

Figure 8.2: Adjacent vertices

In an undirected graph, we say that an edge is incident on a vertex if the vertex is an endpoint of the
edge. of the edge

g e Tapem SN e A iy e

1 mCIdent on vertlces 1 & 2

eB mcndent on vertlces:‘1 & 4

e4 mcudent on veﬂlcés o &, 2

Figure 8.3: Incidence of edges on vertices

o AP
(/V9/OJ |“’£1L7r‘ 9(/”/7} d‘j'-ti C//fj

Ina digraph, the number of edges coming out of a vertex is called the out-degree of that vertex. Number
of'edges comingin is the in-degree..In an undirected graph, we just talk of degree of a vertex. It is the
number of edges mm?ent on the v?rtex

. @dﬁx g

06(«}'A¢ﬂra¢ J Cﬁ/

f

e e e e e i L a1 8 St e et g e g e

" Scanned with CamScanner

IS

Figure 8.4: In and out degrees of vertices of a graph (// (/)/
S /
A 7 d o8 g
Fora digraph G = (V, E), //’</ 0

Z in-degreg}rv Zout degreE(V) Ig}eﬂ‘ﬂ‘? .

veV vevV
"T'éfé' [E| means the cardinality of the set E, i.e., the number of edges.
;Foran undirected graph G = V B),
Drdegree(v) = 2E|y
vev ' ~
where |E| means the caldmahty of the set E, i.e., the number of edges.
A _pathina directed graphs is a sequence of vertices (vy, vy, vk) such that (v; 1,v;) is an edge for

Ji=12 ...,k The lengthofthe patm number of edﬂus k. A vertex w is reachable from vertex
uis lhexe is a path from u to wmmmfﬁs (except possibly the fist and last) are
q(_i_lgtyct
A cycle in a digraph is a path contair;ing at least one edge and for which vy = vk A ‘)’Clc
is a cycle that visits every vertex in'a graph exactly once. A Euk]
edge of the graph exactly once. There are also “path™ versions in }whlch you do not need return to the

starting vertex. W
—

)
)d/ /)/,ld LACH"'L'U)}/

Qal(j/ Ved (/) 2/ (*y//j/y o Cele
iy WAy v,

4 N})
Z/)O j/EélZfﬂS /&99/'/7‘)@(.7(_ QAL{7£}/¢,_//

B
¢/ QAA eu@h‘an Crycle ,,,/

.___’f
Scanned with CamScanner

T T ——m e~

/
u/ Lf;Si J 99 7J/’) A/OO[P L/”/ /(‘/ CHAPTER 8. GRAPH
g 3 Cxle.

/mcdf' Y
((Pa/)l

Figure 8.5: Cycles in a directed graph

A graph is said to be_acyelic if it contains no cycles: A graph is connected if every vertex can rtzizh
cvery other vertex. A directed graph that is acyclic is called a directed acyclic graph /DAGJ
——’//—_’

There are two ways of representing g graphs: using an adjacency matrix and using an adjacency list. Let
G=(V E] bc a dmraph withn = |V| and let e = [E[. We will assume that the ve‘rt—“’—f“‘xcesoG’dre indexed

1,2,.
Anw‘ix is an x n matrix defined for 1< v, w <in.

AT { » lf(vw/JEE

0% otheerse

An adjacency list is an array Adj[1..n] of pointers where foF "< v < n,@j/\dl] points to a linked list

containing the vemces Wthh are adjacent to v Q ,t
1S

Ty

A&Jacency matrix requires @(n2) stdrage and adJacency list requires O(n + e) storage

Figure 8.6: Graph Representatlons (ﬁ /{
v
o bl 1 B
Va4 ke poo J AP

To motivate our first algorithm on n‘raphs. consider the following problem. We are given an undirected
graph G = (V, E) and a source vertex s € V. The length of a path in a graph is the number of edges on

\\

A a0 o
QM/M//// (9//?/ Qj)’ﬂ/ / 7)(1”/ U/Z/é’

pp G e e Js 1

Scanned with CamScanner

/,\

117

81 GRAPH TRAVERSAL

We would like to find the shortest path from s to each other vertex in the graph. The final result
av. For each vertex v € V, we will store d[v] which is the distance
0. We will also store a predecessor (or parent)
alk from v backwards to s. We will sct

the path
will be represented in the following w
(length of the shortest path) from s to v Note that d[s!
pointer 7] which is the first vertex along the shortest path if we w

nls] = Nil
There is a simple prute-foree strategy for computing shurtcSFﬁmﬂ We could simply start enumerating
iving at cach vertex. However. there

all simple paths starting at s. and keep track of the shortest pathar

can be as many as n! simple paths in a graph. To see this, consider a fully connected graph shown in

Figure 8.7 ,
- . ’/(:/,/ V&I“U//Rl
g) & ?
<(;,/,r‘ (% /(/’C,Q':
(“
‘

Figure 8.7: Fully connected graph

[/ vesdes

choices for destination node, (n.— 2) for first hop (edge) in
the path, (n =3) for second, (n. — 4] for third down to (n — (n— 1)) for last leg. This leads to n! simple
: -

paths. Clearly this is not feasible.
e

There n choices for source node S_,j_TL;-Ll

PR

X'zq - A /I' & v 9 , (_"/J&M“/gu /U,/(j/
Led g1 Breadth-first Searcti five BT / é/// W
(Losf MESY 4/(visihf necdeS S
Here is a more efficient algorithm called the breadrh-first search (BFS) St w

des. Label them with distance 1. Now consider the neighbors of neighbors of s. These would be.at
distance 2. Now consider the neighbors of neighbors of neighbors of's. These would be at distance 3.

8,,,/,;” ;62&&‘7)/ f)'\ﬂ

{j/-/

Repeat this until no more unvisited neighbors left to visit. The algorithm can be visualized as a wave
font propagating outwards from s visiting the vertices in bands at ever increasing distances from s.

For More Visit

www.VUAnswer.com

Scanned with CamScanner

¢ <

-

C/‘CJ///

S

8.1. GRAPH TRAVERSAL

119

Figure 8.11: Wave reaching distance 3 vertices during BFS

r e
i oA -~ P N / g /&dbs'
8.1.2 { Deptivhnst Searel) 5 o /) &y muilys? 4 2

| Breadth-first s search is one instance of a general family of graph traversal algorithnis. Tray ersing ?araph
means visiting every node in the graph Another traversal strategy |s depth-first search (DFS). DES

N3

r‘p'rocedme can be written recursively or non-recursively. Both versions are passed s initidlly.
Y
! =

’

RECGRS/VETDFS @) - % 7o C Ty V""‘/U
I if (v is unmarked) U/W/‘J & s j}{ o
2 then mark v vetew ,J yeel.® L £ /
3 for each edge 3“)),76) 4—
o Lo
4 do RECURSIVEDFS(w VU//K//(/’/V b L
o }-
: , , , 2) R j
0;/0)/) M ety KLl /n/&///‘()/gj’//f /cﬂ‘j/]
ITERATIVEDFS(s) - S0 U A1
L 7|1 PUSH(s)
C’; / 2 while stack not empty /
3 dov & POR()) (AW : ‘ /\
4 if v is unmarked ” 7 i Jo) (-/_?
5 then mark v (////j Dj/ V/gﬂtj / ([S
6 for each edge (v,w) ﬁ} 5 1.
7 do PUSH (W) b “ ¢/ Gt
& @it o, v 02/ [

8.1.3 Generic Graph Traversal Algorithm

f

he generic graph traversal algorithm stores a set of candidate edges in some data structures we’ll calla

g‘_;bhdg’i The only important properties of the “bag” are that we can put stuff into it and then later take stuft

For More Visit

www.VUAnswer.com

\———’_\—_"\\

Scanned with CamScanner

7
(f/?/o/(jw/{r CHAPTER 8. GR
/- N
0.7

120

ithm.
back out. HLTC is lhc Lcncnc (h“m'\l “!ﬂ_().ilw

V{faﬂ'Y@m"——

TRAVERSE(s

I put (O(‘ |n bag

2 while bag notempty

3 do take (p,v) from bag , jj

4 if (v is unmarked) 1 ot

5 then mark v

6 parent (v) & p

7 for cach edge (v, w)

8 do put (v,w) in bag : b

we want to remember,
;) i es. This is because
Notice that we are keeping edges in the bag instead of vertic " vertox p put v 7o The baz The vertex p
whenever we visit v for the first time, which previously-visited ver
is call the parent of v.

re
The running time of the traversal algorithm depends on ‘how the graph is

tructure is used for the ba(’l But we can make a few generaWi
m—-

N
mes.
mv Sifice each vertex is visited at most once, the for loop in line 7.is execiited at ‘most V/tim s/
\

Each edge is put into the bag exactly twice; once as (u, v) and once as (v, u), so line 8 is executed
Tt most 2E timés. - »

presented and what data

e Finally, since we can ttal\e out more thmvs out of the bag than we put in, line 3 is executed at most
T2E+ 1 timss. k

e Assume that the graph is represented by an adjacency llst so the overhead of the for loop in line 7 is
constant per edge.

If we implement the bag by using a stack, we have depth-first search (DFS) or traversal.

