Advanced Algorithms Analysis and Design

Table of Contents
Chapter 1: Model of Computation
Lecture No 1: Introduction of Algorithms 03
Chapter 2: Mathematical Tools
Lecture No 2: Fundamentals of Algorithms 08
Lecture No 3: Logic and Proving Techniques 13
Lecture No 4: Mathematical Induction 19
Lecture No 5: Strong Mathematical Induction. 25
Chapter 3: Recursion
Lecture No 6: Fibonacci Sequences. 29
Lecture No 7: Recurrence Relations I 39
Lecture No 8: Recurrence Relations II 49
Lecture No 9: Algorithms Analysis Techniques 55
Chapter 4: Asymptotic Notations
Lecture No 10: Time Complexity of Algorithms. 67
Lecture No 11: Relations over Asymptotic Notations 76
Chapter 5: Brute Force Approach, Divide and Conquer
Lecture No 12: Design of Algorithms using Brute Force Approach 83
Lecture No 13: Design of Algorithms using Brute Force, Divide \& Conquer Approaches. 91
Lecture No 14: Design of Algorithms using Divide \& Conquer Approaches 95
Chapter 6: Dynamic Programming
Lecture No 15: Chain Matrix Multiplication using Brute Force 106
Lecture No 16: Chain Matrix Multiplication using Dynamic Programming 113
Lecture No 17: Assembly-Line Scheduling Problem 119
Lecture No 18: 2-Line Assembly Scheduling Problem 126
Lecture No 19: 0-1 Knapsack Problem using Dynamic Programming. 133
Lecture No 20: Optimal Weight Triangulation I....... 142
Lecture No 21: Optimal Weight Triangulation II 152
Lecture No 22: Review Lectures 1-21 159
Mid-Term 2015 Exam Questions 166
Lecture No 23: Longest Common Subsequence 167
Lecture No 24: Optimal Binary Search Trees 177
Chapter 7: Greedy Algorithms
Lecture No 25: Greedy Algorithm 181
Lecture No 26: Huffman Coding 190
Chapter 8: Graph Theoretic Algorithms
Lecture No 27: Huffman Coding Problem and Graph Theory 197
Lecture No 28: Breadth First Search 207
Lecture No 29: Depth First Search 217
Lecture No 30: White Path Theorem 225
Lecture No 31: Backtracking and Branch \& Bound Algorithms 233
Lecture No 32: Minimal Spanning Tree Problem 236
Lecture No 33: Single-Source Shortest Path 249
Lecture No 34: Bellman-Ford Algorithm 258
Lecture No 35: Dijkstra's Algorithm 264
Lecture No 36: All Pairs Shortest Paths 272
Lecture No 37: Floyd-Warshall Algorithm \& Johnson's Algorithm. 278
Chapter 9: Number Theoretic Algorithms
Lecture No 38: Number Theoretic Algorithms 290
Lecture No 39: Theorems and Algorithms 300
Lecture No 40: Chinese Remainder Theorem 310
Chapter 10: Further Topics
Lecture No 41: RSA Cryptosystem. 317
Lecture No 42: String Matching 322
Lecture No 43: Polynomials and Fast Fourier Transform 331
Lecture No 44: NP Completeness 340
Lecture No 45: Review Lecture 350
Final-Term 2015 Exam Questions 358
Presented By:
Dr. Nazir Ahmad Zafar
Virtual University of Pakistan
Published by: Safi Khan
www.vumultan.com

Lecture No 1
 Introduction of Algorithms (What, Why and Where)

Major objective of this course is:

- Design and analysis of modern algorithms
- Different variants
- Accuracy
- Efficiency
- Comparing efficiencies

Major objective of this course is:

- Design and analysis of modern algorithms
- Different variants
- Accuracy
- Efficiency
- Comparing efficiencies
- Motivation thinking new algorithms
- Advanced designing techniques
- Real world problems will be taken as examples
- To create feelings about usefulness of this course
- Motivation thinking new algorithms
- Advanced designing techniques
- Real world problems will be taken as examples
- To create feelings about usefulness of this course

Expected Results

On successful completion, students will be able to

- Argue and prove correctness of algorithms
- Derive and solve mathematical models of problems
- Reasoning when an algorithm calls certain approach
- Analyze average and worst-case running times
- Integrating approaches in dynamic and greedy algos.
- Use of graph theory in problems solving
- Advanced topics such as
- Computational geometry, number theory etc.
- Several other algorithms such as
- String matching, NP completeness, approximate algorithms etc.

In this lecture we will cover the following

- What is Algorithm?
- Designing Techniques
- Model of Computation
- Algorithms as a technology
- Algorithms and other technologies
- Importance of algorithms
- Difference in Users and Developers
- Kinds of problems solved by algorithms
- Conclusion

What is Algorithm?

- A computer algorithm is a detailed step-by-step method for solving a problem by using a computer.
- An algorithm is a sequence of unambiguous instructions for solving a problem in a finite amount of time.
- An Algorithm is well defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values as output.
- More generally, an Algorithm is any well defined computational procedure that takes collection of elements as input and produces a collection of elements as output.