TRAVERSE(s) Emék |]
push(&, s) T’;w&db

; while stack not empty
do pop(p, v]

2

3

4 if (v is unmarked)
5 ¢ then mark v *
6

7

8

"‘parent() e—7p
for each edge {v,w)

d h ‘ j
0 pus (‘?w Cmn”ﬂé‘j,;ﬂ

Figures 8.12 to 2{)/2% show a trace of the DFS algorithm applied to a graph. The figures show the content
'\N o
of the stack during the execution of the algorithm.

< b e g e i i S S g

'Scanned with CamScanner

GR/‘\ P]-,] S

8.1. GRAPH TRAVERSAL

or line 8 still takes constant timé. So overall running time is still O(E)

TRAVERSE(s)

I enqueue(d,s)

2 while queue not empty

3 do dequeue(p, v)

4 if (v is unmarked) ;
/ o

then mark v
parent (v) « p 7/// (
for eachedge (v,w) W
do enqueue(v, w) : /
4 (;/ ///) |
/{cy matrix, the finding of all the neighbors of vertex in line 7

If the graph is represented using an (uljace
takes O(V) time. Thus depth-first and breadth-first take O(V?) time overall.

Either DFS or BFS yields a spanning tree of the graph. The tree visits every vertex in the graph. This fact

is established by the following lemma:
fedges

Lemma:
/The generic TRAVERSE(S) marks every vertex in any connected graph exactly once and the set o

Tviparent(v)) with parent(v) # & form a spanning tree of the graph

Proof:
First, it should be obvious that no vertex is marked more than once. Clearly, the algorithm marlrs s. Let

— U — v be a path from s to v with the minimum number of edges
)

v # s be a vertex and,let s — - - -
Since the graph is connected, such a path always exists. If the algorithm marks u, then it must put ('LL v)

into the bag, so it must take (u, v) out of the bag at which point v must be marked. Thus, by induction on

the shortest-path distance from s, the algorithm marks every vertex in the graph.

Call an edge (v, parent(v)) with parent(v) # @, a parent edge. For any node v, the path of parent
dges v — parent(v) — parent(parent(v)) — eventually leads back to s. So the set of parent

edges form a connected graph.
Clearly, both end points of every parent edge are marked, and the number of edges is exactly one less

than the number of vertices. Thus, the parent edges form a spanning tree

{1

/ olepth Fist Sextpl .

’(J/B/ﬁ DFS Timestamp Structure
As we traverse the graph in DFS order, we will associate two numbers with each vert'exf When we first

discover a vertex 1, store a counter in d[u]. When we are finished processing a vertex, we store a counter

in f[u]. These two numbers are time stamps.

~—~—
Consider the recursive version of depth-first traversal

—

Scanned with CamScanner

||
)
For More Visit y

www.VUAnswer.com CHAPTER 8. GR Abpy)

126 T }
Al \/ . b A

deptt ol feasch)
[DFS(G) "

I for(cachu e V) . | vt J
2 docolorfu] ¢~ white "¢}l hne

3 prediu] « nil |
4 time— 0 s

5 forcachueV ver! tu}‘, j’f()j ‘
6 doif(colorfu] = wixite)

7 then DFSVISIT(u)

The DFSVISIT routine is as follows:

DFSvisIT(1)

I color[u] « gray; /~ mark w visited / 4 /f
dlu] —++ time) ! » < (& Z
for (eachv € Adj[u)) wt;ﬁ"j(y é//(f/ Vs /l/
doif (colory) = white) N Yo s {
N sile L 2
then pred[v] — v J ok é /, “i /
DESvisIT(v) - U;/'KZQ

colorfu) black; //we are done withu
flu) —++ time;

I IS = NV N I)

present a trace of the execution of the time stamping algorithm. Terms like
the counter (time). The number before the “/” is the time when a vertex was
and the number after the </ i the time when the processing of the vertex

discovered (colored gray)
finished (colored black).

e 5

s NN

‘.Scanhed wifh CamScanner

§ 1. GRAPH TRAVIRSAL 129

Foryard rdz

ancestor or descendent of one anotliet. lﬁ'réét: the ufgc mrﬁ

l hguforest

0 (f%C"J'“'C{d

s e\ ar)
kba“wn dnhm; mees oi the forest Ly ,
 A— (/ ()/

The an ccstor escendent relation can be nicely inferred by the parenthesis lemma. w wis a descendent
nd only if [div, tfulj 2 fdivi, vl &

%ﬂ‘ and onlv if [du, nun Azrdivy, nv“ wis a ancestor of vifa

" ,d?]l::?tﬁd‘mlv if'and only it {diui, tiuy and id{vj, tiv]} are dlS_lOlm'ThL is shown in Figure 8. 26. The
e rectangle associated with a vertex is equal to the time the vertex was discovered till the time

the vertex was completely processed (colored black). Imagine an opening parenthesis (" at the start of

the rectangle and and closing parenthesis)" at the end of the rectangle. The rectangle (parentheses) for

v > s
ertex b is completely enclosed by the rectangle for “a”. Rectangle for "¢’ is completely enclosed by

vertex b’ rectangle.

Fioure 8.26: Parenthe i

b)gl)()

1e non-tree edges based on the parenthesis |
back and cross edge respectively.

emma. Edges are

Figure 8.27 shows the classification
labelled ‘F7,*B’and *C’ for forward,

Scanned with CamScénner

130

Figure 8.27: Classfication of non-tree edges in the DFS tree for a graph ;

i
For yndirected gtaphs. there is no distinction bétween forward and. baik_?edgés,:ﬁBY convention they g,
all'called back edges; ’Furthermore,-fthere arempcrosjs::edges ;(cjan, ;{ogfséei why not?)

1
—

8.1.5 DFS - Cycles

The timme stamps given by DFS allow us to determine a number of thif
example, we can determine whether the grapl
following two lemmas.

gs about a graph or digraph. Fgt
i confains any cycles. We do this with the help of the

Lemma: Given a digraph G = (V, E), consider any DFS forest of G
[f this edge is a tree, forward or cross-edge, then f[u] > f[v]

and consider any edge (u,v) = f

- Ifthisedge is'a back ed e, then '
IR —_— ._
e R S *
{
Proof: For the non-tree forward and back edges the proof follows directly from the parenthesis lemma.
For example, for a forward edge (u,v), visa descéndent of wand so v’s start-finish interval is
. - of - . | . . .
contained within w’s implying that v has an earlier finish time. For a cross edge (1w, v) we know -
that the two time intervals are disjoint. Wheh we were processing W, v was not white (otherwise
(w,v) would be a tree edge), implying that v was started before u. Because the intervals arc .
disjoint, v must have also finished before u.
P\]
-
-
A
} |
L]
\l
L]
_'
.__.,7,-:-"» Sl Tl gyt —ﬁy;A,---.\,.4._“.._»‘.'_-'.“‘;..,.__’,;. kbt - -

v S\v‘cahned'with CémScanner

- 4 -

- 9y

8.2. PRECEDENCE CONSTRAINT GRAPH 131

Lemma: Goiisi igraph G = (V. E) and any DFS forest for G. G has a cycle if and only if the DES

s bk . p) 20 4
2 L lb oty p o)
oI //f,gm@%/“j’(ﬁ AU /:J

((lj([ﬁ(g:) ;)
P : : .
Proof: If there is a back edge (1, v) then v is an ancestor of w and by following tree edge from v to u,

UJC% we get a cyele. -

) B

We sl.m\v the contrapositive: suppose there are no back edges. By the lemma above, each of the
remaining types of edges, tree, forward. and cross all have the property that they go from vertices
with higher finishing time to vertices with lower finishing time. Thus along any path, finish times
decrease monotonically, implying there can be no cycle.

7
Y
;
l"l
1

The DFS forest in Figure 8.27 has a back edge from vertex ‘g’ to vertex ‘a’| The cycle is "a-g-f’

Beware: No back edges meéans no cycles. But you should not infer that there is some simple relatMR
between the number of back edges and the number of cycles. For example, a DFS tree may only have a
single back edge, and there may anywhere from one up to an exponential number of simple cycles inthe |

graph.
A similar theorem applies to undirected graphs, and is not hard to prove. / e 6/7)
S5) G U//p\“} /
S A ALE Y A% e)
le » n//'/“/%// T /J “dde &6{,{
- (f" ‘ i

8.2 Precedence Constraint Graphd// };
N - 9,5 ‘ “ 5 ~ / - Z pS
e @([/,/£é¢c‘<wam((/féf/(.p@//‘ '{MML/LJ// ‘{I,l:%&&}(/;)/‘w

A directed acyclic graph (DAG) arise in many applications where th re prededence or ordering

_ e apa Ay . . g
constraints. There are a series of tasks to be performed and certain tasks must precede other tasks. For
example, in construction, you have to build the first floor before the second floor but you can do electrical
work while doors and windows are being installed. In general, a precedence constraint graph is a DAG in
which verfices are fasks and the edge (u,v) means that task u must be completed before task v begins.

¥ aris

For example, consider the sequence followed when one wants to dress up in a suit. One possible order
and its DAG are shown in Figure 8.28. Figure 8.29 shows the DFS with time stamps of the DAG.