Popular Algorithms, Factors of Dependence

- Most basic and popular algorithms are
- Sorting algorithms
- Searching algorithms

Which algorithm is best?

- Mainly, it depends upon various factors, for example in case of sorting
- The number of items to be sorted
- The extent to which the items are already sorted
- Possible restrictions on the item values
- The kind of storage device to be used etc.

One Problem, Many Algorithms

Problem

- The statement of the problem specifies, in general terms, the desired input/output relationship.

Algorithm

- The algorithm describes a specific computational procedure for achieving input/output relationship.

Example

- One might need to sort a sequence of numbers into non-decreasing order.

Algorithms

- Various algorithms e.g. merge sort, quick sort, heap sorts etc.

Important Designing Techniques

- Brute Force
- Straightforward, naive approach
- Mostly expensive
- Divide-and-Conquer
- Divide into smaller sub-problems
- Iterative Improvement
- Improve one change at a time
- Decrease-and-Conquer
- Decrease instance size
- Transform-and-Conquer
- Modify problem first and then solve it
- Space and Time Tradeoffs
- Use more space now to save time later

Some of the Important Designing Techniques

- Greedy Approach
- Locally optimal decisions, can not change once made.
- Efficient
- Easy to implement
- The solution is expected to be optimal
- Every problem may not have greedy solution
- Dynamic programming
- Decompose into sub-problems like divide and conquer
- Sub-problems are dependant
- Record results of smaller sub-problems
- Re-use it for further occurrence
- Mostly reduces complexity exponential to polynomial

Problem Solving Phases

- Analysis
- How does system work?
- Breaking a system down to known components
- How components (processes) relate to each other
- Breaking a process down to known functions
- Synthesis
- Building tools
- Building functions with supporting tools
- Composing functions to form a process
- How components should be put together?
- Final solution

Problem Solving Process

- Problem
- Strategy
- Algorithm
- Input
- Output
- Steps
- Analysis
- Correctness
- Time \& Space
- Optimality
- Implementation
- Verification

Model of Computation (Assumptions)

- Design assumption
- Level of abstraction which meets our requirements
- Neither more nor less e.g. [0, 1] infinite continuous interval
- Analysis independent of the variations in
- Machine
- Operating system
- Programming languages
- Compiler etc.
- Low-level details will not be considered
- Our model will be an abstraction of a standard generic single-processor machine, called a random access machine or RAM.
- A RAM is assumed to be an idealized machine
- Infinitely large random-access memory
- Instructions execute sequentially
- Every instruction is in fact a basic operation on two values in the machines memory which takes unit time.
- These might be characters or integers.
- Example of basic operations include
- Assigning a value to a variable
- Arithmetic operation (+, - , $\times, /$) on integers
- Performing any comparison e.g. $\mathrm{a}<\mathrm{b}$
- Boolean operations
- Accessing an element of an array.
- In theoretical analysis, computational complexity
- Estimated in asymptotic sense, i.e.
- Estimating for large inputs
- Big O, Omega, Theta etc. notations are used to compute the complexity
- Asymptotic notations are used because different implementations of algorithm may differ in efficiency
- Efficiencies of two given algorithm are related
- By a constant multiplicative factor
- Called hidden constant.

Drawbacks in Model of Computation

First poor assumption

- We assumed that each basic operation takes constant time, i.e. model allows
- Adding
- Multiplying
- Comparing etc.
- two number of any length in constant time
- Addition of two numbers takes a unit time!
- Not good because numbers may be arbitrarily
- Addition and multiplication both take unit time!
- Again very bad assumption

Model of Computation not so Bad

Finally what about Our Model?

- But with all these weaknesses, our model is not so bad because we have to give the
- Comparison not the absolute analysis of any algorithm.
- We have to deal with large inputs not with the small size
- Model seems to work well describing computational power of modern nonparallel machines
Can we do Exact Measure of Efficiency?
- Exact, not asymptotic, measure of efficiency can be sometimes computed but it usually requires certain assumptions concerning implementation

Summary: Computational Model

- Analysis will be performed with respect to this computational model for comparison of algorithms
- We will give asymptotic analysis not detailed comparison i.e. for large inputs
- We will use generic uniprocessor random-access machine (RAM) in analysis
- All memory equally expensive to access
- No concurrent operations
- All reasonable instructions take unit time, except, of course, function calls

Conclusion

- What, Why and Where Algorithms?
- Designing Techniques
- Problem solving Phases and Procedure
- Model of computations
- Major assumptions at design and analysis level
- Merits and demerits, justification of assumptions taken
- We proved that algorithm is a technology
- Compared algorithmic technology with others
- Discussed importance of algorithms
- In almost all areas of computer science and engineering
- Algorithms make difference in users and developers

Lecture No 2
 Mathematical Tools for Design and Analysis of Algorithms (Fundamentals of Algorithms)

- Introduction to Algorithms
- Designing Techniques
- Algorithm is a Technology
- Model of Computation
- Even we have supercomputers, it requires algorithm
- Algorithms makes difference in users and modeler
- Some of the applications areas of algorithms
- Management and manipulation of data
- Electronic commerce
- Manufacturing and other commercial settings
- Shortest paths etc.