VAT

a7 e ey = L s i "

mmsazmen

Scanned with CamScanner

4 Val B /

§.3. TOPOLOGIC. \rli som})d (J/)éﬂ 73 l/ (“/ N

; i HC"‘ T atroduction to ¢ T T S E—
, ’ /)/ A Lj?‘ [ntroduction 1o Computer Programming
n/ / 5 C3 | Discrete Mathematics AN
. _(:71._ Data Structures &
(/ ’ Z/ (5 | Digital Togic ric Design ('2
A C6 | Automata lhwr\ ('2
) C-g/ zL\n.\l\'sls of Algorithms %g Cd
o ompu 4
_%9 o I ‘::LOI :&\l:‘?;mon and Assembly | C2
C10 | Computer \uhm.clurc i L:/
C11 | Computer Graphics C:LL G
C12 | Software Engineering 8‘(7
Ci3 Operating System = C4.g;|Cl
Cl4 Compiler Construction C4.C6.C8 |
C15 | Computer Networks C4.C7.C10

Table 8.1: Prerequisites for CS courses

The prerequisites can be repre ith a pr - oy .
prereq ¢ presented with a precedence constraint graph which is shown in Figure 8.30

nstraint graph for CS courses

Figure 8.30: Precedence co

el ohs4®

8.3 ‘Topological Sorti D,Yée’\éob ch
% Qines ody

Ato ooxcal sortofa DAG is a linear ordermg of the vemces of the DAG such that for each edge (1 V).
/"‘appears before v in the orderm%}

Computing a topological ordering is actually quite easy, giv
__—ma DAG, the finish time of u is greater than the finish time of v (by the lem

output the vertices in the reverse order of finish times.

en a DFS of the DAG. For every edge (u, v)
ma). Thus, it suffices to

Scanned with CamScanner

i 8.4. STRONG COMPONENTS - y
\‘ I Q/'\j c»mP,J(5 15F S 135
i .4 Strong Components o

\ptk 8.4 Strong I i
J

33

We consider an important connectivity problem with digraphs. en diagraphs are used iff
m and trans ortation networks, people want to Kiiow that their networks are conmiplete;
at that it is possible from any location in the network to reach any other locatign

e = ¥

in the digraply
“};a'g?{"_'fﬂ’ Ongly comneeted i for every pair of vertices w, v € V; wcan reach v and vice versa._We
& ;‘;‘e‘ ike to writean l?_@gorftlllll that determines whether a digraph is strongly connected. In fact, we will
isolve a genemllzandmoﬂlus.pt‘glglpip,_“Q;t‘QOIpptgtjpg the strongly connected coniponents of a digraph.
m;: l;tmon the \unclu.x of the digraph into subsets such that the induced subgraph of each subset is
S alyv ¢ ~Cto B S) . L '
ver 1=é connected. We say that two vertices w and v are mutually reachable if w can reach v and vice
°rsa. sider the direc P — ., 8 i “hv ol
onsider the directed graph in Figure 8.32. The strong components are illustrated in Figure 8.33.

L gz s
4 Figure 8.32: A directed graph g‘,(-YO/S

CeNe

&L(m f}‘(k'

y

Scé_hné& -with CamScanner

[/

) ¢ 9
/ /U,./ 5 mp”“:
0 Fol bl & v o v

!
(X CHAPTER . GRApyyq Y
136 . : ‘

¥
Figure 8.33: Digraph with strong components

m——

Itis easy to see that mutual reachabilit
tﬁwemieesﬁﬁl;@ﬁéqmmi [eNCe classes o

is an equivalence relation. 2
e R e satheistionseommoEty
nutially reachable vertices and these are the strong components
If we merge the Vertices in each strong component Into a single super vertex,\and join two super vertices

DU
A BT iFand only if there are vertices & € A and v € B such that (u,v] € E, then the resulting digraph is
called the component dig

raph. The component digraph is necessarily acyclic. The is illustrated in Figure D
8.34. ‘ . | ‘]
i
Con™ it
9 ﬂgf‘@ : SV [/ P

//?,/ (‘.WO N

—

THis equivalence relation partitichs

?
f.d]

L)

@ o

B : - 5 (IJ\Yec{eo’ \ 3
N ——. i
Figure 8.34: Component DAG o dc‘d.cl%cwj | i
/

AN s I ade (T :
o OOV .

gu/f)m‘ 2 UL L y
‘ 5 1
\/J\ffﬂw v oM \

Ll i Y TR R iy o s e

"Scah—r;éd wi‘tﬁ' bér‘r‘{Scannerﬂ

CHAPTER g, GR
/\III,
138 L answer is “yes’. Suppose thy Yo
would need to know the stropg My
s is ridiculous " upposé that you computeq
nce. (This is ridiculous. (
ance. (T1 ot

' i3 in the component D,
i oblem we are trying 1© : doe (W V) : i
is the problem we are U e That is, for € 2 nponent DAG consists ol‘supc,.]’-'u ‘

DES such that it true

of the i
Is there a way to order the 0
the component DAG 1 adv

components and this

o onytlicomponent DAGH s Ol
Mg@!agiéd(order on the COIT:PI?i'm_ 37, Recall that the

e 2 S S N e
-y v oo T 2 A I
v comes before w. This 1s presented

/’/—U{V’L&L an. "

vertices.

AG
. Topological order of component DAS .

o Reversedtopolqgical order S |

. G
Fieure 8.37: Reversed topological sort of comp/ogfm DA _Q ¢(§€ |
g STy T
oW G |
3

Tepele??)

Now, run DFS, but every time you need a new vertex to start the se
vertex according to this reverse topological order of the component
justification. Clearly once the DFS starts within a given strong componen :
within the component (and possibly some others) before finishing. If we do not start 1n reverse |
topological, then the search may “leak out™ into other strong components, and put them in tl'le s.m.n? DFS
tree. For example, in the Figure 8.36, when the search is started at vertex "a’, not only doe§ {t.wsnt its
component with *b’ and *¢’, but it also visits the other components as well. However, by visiting |
components in reverse topological order of the component tree, each search cannot “leak out™ into other
components, because other components would have already have been visited earlier in the search. |

arch from, select the next availab;
digraph. Here is an informal
t, it must visit every vertex

This leaves us with the intuition that if we could somehow order the DFS, so that it hits the strong
components according to a reverse topological order, then we would have an easy algorithm for
computing strong components. However, we do not know what the component DAG looks like. (Afier
all, we are trying to solve the strong component problem in the first place). The trick behind the strone
component algorithm is that we can find an ordering of the vertices that has essentially the necessary
property, without actually computing the component DAG. ! -

We will discuss the algorithm without proof. Define GT to be the digraph with the same vertex setat G
but in which all edges have been reversed in direction. This is shown in Figure 8.38. Given an adjacency
list for G, it is possible to compute G in ©(V + E) time. e St

w4 A ¢ o N . .
(fa/”j('

V4) _?Tvav‘S]’Me,; / / . (i e |
{}; Z;rt Dﬂ)’of’/U?/ CLN&J" :

ks

Ty 3 T L B e 4
Scanned with CamScanner

/¢_(///VJ/ /}

////”JU”U”‘” |

ped L) b, uf’u’”/ ‘9”"{}&/’

fs
(ree P e ijg/'(
é(//bq(»/) b/// ”//[%L/}”(/ ;

(IR/\,“
1
ees,
()// /‘ c’/(’ 8.. Minimum Spanning Tr
vinimum Spant”e
that of connecting ¢
ircuit deSIgﬂ is 0"‘-”]@
/ } J/ A comnion problem is communications networks Tn:aih is the sum of lengths of connectjp, "
,. hodes by a network of total minimum length. fTrh:at;e i
] ' 0
Ca [(u (ee e Comlder for example, laying cable in a city "‘;{"gu 5 (MST) FOl’maIly ey
<, d- ‘- ﬁ;g computational problem is called the méml;tlﬂz :g ?Z v') h;iS nUmenc weight of cost. We ¢ deh f”' \
- V,E) Eache ning tree. L
-« a connected, undirected graph G = (in the span
costoT @ spanning tree T fo be the sum of the costs of edgeS ‘ Lo

o b e A/J/;"
@Sfﬂé})} Time 12

g minimum spannmg tree is a tree of mlmmum wexg}ﬁ

. :)
1gures 22, ?? and ?? show three spanning frees for the same graph. The first is a spanning tree but ;.
a MST; the other two are.

2 2, /
-Cegl/fj@((/ ' 4 A .‘,,. ’ _.

Figure 8.42: A spanning tree

Figure 843. A minimum
that is not MST
— YO,

spannm(7 tree

Figure 8.44: Anou.

i mum spanning trec)
We will present tyo g’ = ed" algorithrs]) foceomputing VISBIRecall tha greedy o
algorithm is one that builds a solution by repeatedly selectmg the cheapest among :

all options at ¢ i
staoe, Once 1l 1e chonce is made, it is never undon$l \\‘\ e

Before presemmg the two algonth

vertex designated as the root vertex. A free tree wxfh”ri"v
‘unique path between any two verti

any edee to 2 ree. tree creates a unigu.
M@ls cyCle restores the free ¢ tree“ I'hls 18 illustrated in ‘Flg’ur‘e 8.45, When the cd2:5
(b,e) or (b, d) are added to the free tree, the result is a cycle ' e D)
& S——— %

b] L/ai

‘ed ges. There ¢

L/(]’,

Scahned with CamScanner

FLATE T e

P ~
71 i, & o) visil Iveyhed (g o g7 077 7 L/
et f ’

S
/ " /
JgdJ: ITree >
8.5 MINIMUM SPANNING TREES 143

J

i

P

V

’

.