A Sequence of Mathematical Tools

- Sets
- Relation
- Sequences
- Functions
- Order pairs
- Operators over above structures
- Cross Product
- Conclusion
- A set is well defined collection of objects, which are
- unordered
- distinct
- same type
- with common properties

Notation:

- Elements of set are listed between a pair of curly braces
$S 1=\{R, R, R, B, G\}=\{R, B, G\}=\{B, G, R\}$

Empty Set

- $S 3=\{ \}=\varnothing$, has not elements, called empty set
- Three ways to represent a set
- Descriptive Form
- Tabular form
- Set Builder Form (Set Comprehension)

Example

- Descriptive Form
$S=$ set of all prime numbers
- Tabular form
$\{2,3,5, \ldots\}$
- Set Builder Form

$$
\{x: N \mid(\forall i \in\{2,3, \ldots, x-1\} \bullet \neg(i / x)) \bullet x\}
$$

Set Comprehension

Some More Examples
2. $\{x: N \mid x \equiv 0 \bmod 2 \bullet x\}=\{0,2,4, \ldots\}$
3. $\{x: N \mid x \equiv 1 \bmod 2 \bullet x\}=\{1,3,5, \ldots\}$
4. $\quad\{x: Z \mid x \geq 0 \wedge x \leq 6 \bullet x\}=\{0,1,2,3,4,5,6\}$
5. $\quad\left\{x: Z \mid x \geq 0 \wedge x \leq 6 \bullet x^{2}\right\}=\{0,1,4, \ldots, 25,36\}$
6. $\quad\left\{x: N \mid x \equiv 1 \bmod 2 \bullet x^{3}\right\}=\{1,27,125, \ldots\}$

All collections are not sets

- The prime numbers

Primes $==\{2,3,5,7, \ldots\}$

- The four oceans of the world Oceans == \{Atlantic, Arctic, Indian, Pacific\}
- The passwords that may be generated using eight lower-case letters, when repetition is allowed
- Hard working students in MSCS class session 2007-09 at Virtual University
- Intelligent students in your class
- Kind teachers at VU

Operators over Sets

Membership Operator

- If an element e is a member of set S then it is denoted as $e \in S$ and read e is in S. Let S is sub-collection of X

$$
\begin{aligned}
& X=a \operatorname{set} \\
& S \subseteq X
\end{aligned}
$$

Now

$$
\begin{aligned}
& \in: X \times P X \rightarrow \text { Bool } \\
& \quad \in(x, S)==1 \text { if } x \text { is in } S \\
& 0 \quad \text { if } x \text { is not in } S
\end{aligned}
$$

Subset:
If each element of A is also in B, then A is said to be a subset of $B, A \subseteq B$ and B is superset of $A, B \supseteq A$.

Let $X=$ a universal set, $A \subseteq X, B \subseteq X, \quad$ Now

$$
\subseteq: \mathrm{PX} \times \mathrm{PX} \rightarrow \text { Bool }
$$

$$
\subseteq(A, B)==1, \quad \text { if } \forall x: X, x \in A \Rightarrow x \in B
$$

$$
0 \quad \text { if } \exists x: X, x \in A \Rightarrow x \notin B
$$

Intersection

$$
\begin{array}{rl}
\cap: P X & x P X
\end{array} \rightarrow P X, ~ P(A, B)==\{x: X \mid x \in A \text { and } x \in B \bullet x\}
$$

Union

$$
\cup: P X \times P X \rightarrow P X
$$

$$
\cup(A, B)==\{x: X \mid x \in A \text { or } x \in B \bullet x\}
$$

Set Difference

$$
\begin{aligned}
& \backslash: P X \times P X \rightarrow P X \\
& \quad \backslash(A, B)==\{x: X \mid x \in A \text { but } x \notin B \bullet x\}
\end{aligned}
$$

Cardinality and Power Set of a given Set

- A set, S , is finite if there is an integer n such that the elements of S can be placed in a one-to-one correspondence with $\{1,2,3, \ldots, n\}$, and we say that cardinality is n. We write as: $|\mathrm{S}|=\mathrm{n}$

Power Set

- How many distinct subsets does a finite set on n elements have? There are 2^{n} subsets.
- How many distinct subsets of cardinality k does a finite set of n elements have?