»

>

¥ e Figure 8.45: ree tree facts)

¥ U‘{j \)‘\)I\ / i \WVf\Q@k
» 31 (/ ‘/Ca(ﬁé/()’pu/ dfb/(/

Y0 - 1 S

9 8.5.1 ((JomputingMST: Generic Approach .

9

Let G = (V, E) be an undirected, connected graph whose edges have numeric weights. The intuition

9 behind greedy MST algorithm is simple: we maintain a subset of edges B of thegraph:Caﬂthlssubseg’

A Initially, A is empty. We will add edges one at a time until A equals the MST.

— -
=) A subset A_"g,E’islv;'d,blév;.iﬁAfié."a‘_subsetzp edges of songe.MST.An;edfre u, V) ev"E"r ,1\,.is"s'af'e7:_l"\é
o AU {(w, V)] is viable. T other words, the choice (1, v)'is a safe choi ‘/ add 5o that / ill'be
&xtended to forma MST. T o safe 02 Y 4 v BOP
9 -, Note that if A is viable, it cannot contain a cycle.'A generic g eedy algorithm operates by repeatedly

)" G e spanning e
g When is an edge safe? Consider the theoretical }WS;S@lés'behilid' determining whether an edge is safe or 1

\ ’ S
) "TLet’S be a subset of Tertices S C Vb CHELD, Y= o) 18 just a partition of vertices into two disjoint

- subsets. An edge (u,v) crosses the cUT if one endpoint is in S and the otherisin V=5,

.) Givena SlLbSCt of edges A, a cut respecls A if no edge in A crosses the cut. It is not hard to see why
respecting cuts are important to this problem. If we have computed a partial MST and we wish to kn

. which edges can be added that do not induce a cycle in the current MST, any edge that crosses a
respecting cut is possible candidate.

Y

\

)

Scanned with CamScanner

-

w

|

«

.

“ & ¢ € s

@ @ Y U @ ¥ v 0 @ 9 o ¢

P

/, .
I&ruskal s algor itht \\orl\s by addn o edges in increasing ¢ ord
edae does not induce a cycle among the current set of edges, t

and-consider the next in ordgr. As the algorithm runs, the edges in
a single tree forms containing all vertices.

trees of this forest are eventually merged until

The tricky part of the algorithm is how to detect whether the addition of

Smaﬂe being considered hias vertices [, v). We want a fast test that'te
are in the same tree of A. This can be done using o the Union-Find data structure W

147

L dhes b PEBp T

p 4

VRS
lf 14/4’7/[/5/ ;g‘(% <

er of weight Qrcl1test edge first). If the the next
hen it is added to A. Tt it does, We skip it
A induce a forest on the vertices. The

an edge will create a cycle in A,

[Ts us whether w andv

hich_supports the

following O(logn) operations:

L™
»Create—set(!p Create a set containing a'single item .

’F md-setgu) Find the set that contains u

}j(// Ten$h
Qv’ d//(a }/ /e&% U//

ey
i c/tg/é-’d’//”

Union(u,v): merge the set contammo u ag‘/et contammo Vv into a com
——

In Kruskal’s algorithm, the vertices will be stored in sets. The vertices in each tree of A will be a set. The
edges in A can be stored as a simple list. Here is the algorithm: Figures 8.51 through ?? dunomtrate the

algorithm applied to a graph!

KRUSKAL(G = (V, E))
— (vl / % i
1 Ae{} ph f ity iy
2 for(each ueV) 5/0’6 U" Y U”({ Vd’ﬂfl"c \a/)
3 docreate_set(u) ,/
4 sort E in increasing order by weight w SD/L /)/) (j [¥ ({/”j /
5 for (each (w,v) in sorted edoe list)
6 doif (find(u) # find(v) Z . / jf/
7 then add (u,v) to A O/-(/;M rﬂf"/
8 union(u,v)
9

2

return A

BT L i

Scanned with CamScanner

a1 2 .
ALY ALl

l‘,t / (A ;

L,
e A "%()C{Z@ﬁffg’{eébc'*"”lm
‘ 5 7

-

i

o dlwp G

""L‘{ y

f S0 6?@3 .

s st A
CVbos)U}M/’/ '
V4 ¢ or
2,/0/ d/ : Figure 8.52: Kruskal algorithm: (c, g) and (a, €) added
. :

77/ O‘Z/’/ﬂ“ .

Pzttt
4
77“ Ce.

/ ~
o L2230 L ¢ &

T
oW &,(/W/Qj//

ot
g v Gkt it
/
' WI(CBE
Uf/ﬁ), Al g . .
L, 7 e | 6 Figure 8.53: Kruskal algorithm: unsafe edges .
NS A Fe Ceove i P /}>
Ly Y -~)
P, XY (bS]
fo K 3

2 4
S'&l"dé/ /f)/):j
Lnk

kol sl .

Scanned with. CamScanner

—

149

Figure 8.55: Kruskal algorithm: more unsafe edges and final MST

Analysis: ' (i

Since the graph is connected, we may assume that E >V — iU Sorting edges (/ine 4) takes O(E log E}.
The for loop (/ine 3) performs O(E) find and O(V) union operations. Total time for union — find is
T O(Ex(V)) where (V) s the inverse Ackerman function. (V)< 4 fohﬂfess the number of atoms in
the entire universe. Thus the time is dominated by sorting. Overall time for Kﬂtskal'i@‘s
' ©[ElogE} = O(E log V) if the graph is sparse. ' o

—

k /3
\Vd‘l' 5.4 Prim’s Algorithm

Kruskal’s algorithm worked by ordering the edges, and inserting them one by one into the spanning tree,
Tz e A S ST o e AN ol T P ST L S Mty 7 18 e L

taking care nevet to introduce a cycle, Idtt'g&t%v@ly,_@ﬂ ruskal’s works | y merging or'splicing two trees

together, until all the vertices are in the same tree.; O

\

In contrast, Prim’s algorithm builds the MST by adding leaves one at a time to the current tree. We'start &
‘with a root T; it can be any vertex. At any time, the subset of edges A forms a single tree (in
uskal's, it formed a forest). We look to.add a single vertex as a leaf to thetree.

4

Scanned with CamScanner

W

9 .-6;\

@E&’ mele %77,({ MJ
Patee Ll ¢ 73 o ddv‘l/

y /)
& fy clersy T , iy
ey 4 Jar? M 22’92 v Vo =2 I/Sg 9
/7 .
2 ¢ B U
& et £28 S e S b
j‘j_ﬁwfj N;ﬁ- Figure 8.56: Prim’s algorithm:acurofthe graph g/; ér-/ ' !t)

[l gp af Ae=! el
@ fUWﬂfg ?ons &r the set of vertices S currently part of the tree and its complemen

dded next? The greedy

r =% S .
t(V— SFas shown in Figure ")

to add
8.56. We have cut of the graph. Which edge should be a strategy WO“(lidt:: e
the lightest edge which in the figure is edge to "W, Once u is added, Some edges that crosse

longer cno:smo it and othels that were not crossing the cut are as shown in Figure 8.57
g cﬂ’ @r’(/ y -2ty il s
WMM»O//WU»@/.W/ AL

% seled 9
@ N
> 4
F s s
J
p 3
vetects”
3
| 1
Figure 8.57: Prim’s algorithm: u selected o 0/&(/
) -~
0“% aHmUo”vwauﬂid’ > 3
We need an etﬁcnent way to update the cut and determine t{e light edge quickly. To do this, we will mahe g
, use of a priority queue. The question is what do we store in the priority queue? It may seem logical that
edges that cross the cut should be stored since we choose light edges from these. Although possible, there ¢

is more elegant solution which leads to a simpler algorithm.

A
= LD’;&W'[’/L)’LU/S 'l ;

Scanned W|th CamScanner

6 ¢ 6 ¢ ¢ ¢

8 © ¢ o0 6 e ¢

- ToTEIEr oL WS W LR Nl W ML,
Bes

Llllll., CUSL, |)L,||u|L1\;:> ulu.l [RVIS TS
) . T i

Similar scenarios oceur in computer networks like the]munq where data packets have to be routed. Tt
vertices are rourers. Edges are communication links which may be be wire or wireless. Edge weights ¢

be distance. link qpced link capacity link delays, and link utilization.

A BFS
The breadth-first- SCdICh algorithm w¢ discussed earlier isa shortest-path algorithm that works on
e
un-weighted graphs. An un-w g:lghlcd | graph can be c,onmdcned as a g.raph in which every edge has wei
can be considered as

one unit.
_-"'-——-—-
There are a few variants of the shortest path problem. We will cover their definitions and then discuss

algorithms for some.
sEV

————

Smde -source shortest-path problem: Find shortest paths from a given (single) source vertex s
every other vertex v € V in the graph G.

Single-destination shortest-paths pmblem Find a shortest path to a given destination vertex t from
each vertex v. We can reduce the this ploblem to a single-source problem by reversing the direc

of each edge in the graph.

Single-pair shortest-path problem. Find a shortest path from w to v for given vertices w and v. If v
solve the single-source problem with source vertex u, we solve this problem also. No algorithn

for this problem are known to run asymptotically faster than the best single-source algorithms i

the worst case.

"F) Y i) (f |

Scanned with CamScanner

. v lor ‘:‘r‘»/t‘ll;([/[' ()' verticey L any
dhortest path (FOMLALLO Y 08 O e
fidh shorfest X lo-source nlgorithm onee from each ye,

All-pairs shortest=paths problem: | : e
I by running o8I

"7 Although this problem can be solve
it can usually be solved faster,

/ l/n "/l;'u./ '//M .(’/u,r/"d!'t ,4(0"”} ‘o

(.D /")07'71 e \ﬁo{‘d/(::““ 06.‘(&l /_(g,/p/),\ﬁm
8.0.1 Dijkstra’s Algorithm
. el ginglessoureeshontest .
‘Dijkstra’s algorithin is @ siple greedy nlgorithm ,ﬁzr39}1‘5!',‘%"‘?;;;:’46 CVE) mjg]ni"cl.'a [121',,"5.11
other vertices. Dijkstra’s algorithm works ona wchﬁl;" ((um'v) ng -
welghts are nonsnegative; f.¢. wiw, v) 2 0 for SIS < in real life problems, Howey
i < welehts mavbe ¢ o (o intuition but this can oceur u‘ al li s o
Negative edges weights maybe Ll)ll‘lllll:cl tll(‘)cll: ihere is no shortest path. I there is a negative cycle b,

m’é?tu-i wery, Wil 2ot allow negative cyeles bect ; . » evele one more time.
: ity sav. s and L then we can always find a shorter path by going around the ¢y
0 3 Seutce 1 Leow

%45,
2430 4oy opp
€ ye e Hhe Mo
M a0 b et vellie
aAd I'ﬂ(/(/’n,(g Y,

@Q Zew0 U tonne lzc/wH“

1 emd Y, wow we ol SR i
Find ojr'JMnte Ot L P o
4 U\ 4
. X, 57 ®/ 4+) .-
Heen e fve ame 2o x4 U cine) Figure 8.6 I{Negative weight cycle
?) WA) To +(# = {2 g&’g(
(& Afé{.w ;wa{h He velde :),m|(a._l)¢rMI O-V Han [y & ~27
. . 5 . . . v . o S PRy 4
/ The basic structure of Dijkstra’s algorithm is to maintainan estimate of the shortest path from the sourc
{ee He Sl i) : P . .. p v A
) vertex to each vertex in the graph. Call this estimate d[v]. Intuitively, d[v] will the length of the shortes
velut in ushalt path that the algorithm knows of from s to v. This value will always be greater than or equal to the truc

;{a/)k_> shortest path distance from s to v. Le., d[v] > 8(w, v). Initially, we know of no paths, so d{v] = oc.
Moreover, d[s] = 0 for the source vertex.

1

dd’.(—[""d Ll)du)'

New! of o o A e ‘ —
® @ Jangﬁp algonthn?‘g(oes on and sees more and more vertices, it attempts to update d[v] for each vertex ir

l the graph. The process of updating estimates is called relaxation. Here is how relaxation'wofk; ‘

} Intuitively, if you can see that your solution is not yetreached an optimum value, then push it a little
closer to the optimum. In particular, if you discover a path from s to v shorter than d[v], then you nce
update d[v]. This notion is common to many optimization algorithms.

Consider an edge from a vertex w to v whose weight is w(u, v). Suppose that we have already compi-
current estimates on d[u] and d[v]. We know that there is a path from s to u of weight d[u]. By takin-

| | dw) + cWv) e dv
dW) = dewy +¢ W)

A s SR T

155

§.6. SHORTEST PATUS
S

ith the edge (u,v) we get a patigo v of Tlength dfu] | wiu, v). If this path is

this path and following it w ol s
better than the existing path s is 1l
the following figure. We should also remember that the shortest

updating the predecessor pointer.

of length d[v] to v.we should take it. The relaxation proce
way back to the source 1S through u by

Figure 8.62: Vertex u relaxed Figure 8.63: Vertex v relaxed

RELAX((u, v))

it (dful 4+ w(w,v) < dv))

. then d[v] & dlu] +w(uw,v)
" opredv] =u

o

(95]

2

Observe that whenever we set d[v] to a'finite value. there is always evidence of a path of that length.

Therefore d[v] > (s, v). If d[v] = 8(s, v), then further relaxations cannot change its value.

It is not hard to see that if we perform RELAX(U, V) repeatedly over all edges of the graph, the d(v]
values will eventually converge to the final true distance value from s. The cleverness of any shortest path
algorithm is to perform the updates in a judicious manner, SO the convergence is as fast as possible.
Dijkstra’s algorithm is based on the notion of performing repeated relaxations. The algorithm operates by
maintaining a subset of vertices, S C V. for which we claim we know the true distance, d[v] = d(s, V).

Initially S = (. the empty set. We sct d[u] = 0 and all others to co. One by one we select vertices from

b/_ﬁ,aw 9 V-Stoaddtos.
c v powdo we select which vertex among the vertices of V'S to'add fiéxt to S? Here is greediness comes

£ 0% in. For each vertex u € (V.= S), we have computed a distance estimate'd(u]: 7

g7 W capg . N S P

» 6/3 gt The :greedy thing to do is to take the vertex fo.r w!nch d[u] is minimum, i.e., take the unprocessed vertex
that is closest by our estimate to s. Later, we justify why this is the proper choice. In order to perform

PICIEAXCRD) zd)

1]

g ¢ D & p
Jﬁ — , \ l—@ 04 loc
o 0 3 Ml /[b‘ X/w,[l.ﬁ ddlecceo b&&/r“ln a3 (/)‘)7(&7

A o, 4 ., i e =

- 'y P | (A=
&) n-€=17

4 : 4]
) é ICIIMWJ/) D \B C {

8 '

- B e B

X | =3 lm S

o

Scanned with CamScanner

Figures 8.64 through ?? demonstrate the algorithm applied to a directed graph with n, Neg “
' Jatjy,
b

edges. ‘ |
v) { ACC'étf'éZ”j o 0({}25.1,%\ it
1? 4 , e,
@ , ! NC | Cenned C[LL\JC @
19} <t 8 JE: et we aly,

| gﬂ»(’wcg/ ; J

Scanned with CamScanner

8.63 Bellman-Ford Algorithm g,,,j/g que Lheotes? /)4,44
‘\

Dijkstra’s single-source shortest path algorithm works if al| edges w

eights are non- -negative and there are
o negative cost cycles, Bellman-Ford allows negative weights edges and no negative cost c
algorlthm 1s slower than DI_]kStl‘a S, Tunning in Of

cles.
VE] tune |
Like ngstra 3 algm ithm, Bellman-

] -Ford is-based on perf‘orlnlncT 1epeated relaxations. Bellman- Ford
applies relaxation to every edge of the graph and repeats this V — 1 times. Here ic-

— 1 times. Here 1S the alcrg{ihﬂvl its'is

{

3
3
N
9
9
3
x
p
b

For More Visit

www.VUAnswer.com

PO

---.-a'.--.._.,_,__.‘ oy

) r(ﬁ"ff*ffm.mf v i i S K0 il e

Scanned with CamScanner

160

illustrated in Figure 8.70.

do for (each (u,v) in E
do RELAX(u, V)

.fe[%l
BELLMAN-FORD(G, w, s) . f
I for (each ueV) N6 9 ,/4[4(6-47) ¢ y KUSOL!)(
2 dodu] — oo ‘ fimeg.

3 ed[u] =nil

4 P e

5 d[s] « o0 -

6 fori=11tV-1

.

8

A a4 JMI/}AW@.
eelﬁ@&.
14,8, (2,0 (4,0 @,

(C,E)}(v,a))(D;l"))(E;F) S
(C)B) L HR /

ﬂgl‘ ‘AQYCLRU\' \/
wd .\'\@m&""“

L

Figure 8.70: The Bellm

an-Ford algorithm

L .r . SN R teyheap Jota”)1
0223 e by pldhes > S5y in T Fyp 6 ek ol
6.4 Correctness of Bellman-Ford
W 5
X& Think of Bellman-Ford as a sort of bubble-sort
\/ﬂ}‘ Propagated sequentially along

‘ ('L/(j (A (iHeyutasw

analog for shortest path,

hin the graph. Consider
o=sand v, =,

The shortest path infor
any shortest path from
Since a shortest path will never v

isit the same v,
consists of at most \/

ertex twice, we know th
— 1 edges. Since this 5 sh

ortest path, it is §(s, v, the true shortest path ¢

AN, . -7, : ~ ‘ _
(¢0.QV(;{ VB9, gbwfs/) g//@/ &gl (entio> [/
’ " «

atk <V — 1. Hence the

P
i o] T
O foe e 0 S I e,

G og @ (i)

2 S Um0 o SR o

""“Scanned with CamScanner

0 (\C/ ({vl ") 5

TIm
0CE.v) .
HORTEST PATHS (2)
n
. - . LIS O V(V/’D {\/ - \)
 that satisfies the equation: Vs N

\‘m.C C Qr =
) 6(5‘\1]‘_:‘ S(s,viy) +w(vie, vi)

¢ Cen S){’au VL)

Claim: E\’e assert that after the i pass of the “for-i" loop. dw] = (s, \,'l])

Proof: The proof is by induction on i. Observe that after the initialization (pass 0). d{vi] = d[s] = 0.