There are

$$
C(n, k)={ }^{n} C_{k}=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Partitioning of a set

A partition of a set A is a set of non-empty subsets of A such that every element x in A exactly belong to one of these subsets.
Equivalently, set P of subsets of A, is a partition of A

1. If no element of P is empty
2. The union of the elements of P is equal to A. We say the elements of P cover A.
3. The intersection of any two elements of P is empty. That means the elements of P are pair wise disjoints

Mathematical Way of Defining Partitioning

A partition P of a set A is a collection $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ such that following are satisfied

1. $\forall A_{i} \in P, A_{i} \neq \varnothing$,
2. $A_{i} \cap A_{j}=\varnothing, \forall i, j \in\{1,2, \ldots, n\}$ and $i \neq j$
3. $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$

Example: Partitioning of Z Modulo 4

$$
\begin{aligned}
& \{x: Z \mid x \equiv 0 \bmod 4\}=\{\ldots-8,-4,0,4,8, \ldots\}=[0] \\
& \{x: Z \mid x \equiv 1 \bmod 4\}=\{\ldots-7,-3,1,5,9, \ldots\}=[1] \\
& \{x: Z \mid x \equiv 2 \bmod 4\}=\{\ldots-6,-2,2,6,10, \ldots\}=[2] \\
& \{x: Z \mid x \equiv 3 \bmod 4\}=\{\ldots-5,-1,3,7,11, \ldots\}=[3] \\
& \{x: Z \mid x \equiv 4 \bmod 4\}=\{\ldots,-8,-4,0,4,8, \ldots\}=[4]
\end{aligned}
$$

Sequence

- It is sometimes necessary to record the order in which objects are arranged, e.g.,
- Data may be indexed by an ordered collection of keys
- Messages may be stored in order of arrival
- Tasks may be performed in order of importance.
- Names can be sorted in order of alphabets etc.

Definition

- A group of elements in a specified order is called a sequence.
- A sequence can have repeated elements.

Sequence

Notation: Sequence is defined by listing elements in order, enclosed in parentheses. e.g.

$$
S=(a, b, c), T=(b, c, a), U=(a, a, b, c)
$$

Sequence is a set

$$
S=\{(1, a),(2, b),(3, c)\}=\{(3, c),(2, b),(1, a)\}
$$

Permutation: If all elements of a finite sequence are distinct, that sequence is said to be a permutation of the finite set consisting of the same elements.
No. of Permutations: If a set has n elements, then there are n ! distinct permutations over it.

Operators over Sequences

- Operators are for manipulations

Concatenation

- $(a, b, c) \square(d, a)=(a, b, c, d, a)$

Other operators

- Extraction of information: ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a})(2)=\mathrm{b}$
- Filter Operator: $\{a, d\} \square(a, b, c, d, a)=(a, d, a)$

Note:

- We can think how resulting theory of sequences falls within our existing theory of sets
- And how operators in set theory can be used in case of sequences

Tuples and Cross Product

- A tuple is a finite sequence.
- Ordered pair (x, y), triple (x, y, z), quintuple
- A k-tuple is a tuple of k elements.

Construction to ordered pairs

- The cross product of two sets, say A and B, is $A \times B=\{(x, y) \mid x \in A, y \in B\}$ $|A \times B|=|A||B|$
- Some times, A and B are of same set, e.g., $Z \times Z$, where Z denotes set of Integers

Binary Relations

Definition: If X and Y are two non-empty sets, then
$X \square Y=\{(x, y) \mid x \in X$ and $y \in Y\}$
Example: If $X=\{a, b\}, Y=\{0,1\}$ Then
$X \square Y=\{(a, 0),(a, 1),(b, 0),(b, 1)\}$
Definition: A subset of $X \square Y$ is a relation over $X \square Y$
Example: Compute all relations over $\mathrm{X} \square \mathrm{Y}$, where
$X=\{a, b\}, Y=\{0,1\}$
$R_{1}=\square, R_{2}=\{(a, 0)\}, R_{3}=\{(a, 1)\}$
$R_{4}=\{(b, 0)\}, R_{5}=\{(b, 1)\}, R_{6}=\{(a, 0),(b, 0)\}, \ldots$
There will be $2^{4}=16$ number of relations
Definition: $\mathrm{X} \square \mathrm{Y}==\square(\mathrm{X} \square \mathrm{Y})$
Example: If $X=\{a, b\}, Y=\{0,1\}$ Then
$X \square Y=\{(a, 0),(a, 1),(b, 0),(b, 1)\}$ and
$X \square Y=\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}, R_{9}, R_{10}, R_{11}, R_{12}, R_{13}, R_{14}, R_{15}, R_{16}\right\}$
Lemma 1: if \# $\mathrm{X}=\mathrm{m}, \# \mathrm{Y}=\mathrm{n}$ then \# $(\mathrm{X} \square \mathrm{Y})=2^{\mathrm{m} \times \mathrm{n}}$
Algorithm: All binary relations, cardinality of it

Equivalence Relation

A relation $R \subseteq X \times X$, is

- Reflexive: $(x, x) \in R, \forall x \in X$
- Symmetric: $(x, y) \in R \Rightarrow(y, x) \in R, \forall x, y \in X$
- Transitive: $(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$
- Equivalence: If reflexive, symmetric and transitive