In general, prior to the i pass through the loop, the induction hypothesis tells us that . l
d{via] = 8(s,viy). After the i pass, we have done relaxation on the edge (vi 1, vi] (since we do
relaxation along all edges). Thus after the i pass we have

sP/7
I N\ ‘;\— s 9) . . , v
9] Vo) \ d[\)i| d[\’l..,] + \V(\l -I-\’L) = / 5
{ O =l Jf(//,/ Ve, k L(‘/
)

/A

. — S v N
2 e AR Wlua\wf C'»()Jé- =8(s,viar) +wlvi, v

(5,\'1)

@ A) No /"!f’hp""
G e’

Recall from Dijkstra’s algorithm that d[v;] is never less than 5(s, vi). Thus, d[v,] is in fact equal to
8(s, vi). This completes the induction proof.

L\Jngé eche Sum s —Ve

In summary, after i passes through the for loop. all vertices that are i edges away along the shortest path

tree from the source have the correct values stored in d[u]. Thus, alter the (V - 1}* iteration of the tor
loop, all vertices u have correct distance values stored in dlu].

8.6.5 Floyd-Warshall Algorithm Ay Progresy-

We consider the generalization of the shortest path problem: to compute the shortest paths between all
pairs of vertices. This is called the all-pairs shortest paths problem.

Let G = (V,E) be a directed graph with edge weights. If (u,v) € E is an edge then w(u, v) denotes its
weight. 8(u, v) is the distance of the minimum cost path between 1t and v. We will allow G to have
negative edges weights but will not allow G to have negative cost cycles. We will present an ©(n’)

algorithm for the all pairs shortest path. The algorithm is called the " F, lovd-Warshall algorithm and is’
based on dynamic programming)

We will use an adjacency matrix to represent the digraph. Because the algorithm is matrix based. we will
employ the common matrix notation, using 1. j and k to denote vertices rather than w. v and w.

The input is an n x 1 matrix of edge weights:
0 ifi=j
wi =< wiij) ifi#jand(i,j) € E
oC ifiZjand (i,j) ¢ E

The output will be an n x n distance matrix D = dyj, where dy; = 8(1,), the shortest path cost from
vertex i to j.

—
=3
L

S T o r o i o maes

- Scanned with CamScanner

/ ce 2P,
d&” valie d(n")d 2 u/u}j(vmc 8 W2

%ﬁnﬂ PATHS
ﬂ L\?-

N

163

Figure 8.72: x — 0, dV

32 =00 (n0 path) - Figure 8.73: k=1, d}) =12 (3 =1 - 2)

Figure 8.74: k =2, d}3 =12 (35 1 - 2) Figure 8.75: k =3, d5, =12 (351 52)
23 ;ﬂ/)(/u/ i
& Cs A } 5 L/é h‘(& » &
“ e U/(/.)L()A Jj(j/ t 7 = L{‘) 141$

2

/ yrv‘t Jl}//' }j ' Al
(:,‘!Jf 6 aA <i)0 dﬂ /))d A @ /'} /)J 6 L d

Baetwe? wzw
c:((»‘/ T f/w p [,;,t,]:/“’[«gyb"]
&

LI = 8 +7
o2 ZUS
= AD [3)2] - ;)°[3),]-f [Ll:l
L = 5+
A A'“”D’” L4

+ | 3] PR T _%Q = 1
;’d,a?:l) _,_;- 5 __Ni_ e et
Scanned W|th CamScanner

% [z,a] A [:a I

4 i

b © @ 0 0 @ 0 © © W W W ¥V W w ¥ ¥

VO O @0 ¥ & & ©

l

‘Q(ﬁnplcxity Theory N\

(‘.lmplcr 9 |
Ll ~'7 7

\

D0 Y LW
So fae i the cour ' e O S vl v . .
1e course, we have been building up a “bag ol tricks™ for solving algorithmic problems.

o yelully yvou ST . Pt 3 .
"".l“ i Vhave a better idea of Tow to go abdut solving such problems. What sort ol design
paradigm should be used: divide-and-conquer, greedy, dynamic programming.

\V\ml‘sm-t ol data structures might be relevant: tregs, Iw’xﬁ);.-é}iiphs. What is the fuiifiing time of the
algorithm, All of this is fine if'it helps you discover an aceepiably clficient nluorilllmﬂlo solve your
problem. S

The question that often arises in practice is that you have tried every rick in the book and nothing seems
t work. Although your algorithm can solve small problems reasonably efficiently (c.g., 1t < 20), for the
"_“““.\‘ large problems you want to solve, your algorithm never terminates. When you analyZe 1S running
time, vou realize that iUis running in exponential time, perhaps Jﬁ—'_‘ or. 2™, or 22, or ! or worsell

s oot e 4

By lh? edOI60s, there was reat suceess in finding efficient solutions to many combinatorial problems.
But there was also a growing list of problems for which there seemed to be no known elficient
O =

algorithmic solutions. .
¢ xeumple”

People began to wonder whether there was some unknown Eamdigii\fthat would lead to a solution to
there problems. Or perhaps some prool that these problems are inherently hard to solve and no
algorithmic solutions exist that run under exponential time.

Near the end of the'l 9607, aremarkable discovery was made. Many of these hard problems were
interrelated in the sense that if you could solve any one of them in polynomial time, then you could solve
all of them in polynomial time. this discovery gave rise to the notion of NP-completeness.

This area is a radical departure from what we have been doing because the emphasis will change. The
goal is no longer to prove that a problem can be solved efficiently by presenting an algorithm for it.
Instead we will be trying to show that a problem éaimot be solved efficiently

Up until now all algorithms we have seen had the property that their worst-case running time are bounded
above by some solynomial in A polynomial time algorithm is any algorithm that runs in'O(n") time.
A problem is solvable in polynomial time if there is a polyno'm'ial“ti1ﬁ‘e‘“ﬁl*gorithm for it. ,
Some functions that do not look like polynomials (such as O(n logn) are bounded above by polynomials
(suehy Qﬁfﬁﬁ Some functions that do look like polynomials are not. For example, suppose you have

169

b it I
s J!ﬂf."’fwix’f:)!blg

ned with CamScanner

Scan

CHAPTER 9. COMPLEXITY THEORY
170
and run in O n()—l“i_mc.
ris allowed to |
[ynomial in n.

an aleorithm that takes as input a graph of size n and an integer k |
< i i i oblem so the use
al time algorithm? No, because k Is an 1l Jut 1o the probl

Isthisa po[)’llOﬂll (H“] O(lln] 1S Slll'Cl,\' nol a po

choose k = n. implying that the running time would be O entof 1 ‘
- A O N - = +Adenenden .
The important aspect is that the exponent must be a Constant indepent LAI—’,‘M_ y
”
§

‘.C/ﬁ/\laé YG/SMJDJ 7 // '/, R
9.1KDecisi0n Pl‘OblelnlsT%}/////ffj//(;};/fl)(,)//\/l%}) VetY
another. Find the shortest ¢
ather technical reasons,

//dy/f‘ <’/’/

Most of the problems we have discussed involve optimization of oné form of

path. find the minimum cost spanning tree. maximize the knapsack value. Forr
the NP-complete problems we will discuss will be phrased as decision] ”'(’/’/"”"“' §
= e - o < av this of this=as
A problem is called a_decision problent if its output is a simple “yes”or “ng/ fosyou may this Of! “ 4 c
true/false. 0/1, accept/reject.) We will phrase may optimization problems as decision problems. (()31 l
— = = ' -4 . - aoer k. does G have
example. the MST decision problern would be: Given a weighted graph G and an integer k. does G have ;
a spanning tree whose weight is at most k?
5 . . - . . for el “the .
This may seem like a less interesting formulation of the problem. It does not ask for the we}ght Ottl n LN
minimum spanning tree, and it does not even ask for the edges of the spanning tree that achieves 1ll>
. 1 , /e SNOW
weight. However, our job will be to show that certain problems cannot be solved efficiently. .” we bLKl)
. * -oble
that the simple decision problem cannot be solved ejciently, then the more general optimization problem
certainly cannot be solved efficiently either.) [N
- |
: -
v ; \
9.2 Complexity Classes X
i 4 \
Before giving all the technical definitions. let us say a bit about what the general classes look likeatan .
intuitive level. N
9 . 5 . : - o el N
Q&Q\lé &'—lass P: This is the set of all decision problems that can be solved in polynomial time. We will v
oenerally refer to these problems as being “easy” or “efficiently solvable™. ,;;\1

-~
B Ad—
\/M‘b' C}hs_&: This is the set of all decision problems that can be verified in polynomial time. This class g

s p
VARLE

—_—

contains P as a subset. It also contains a number of problems that are believed to be very ™ hard™ to

solve.
il g
e e T .« .
Class NP: The term “NP” does not mean “not polynomial™. Originally, the term meant *
fion-deterministic polynomial but it is a bit more intuitive to explain the concept from the N
perspective of verification. '3
"

" ‘."f’ > . . .
Class NP-hard: In §p1te of its name, to say that a problem is NP-hard does not mean that it is hard to
sol\'t?. Rather, it means that if we could solve this problem in polynomial time, then we could solv«
all NP problems in polynomial time. Note that for a problem to NP-hard. it does not have to b;m 9
il

ferrol 3
A
) up 6/

A e
2— P J}W ;?Ze/ % Yate/

.]

~

Cj// ZZ/’

Wzl

[/

ez, B e bl S T T T T e

9
»
b
9
3

SCanned with Cafr;S;:énne'r

9.3. POLYNOMIAL TIME VERIFICATION

Class NP-complete: A!.p['oﬂem'igi
;—-—-“—'

PN L & (NPC) might look. We
The Figure 9.1 illustrates one way that the sets P. NP, NP-hard. aﬂd_rjﬂgo_mplet‘ (NPC) mig

say might because we do not know whether all of these complexity classes are distinct or ‘\;]?Iher they

are all solvable in polynomial time. The Graph Isomorphism. which asks -w!leth’er mo.g'FflP S ire .

identical up to a renaming of their verfices. It is known that this probkm IS In ‘\P but it is not @’.n_"o

be in P. The other isﬁrwhich stands Forph?niiﬁed Boolean Formulas)]ln this problem you are given a
“boolean formula and you want to know whether the form uwfaise.

Figure 9.1: Complexity Classes

For More Visit
www.VUAnswer.com

9.3 Polynomial Time Verification

Before talking about the class of NP-complete problems, it is important to introduce the notion of a
Werification algorithm.!Many problems are hard to solve but they have the property that it easy to verify

T . @ . —
the solution if one is provided. Consider the amiltonian cycle problem. !

Given an undirected graph G. does G have a cycle that visits ey ery vertex exactly once? There is no

known polynomial time algorithm for this problem.

Scanned with CamScanner :

B

22 it oo

T ¥ Y L A 7 T e -

/.
o, B0
C

HAPTER 9. COMPLEXITY THEORY

However. suppose that a graph did have a Hamiltonian cycle. It would be easy fo'r someone to con\'m:;e
of this. They would simply say: “the'cycle is (v3, vz, V1, - - - ;3) We could then inspect the graph an
check that this is indeed a legal cycle and that it visits all of the vertices of the graph e"“f[!};g"lce' Thfb'
“even though we know of no efficient way to solve the Hamiltonian cycle problem, there is @ VEry efﬁgﬁht
way to verifv that a a given cycle is indeed a Hamiltonian cycle.

TR Sl oraron that o | Zeate] Note that not all problems have
_The piece of information that allows verification is called a \certificate] Note that not all probiei >
the property that they are easy to verity. For example, consider the following twoy

\{_{’fﬁﬁc ={(G)IG has a unique Hamiltonian c_ycle,f u H ¢ - lM?’[.L? HMN?JCW\ ;

\f{{'% —{(G)|G has no Hamiltonian cycle] (7(‘(.
He >

Suppose that a graph G is in UHC. What information w ould someone give us that would allow us v

verify this? They could give us an example of the upique Hamiltonian cycle and we could verify that it is

a Hamiltonian cycle. But what sort of certificate could they give us to convinee us that this is the only

one?
They could give another cycle that is_nor Hamiltonian. But this does not mean that there is not another
cvcle somewhere that is Hamiltonian. They could try to list every other cycle of length n, but this is not

efficient at all since there are n! possible cyeles in geperal. Thus it is hard to imagine that someone coul.
give us some information that would allow us to efficiently verify that the graph is in UHC.

9.4 |(The Class NP
_____-/ .

oy

The class NP is @S?ii()f all roblf;'ms that can be verified by a olvnomi ltimeéiéorithm. Why is the sc
called “NP” and not “VP."? The original term NP stood for non-deterministic polynomial time, This

Y L e e T« -
Ty s : 3% T gy g e e

Scanned with CamScanner

T WL s r—

3 173
i 9.5. REDUCTIONS
\‘ 9.5. R ' L
Q : h a computer
N . ' P at can make guesses. Such a com .
I\ referred Lo a program running ona ;mn-c:ctem; :}:lstlc f‘(g:agtl;w;:g o ifin polynomial L
§ e inistice ess the value of the certificate. and 1hen V&L PONRES b
N could non=deterministically gx SIS YBUIS O} 1P & : h as automata oF
g A LLLE A T . in other courses such as
\\0 have avoided introducing ngg—_dfﬁ@mlsm here; it is covered 0 e
N complexity theoryy) ;
e - : ial ti certainly
x\) “Observe that P C NP. In other words, if we can solve a problem in polynomial tll“.fir, w[e Ctansolve the)
“ | i ‘1 o B ificate to
\\) verify the solution in polynomial time. fv'lore formally, we do not need to see a cert
N problem: we can solve it in polynomial time anyway. _
.y i . Being
\J However, it is not known whether P = NP. It seems unreasonable to think that this shoulc.i be §[O] Bbe“;f
S able to verify that you have a correct solution does not help you in finding the actual solution. The
\\’ is that P NP but no one has a proof for this.
N
\, .
N N
kY | \/Q'é ? s)T ﬁ 7 w«ﬂ
N 9.5 Reductions s iy
S _olerer Iz
2 NpeT WMo cmple
\\’ The clas; NP-complete (NPC) problems consists of a set of decision problems (a subset of class NP) that
. no one kuow's how to solve efficiently. But if there were a polynomial solution for even a single
S NP-complete problem, then ever problem in NPC will be solvable in polynomial time. For this. we need
. the concept of reducions. I
N P - 2
B Consider the question: Suppose there are two problems, A and B. You know (or you strongly believe at
':*\, least) that it is impossible to solve problem A in polynomial time. You want to prove that B cannot be
solved in polynomial time. We want to show that
~
. (A¢P)= (BZP)
w s CARRE
R | Hol\lv l:‘.'ould yOthJ dir t:(i:s? Consider an example to illustrate reduction: The following problem is
well-known to be ! .
)
g 3-color: Giy ; i i ; SERREYA ;
) (,},f‘«’-e“ a g.raph G, can each of its vertices be labelled with one of 3 different colors such that two
3 adjacent vertices have the same label (color).
9 Coloring arises in various partitioning probl her i strai i
Ooung partitioning problems where there is a constraint that two objects cannot be
9 assigned to the same set of partitions. The term “colorine” comes from the orieinal application whicl
: was in ma i - 1 N sihat on which
wng. Two countries that share a common border should be colored with different colors
- | It is well known that planar graphs can be colored (i T
3 : ; g maps) with four colors o :
time algorithm for this. But determining whether this cim) be doi\\‘i%l“wg; lThe['e i R poiynomial
/9 polynomial time algorithm for it. In Figure 9.3, the graph on the left % b0 OIS is har('] and there is no
9 the graph on the right cannot be colored. ; can be colored with 3 colors while
9
9
9

?
?

N Scanned w‘ith CamScanner

CHAPTER 9. COMPLEXITY THEORY
178

Definition: ' Lis NP-complete if

lLeNPand 7
?‘l:"il:"ﬁpi‘_' for-some-known NP-comp

Jete problem L

Given this formal definition. the complexity classes are:

P i the set of decision probleris that are Solvable in polynomial time.

NP: is the set of&;clsmnproblems that can be verified in polynomial time.

NP-Hard: L is NP-hard if for all ["ZNP.L” <p L. Thus if we could solve L in polynomial time, yje
~ could solve all NP problems in polynomial time.;

NP-Complete L is NP-complete if

1 LENPand
GRS AN
2. Lis NP-hard. ¥
— ——"-_—_.

The importance of NP-complete problems should now be clear. If any NP-complete problem is solvabl.c‘
in polynomial time, then every NP-complete problem is also solvable in polynomia ime_Conversely. if
e Camprove That any NP-complete problem cannot be solved in polvnomial time, the every
NP-complete problem cannot be solvable in polynomial time. .