Applications: Order Pairs in Terms of String

Definition

- A relation R over X, Y, Z is some subset of $X \times Y \times Z$ and so on

Example 1

- If $\Sigma=\{0,1\}$, then construct set of all strings of length 2 and 3
- Set of length $2=\Sigma \times \Sigma=\{0,1\} \times\{0,1\}=\{(0,0),(0,1),(1,0),(1,1)\}=\{00,01,10,11\}$
- Set of length $3=\Sigma \times \Sigma \times \Sigma=\{0,1\} \times\{0,1\} \times\{0,1\}$
$=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}$
$=\{000,010,100,110,001,011,101,111\}$

Example 2

- If $\Sigma=\{0,1\}$, then construct set of all strings of length ≤ 3
- Construction $=\{ \} \cup \Sigma \cup \Sigma \times \Sigma \cup \Sigma \times \Sigma \times \Sigma$

Similarly we can construct collection of all sets of length n

Partial Function

Definition: a partial function is a relation that maps each element of X to at most one element of
Y . $\mathrm{X} \square \mathrm{Y}$ denotes the set of all partial functions.

Function

Definition: if each element of X is related to unique element of Y then partial function is a total function denoted by $\mathrm{X} \square \mathrm{Y}$.
$X \cdot Y==\{f \mid f m, X$ er Y and
$\left.\left(x, y_{1}\right) m f O\left(x, y_{2}\right) m, f y_{1}=y_{2}, 6 x m, X, y_{1}, y_{2} m, Y\right\}$

$$
X \not X^{\top} Y==\{f \mid f m, X \cdot Y \text { and } \operatorname{dom} f=X\}
$$

Conclusion

- We started with sets and built other structures e.g.
- Sequences, Relations, Functions, etc.
- We discussed operators over above structures
- All these tools are fundaments of mathematics
- Sets play key role in algorithms design and analysis
- Finally proving correctness of algorithms, we required logic.
- Our next lecture will be on proving techniques

Lecture No 3 Logic and Proving Techniques

Today Covered

Tools used for proving algorithms

- Propositional Logic
- Predicate Logic
- Proofs using
- Truth Tables
- Logical Equivalences
- Counter Example
- Probability as Analysis Tool
- Series and Summation etc.

Propositional and Predicate Logic

Logical Connectives

- Proposition: Simplest statements also called atomic formula
- Propositions may be connected based on atomic formula.
- Logical connectives, in descending order of operator precedence

Symbol	Name	Pronunciation
\neg	negation	not
\wedge	conjunction	and
\vee	disjunction	or
\Rightarrow	implication	implies
\Leftrightarrow	equivalence	if and only if

Negation, Conjunction and Disjunction

Negation

Conjunction

- The conjunction $p \wedge q$ is true only if p and q both are true otherwise false
- The conjunction follows the commutative property, i.e. $p \wedge q=q \wedge p$ Disjunction
- The disjunction $p \vee q$ is false if both p and q are false otherwise true
- The disjunction follows the commutative property as well, i.e. $p \vee q=q \vee p$

Implication

- The p is antecedent and q is consequent
- The antecedent is stronger than consequent.
- Commutative property does not hold, i.e. $(p \Rightarrow q) \neq(q \Rightarrow p)$

p	q	$\mathrm{p} \Rightarrow \mathrm{q}$	$\mathrm{q} \Rightarrow \mathrm{p}$	$\neg \mathrm{p} \vee \mathrm{q}$
t	t	t	t	t
t	f	f	t	f
f	t	t	f	t
f	f	t	t	t

Bi-implication

The equivalence $p \Leftrightarrow q$ means $p \Rightarrow q \& q \Rightarrow p$
Commutative property does hold, i.e.
$(p \Leftrightarrow q)=(q \Leftrightarrow p)$

p	q	$\mathrm{p} \Rightarrow \mathrm{q}$	$\mathrm{q} \Rightarrow \mathrm{p}$	$\mathrm{p} \Rightarrow \mathrm{q} \& \mathrm{q} \Rightarrow \mathrm{p}$
t	t	t	t	t
t	f	f	t	f
f	t	t	f	f
f	f	t	t	t

Predicates and Quantifiers

Predicate: $\mathrm{P}(\mathrm{x}) \equiv \mathrm{x}<5$
Example: $\forall \mathrm{x}: \mathrm{N} \mid \mathrm{x}^{2}=\mathrm{x} \bullet \mathrm{x}<2$
For all quantifier

- $\forall x, P(x)$ is true $\Leftrightarrow P(x)$ is true for all x.

Existential Quantifier

- $\exists x, P(x)$ is true $\Leftrightarrow P(x)$ is true for some value of x.

Logical Equivalences

- $\quad \forall x, P(x)$ is logically equivalent to $\neg(\exists \mathrm{x}, \neg \mathrm{P}(\mathrm{x}))$
- $\exists \mathrm{x}, \mathrm{P}(\mathrm{x})$ is logically equivalent to $\neg(\forall \mathrm{x}, \neg \mathrm{P}(\mathrm{x}))$
- $\forall x,(P(x) \Rightarrow Q(x))$ means $\forall x, \neg P(x) \vee Q(x)$

Proving Techniques

Proof using Truth Table: $(p \wedge q \Rightarrow r) \Rightarrow(p \Rightarrow(q \Rightarrow r))$

p	q	r	$(\mathrm{p} \wedge \mathrm{q} \Rightarrow \mathrm{r}) \Rightarrow(\mathrm{p} \Rightarrow(\mathrm{q} \Rightarrow \mathrm{r}))$				
t	t	t	t	t	t	t	t
t	t	f	t	f	t	f	f
t	f	t	f	t	t	t	t
t	f	f	f	t	t	t	t
f	t	t	f	t	t	t	t
f	t	f	f	t	t	t	f
f	f	t	f	t	t	t	t
f	f	f	f	t	t	t	t

De Morgan's Laws

1. $\neg(\mathrm{p} \wedge \mathrm{q})=\neg \mathrm{p} \vee \neg \mathrm{q}$

p	q	$\mathrm{p} \wedge \mathrm{q}$	$\neg(\mathrm{p} \wedge \mathrm{q})$	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\neg \mathrm{p} \vee \neg \mathrm{q}$
t	t	t	f	f	f	f
t	f	f	t	f	t	t
f	t	f	t	t	f	t
f	f	f	t	t	t	t

2. $\neg(\mathrm{p} \vee \mathrm{q})=\neg \mathrm{p} \wedge \neg \mathrm{q}$

p	q	$\mathrm{p} \vee \mathrm{q}$	$\neg(\mathrm{p} \vee \mathrm{q})$	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\neg \mathrm{p} \wedge \neg \mathrm{q}$
t	t	t	f	f	f	f
t	f	t	f	f	t	f
f	t	t	f	t	f	f
f	f	f	t	t	t	t

Proof using Counter Example, Contraposition

Counter Example
To prove $\forall x(A(x) \Rightarrow B(x))$ is false, we show some object x for which $A(x)$ is true and $B(x)$ is false.

Proof

$\neg(\forall x(A(x) \Rightarrow B(x))) \Leftrightarrow$
$\exists \quad \mathrm{x}, \neg(\mathrm{A}(\mathrm{x}) \Rightarrow \mathrm{B}(\mathrm{x}))) \Leftrightarrow$
$\exists x, \neg(\neg A(x) \vee B(x)) \Leftrightarrow$
$\exists \mathrm{x}, \mathrm{A}(\mathrm{x}) \wedge \neg \mathrm{B}(\mathrm{x}))$

Contraposition

- To prove $A \Rightarrow B$, we show $(\neg B) \Rightarrow(\neg A)$
- $\quad x$ is divisible by $4 \Rightarrow x$ is divisible by $2 \Leftrightarrow$
- x is not divisible by $2 \Rightarrow x$ is not divisible by $4 \Leftrightarrow$

Proof by Contradiction

Contradiction

- To prove $A \Rightarrow B$,

Steps in Proof

- We assume A and to prove that B
- On contrary suppose that $\neg B$ and
- Then prove B, it will be contradiction

Further analysis

- $A \Rightarrow B \quad \Leftrightarrow(A \wedge \neg B) \Rightarrow B \quad$ Contradiction
- $A \Rightarrow B \Leftrightarrow(A \wedge \neg B) \quad$ is false
- Assuming $(A \wedge \neg B)$ is true, and discover a contradiction (such as $\mathrm{A} \wedge \neg \mathrm{A}$), then conclude $(A \wedge \neg B)$ is false, and so $A \Rightarrow B$.

Problem: Proof by Contradiction

Prove:

$$
[B \wedge(B \Rightarrow C)] \Rightarrow C \text {, by contradiction }
$$

Proof:
Suppose $[B \wedge(B \Rightarrow C)]$, to prove C
On contrary, assume $\neg C$
$\neg C \wedge[B \wedge(B \Rightarrow C)] \quad$ must be true
$\Rightarrow \neg C \wedge[B \wedge(\neg B \vee C)]$
$\Rightarrow \neg C \wedge[(B \wedge \neg B) \vee(B \wedge C)]$
$\Rightarrow \neg C \wedge[f \vee(B \wedge C)]$
$\Rightarrow \neg C \wedge B \wedge C=\neg C \wedge C \wedge B=f \wedge B=f$
\Rightarrow False, Contradiction $\Rightarrow C$

Rules of Inference

- A rule of inference is a general pattern that allows us to draw some new conclusion from a set of given statements. If we know P then we can conclude Q.
Modus ponens
If $\{B \wedge(B \Rightarrow C)\}$ then $\{C\}$, example in last slide
Proof:
Suppose $B \wedge(B \Rightarrow C)$ then
B
$B \Rightarrow C$

Rules of Inference

Syllogism
If $\{A \Rightarrow B \wedge B \Rightarrow C\}$ then $\{A \Rightarrow C\}$
Proof