~—

v

9.8 Boolean Satisfiability Problem:fCook’s Theorem |

We need to have at least one NP-complete problem to start the ball rolling. Stephen Cook showed that
such a problem existed. He proved that the boolean satisfiability problem is NP-complete. A boolean
formula isa logical formulation which consists of variables x;. These variables appear in a logical

expression using logical operations
-_

BT s
a T s - A
27 boolean or- (x Vy) N AND

~ S and: Ay

For a problem to be in NP, it must have an efficient verification procedure. Thus virtually all NP
problems can be stated in the form, “does there exists X such that P(X)™, where X is sorﬂe structure (e.o
aset, a path, a partition, an assignment, etc.) and P(X] is some property that X must satisfy (e.g. the 36?
ofobJects.must fill the knapsack. or the path must visit every vertex, or vou may use at most k.f:‘olor~ and
no two adJac-eth vertices can have the same color). In showing that such a problem is in NP, the n;;
consists of giving X, and the verification involves testing thatvP(X] holds. i

For More Visit

www.VUAnswer.com

| S‘céhnéd’”\}vith CénmS‘c‘:énner

S S

P g

a "

("

P P W W M M M M M M B L L

s

08 BOOLEAN SATISFIABILITY PROBLEN: COOK'S THEOREN ' 179

In general, any set X ean be deseribed by choosing a set of objects, which in turn can be dcscnln.:d as
choosing the values of some boolean variables, Similarly, the property l’(X] that you HCL‘.‘d to satisfy, can
be deseribed as a boolean formula. St@]i_éﬁpdék’\'\ia's'l(s;ékixj‘}'g"(fojj the most general possible prop:,:ﬂx tge‘ :
coulds s this should represent the hardest problem i NP to solve. e reasoned hat coniputers (which
weprosent the most general type of computational devices known) could be deseribed entirely in tgrrnlﬂ»r

mﬁ‘vﬁ‘t&, and hense in terns of boolean formulas. 1 uny problem were hard to solve, it would b
_one in which X is an assignment of boolean values (true/false, 0/1) and P(X) could be any boolean™

formula, This Suggests the following problem, called the boolean satisfiability problen. |~
{ sl

L 4P . s N s 5 S v "

SAT: Given a boolean formula, is there some way to assign truth values (071, true/false) to the var tables
ot the formula, so that the formula evaluates to true?

‘E‘{Wl.éiﬁ' formula is a logical formula which consists of variables xi ; and the logical operations(X

neaning the negation oFx, boolean-or (x V y) and boolean-and (x A y). Given'a boolean formula, v

say that it is satisfiable if there is a way to assign truth values (0 or 1) to the variables such that the final?

U

;j“.l‘_'s_'l‘l(-‘\s opposed to the case where no matter how you assign truth values the result is always 0.)
or example

A VINA(RATRG V)
15 satisfiable, by the assignment x; = 1, x> = 0 and x3 = 0. On the other hand,

— ——

(B (2 Axs) A (6 VAT A 2V x3) A (85 V Ty

s not satisfiable. Such a boolean formula can be represented by a logical circuit made up of OR, AND
and NOT gates. For example, Figure 9.9 shows the cireuit for the boolean formula '

A V) A AKH VD AT

-

Figure 9.9: Logical circuit for a boolean formula

A P
e e sy T ot . 1

Scanned with CamScanner

o (NE2T7
- g =2 Normet

C"’Uiﬂ- Iive
CHAPTER 9. COMPLEXITY THEORY

180) P

¢ (/%[eo“ ’/‘L, Ja{l%‘tc !’Cﬂ’l N A/ (f
- et e 0;0 277, le -

Cook’s Theorems \SAT is NP=compt ‘b/é’/)/)/l Z /) /)f(' i

We will not prove the theorem; it is quite complicated. In fact. it turns out that a even more restr icted

version of the satisfiability problem is NP-complete.
Normal Forni (3-CNI)

formula is in 3-Ci onjunctive
iterals. For

5 the boolean-or of exactly three

A literal is a variable x or its negation X. A boolean
itit is the boolean-and of clauses where each clause i

example, _ :
Kx’x-rv VT A VRSV A (x2 VB VT >

s 3-CNF is satisfiable. 3SAT

is in 3-CNF form. 3SAT i3 the problem of determining whether a formula i e
: o this with

is NP-complete. We can use this fact to prove that other problems are NP-complete. We will d

roblem3| Given an yndirec_tedf@fﬁ'b“l%@;‘é!’f!i{wa and an integer k, does G contaifa

jacent to other.

. vertices such that no two vertices in V" are ad

Figure 9.10:

restrictions pairs that cannot both be selected. For example, a company dinner where an employee and
his or her immediate supc visor cannat both be invited. g

== : ek
I .IS NP—CC?I‘)JEE 1%% \NG¢ 2 6\»646.«3{: S

The E)roof illwolves , two parts. First, we need to show that IS € NP. The certificate consists of k vertices
of'V . We snmpl}f verify that for each pair of vertices u, v € V', there is no edge between them Clearly
this can_be done in polynomial time, by an inspection of the adjacency matrix T

Second, we need to establish that IS is NP-hard This ¢ i
: - an be done by showing that <NOW
NP-compete (3SAT) is polynomial-time reducible to IS. That is, 3SAT <p lg wsome koo

Y

The independent set problem arises when there is some sort of selection problem where there are mutual

Scanned with CamScanner

s B b A el Lt Y i T S L S PP A s e 34

dh NP I M M M A > m I >

> «ih -

o

<

-

llf‘i\’“\' i;\ [hi“ wWe d(\ not ;lltt‘lllm to \’(‘l\ ¢ lll&.‘ \i"i\ﬁ.\h”“,\ l‘lnhlcm. Rq‘l]h-n]l‘.“l‘_
K ¢ h ‘I i h‘ “"-- Pl“_'lll‘mi;ll (il"t‘ N‘l“li(‘n. [‘hL‘ IllL‘i\ i\' tot ;\hil.“ » lh(-

roblem to corresponding clements of the independent set problem

aspect o red '
d there 181
¢ satisfiable p

An important
s NP-complete, an
cimilar elements of th

» e 3
[\What is to D€ Kl‘!u’TthT‘

FRSURRCURE

g e to be as;igned the value trug, or equivalently. which literals will be true dad
At s et i b oz b (Lot S bl [UC A

Requirements:

at least one true valued literal!

3SATE Each clause must contain

1§¢ V/ must contain at least k vertices.

Restrictions:
/ ‘
38 AT.miﬁs's‘i‘gn'e’d‘ﬁu'e‘fthen"i'{ must be false and vice versa.

i selected fo be in V' and visane

ighbor of u then veannot be in V&

function which giv ' 3- { a F . converts it into a pair { G, k) such that
\We want a function which given any @booleau tonmllla F.,co sitin pair (G, k el
the above elements are translated properly. Our strategy will be to turn each literal intd avertex. The
vertices will be in clause clusters of three, one for each clause. Selecting a true literal from some clause
- . " W RITE " . Y ienc <
will correspond to selecting a vertex to add to‘\z/,..\\ e will set k equal to the number of clauses. to to‘lu
the independent set subroutine to select one true literal from each clause. To keep the IS subroutine from
selecting two literals from one clause and none from some other, we will connect all the vertices in cach
clause cluster with edges. To keep the IS subroutine from selecting a literal and its complement to be

true, we will put an edge between each literal and its complement.

A formal description of the reduction is given below. The input is a boolean formula F in 3-CNF. and the
output is oraph G and integer k.
3SAT-TO-IS(F)
1k «~ number of clauses in F
for (eachclause CinF) (-~
do create a clause cluster of
3 vertices from literals of C
for (each clause cluster (x;,x,x3) } (_~
do create an edge (x;, x;) between

all pairs of vertices in the cluster L
for (each vertex x;)

do create an edge between x; and 1/
all its complement vertices X;

S O 00 ~1 O\ h da LI 1D

For More Visit

www.VUAnswer.com

&

Scanned with CamlScannéAr

e ;;4‘

CHAPTER 9. COMPLEXITY THI:ORy |
182

|
11 return (G, k) /#outputis graph G and integer k /

RS R Clauses ihen G fias exactly 3K vertices. Given anly reasonable'encoding of P, it is an eagy
mg‘tg&;ge G (say as an adjacency matrix) in pglynomlal time. We claim that F is

Satishiable iFandonly if G has an independent set of size k.

E\;ample:"jﬁffﬁﬁo?eftllfat we are given the 3-CNF f'o'riimiﬁ:?

FEVxE Vi) ARV x2 Vag) A (V. xa V) A (% V&5 V)
S~ — - »

-

vy

The following series of figures show the reduction which produces the graph and_set§ irst, each of

the four literals is converted into a three-vertices graph. This is shown in Figure 9.11

Figure 9.11: Four graphs, one for e

ach of the 3-terms literal

-

Scanned with CamScanner

9.9 Coping with NP-Completcness
l ,

important ()pllml/dtlon problems that ;
ms, we cannot Simply give up ,
s that are used

With NP-completeness we have seen that there are many

to be quite hard to solve exactly. Since these are important pr oble v
point, since people do need solutions to these problems. Here are sOme St
with NP-completeness:

¥ < ~ 2) i {oH i V.' ' for
Use brute-force search: Even on the fastest parallel computers this approach 1s iable only for
(]

smallest instance of these problems.
Heuristics? A heuristic is a str ategy tor producing a valid solut!on but there are no guarantees ho

n to opumal This is worthwhile if all else [alls

‘General scarch methoﬁs Powerful tcchmqueb for solving oencral combmatonal optlmunu()n
problems Branch-and-bound, A¥-search, sm1ulated anuealm and aenetlc aloonthm:

Appm\lmatlon algorithm? This is an algorithm that runs in polynomlal time (ideally) and producy
solution that is within a guaranteed f2 wctor of the optimal solution.”

\\\5 &

por

Scanned with CamScanner