- Suppose $A \Rightarrow B \wedge B \Rightarrow C, \quad$ To prove $A \Rightarrow C$
- B
- C

Rule of cases
If $\{B \Rightarrow C \wedge \neg B \Rightarrow C\}$ then $\{C\}$
B, true, implies C true
$\neg B$, true, implies C true

Two Valued Boolean Logic

1. Boolean values $=B=\{0,1\}$, there are two binary operations:

- $+=$ or $=v$
- $\cdot=$ and $=\wedge$

2. Closure properties:

- $\forall x, y \in B, x+y \in B$
- $\forall x, y \in B, x . y \in B$

3. Identity element:

- $x+0=0+x=x$
- $x \cdot 1=1 . x=x$

4. Commutative:

- $x+y=y+x$
- $x \cdot y=y \cdot x$

5. Distributive:

- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $x+(y \cdot z)=(x+y) \cdot(x+z)$

6. Complement:

- $\forall x \in B, \exists x^{\prime} \in B$ such that $x+x^{\prime}=1, x \cdot x^{\prime}=0$

Tautologies and Truth Table

Tautology:

- Any statement which is always true is called a tautology

Example

- Show $[B \wedge(B \Rightarrow C)] \Rightarrow C$ is a tautology:

Proof

B	C	$(B \Rightarrow C)$	$(B \wedge(B \Rightarrow C))$	$(B \wedge(B \Rightarrow C)) \Rightarrow$
0	0	1	0	C
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

- For every assignment for B and C, the statement is True, hence the above statement is a tautology.

Probability as Analysis Tool

Elementary events

- Suppose that in a given situation an event, or an experiment, may have any one, and only one, of k outcomes, $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$. Assume that all these outcomes are mutually exclusive.

Universe

The set of all elementary events is called the universe of discourse and is denoted

$$
\mathrm{U}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\} .
$$

Probability of an outcome s_{i}

- Associate a real number $\operatorname{Pr}\left(\mathrm{s}_{\mathrm{i}}\right)$, such that

$$
\begin{aligned}
& 0 \leq \operatorname{Pr}\left(\mathrm{s}_{\mathrm{i}}\right) \leq 1 \text { for } 1 \leq \mathrm{i} \leq \mathrm{k} ; \\
& \operatorname{Pr}\left(\mathrm{s}_{1}\right)+\operatorname{Pr}\left(\mathrm{s}_{2}\right)+\ldots+\operatorname{Pr}\left(\mathrm{s}_{\mathrm{k}}\right)=1
\end{aligned}
$$

Event

- Let $\mathrm{S} \subseteq \mathrm{U}$. Then S is called an event, and

$$
\operatorname{Pr}(S)=\sum_{s_{i} \in S} \operatorname{Pr}\left(s_{i}\right)
$$

Sure event

- $\mathrm{U}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\}$, if $\mathrm{S}=\mathrm{U}$

Impossible event

- $S=\varnothing, \operatorname{Pr}(\varnothing)=0$

$$
\operatorname{Pr}(S)=\sum_{s_{i} \in S} \operatorname{Pr}\left(s_{i}\right)=1
$$

Arithmetic and Geometric Series

$$
\begin{aligned}
& \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{2 n^{3}+3 n^{2}+n}{6} \\
& \sum_{k=1}^{n} i^{k}=i+i^{2}+\ldots+i^{n}=\frac{i\left(i^{n}-1\right)}{i-1} \\
& \sum_{i=1}^{n} 2^{i}=2^{n}-1 \quad \sum_{i=1}^{k} i 2^{i}=(k-1) 2^{k+1}+2
\end{aligned}
$$

Conclusion

- Propositional Logic
- Predicate Logic
- We have discussed various techniques of proving
- Truth Tables
- Logical Equivalence
- Counter Example
- Contraposition
- Contradiction
- Rule of Inference
- Probability can be used for average cost analysis
- Series and summation are very helpful in simplification

Lecture No 4
 Mathematical Induction
 Proving, Validation \& Verification

Today Covered

In this lecture, we will cover the following

- What is Mathematical Induction?
- Why is Mathematical Induction Valid ?
- Proving problems using Induction
- Proving hard problems using Induction
- Strong Mathematical Induction
- Proving Problems using Strong Induction
- Conclusion

What is Mathematical Induction?

- Mathematical induction is a powerful, yet straight-forward method of proving statements whose domain is a subset of the set of integers.
- Usually, a statement that is proven by induction is based on the set of natural numbers.
- This statement can often be thought of as a function of a number n, where $n=1,2,3, \ldots$.
- Proof by induction involves three main steps

Proving the base of induction
Forming the induction hypothesis
Proving that the induction hypothesis holds true for all numbers in the domain.
Let $P(n)$ be the predicate defined for any positive integers n, and let n_{0} be a fixed integer.
Suppose the following two statements are true

1. $P\left(n_{0}\right)$ is true.
2. For any positive integers $k, k \geq n_{0}$, if $P(k)$ is true then $P(k+1)$ is true.

If both of the above statements are true then the statement:
$\forall n \in N$, such that $n \geq n_{0}, P(n)$ is also true

Steps in Proving by Induction

Claim: $P(n)$ is true for all $n \in Z^{+}$, for $n \geq n_{0}$

1. Basis

- Show formula is true when $\mathrm{n}=\mathrm{n}_{0}$

2. Inductive hypothesis

- Assume formula is true for an arbitrary $\mathrm{n}=\mathrm{k}$ where, $\mathrm{k} \in \mathrm{Z}^{+}$and $\mathrm{k} \geq \mathrm{n}_{0}$

3. To Prove Claim

- Show that formula is then true for $\mathrm{k}+1$

Note: In fact we have to prove

1) $P\left(n_{0}\right)$ and
2) $P(k) \Rightarrow P(k+1)$

Mathematical Way of Expressing Induction

- Basis step.

Show that proposition $\mathrm{P}(1)$ is true.

- Inductive step.

Show that for every positive integer n, the implication $P(n) \rightarrow P(n+1)$ is true.
$P(n)$ for a fixed n is called inductive hypothesis.
$[P(1) \wedge \forall n,(P(n) \rightarrow P(n+1))] \rightarrow \forall n, P(n)$

Well Ordering and Modus Ponens Principal

Definition (Well-Ordering Principle)

- The Well-ordering Principle is the following statement
"every nonempty set of positive integers contains a least element"
- In a mathematical way we can define this Principle as:
there is a in S such that $\mathrm{a} \leq \mathrm{b}$ for all b in S i.e.
$\exists a \in S$, such that $a \leq b, \forall b \in S$
- And we say that set S is well-ordered with respect to \leq.
- Modus Ponens Principal

$$
\underset{p}{p} \Rightarrow q
$$

Hence, q

Why Mathematical Induction is Valid?

- Let us suppose that $P(1)$ is true, and that
$\forall n(P(n) \rightarrow P(n+1))$ is also true.
- Claim: $\forall n P(n)$ is true
- Assume proposition $\forall \mathrm{n}, \mathrm{P}(\mathrm{n})$ is false, i. e, there are some positive integers for which $P(n)$ is false.
- Let S be the set of those n's. By well-ordering property, S has a least element, suppose, k.
- As $1 \notin S$, so $1<k$, so $k-1$ is a positive
- Since $k-1<k$, hence $k-1 \notin S$. So $P(k-1)$ is true.
- By modus ponens, $P((k-1)+1)=P(k)$ is true.
- Contradiction, hence $\forall \mathrm{n}, \mathrm{P}(\mathrm{n})$

Another Reason for Validity?

Basis Step
First suppose that we have a proof of $P(0)$.
Inductive Hypothesis

$$
\forall \mathrm{k}>0, \quad \mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)
$$

How it is proved $\forall \mathrm{n}>0$?

$$
P(0) \Rightarrow P(1)
$$

$$
P(1) \Rightarrow P(2)
$$

$$
P(2) \Rightarrow P(3)
$$

Iterating gives a proof of $\forall \mathrm{n}, \mathrm{P}(\mathrm{n})$. This is another way of proving validity of mathematical Induction.

Proof by Induction

Example 1

- Prove that $\mathrm{n}^{2} \geq \mathrm{n}+100 \quad \square \mathrm{n} \geq 11$

Solution

Let $P(n)^{*} n^{2} \geq n+100$	$n \geq 11$
1. $P(11)^{*} 11^{2} \geq 11+100 \square 121 \geq 111$, true	

2. Suppose predicate is true for $\mathrm{n}=\mathrm{k}$, i.e.

$$
P(k)^{*} k^{2} \geq k+100, \text { true }
$$

3. Now it can be proved that

$$
P(k+1)^{*}(k+1)^{2} \geq(k+1)+100
$$

Û $\mathrm{k}^{2}+2 \mathrm{k}+1 \geq \mathrm{k}+1+100 \square \mathrm{k}^{2}+\mathrm{k} \geq 100$ (by 1 and 2)

$$
\text { Hence } P(k) \Rightarrow P(K+1)
$$

Validity of Proof

Example 1

- Prove that $n^{2} \geq n+100 \quad \square \mathrm{n} \geq 11$

Solution

Initially, base case
Solution set $=\{11\}$
By, $P(k) \Rightarrow P(K+1) * P(11) \Rightarrow P(12)$, taking $k=11$
Solution set $=\{11,12\}$
Similarly, $P(12) \Rightarrow P(13)$, taking $k=12$
Solution set $=\{11,12,13\}$
And, $P(13) \Rightarrow P(14)$, taking $k=13$
Solution set $=\{11,12,13,14\}$
And so on

Another Easy Example

Example 2

Use Mathematical Induction to prove that sum of the first n odd positive integers is n^{2}.

Proof

- Let $P(n)$ denote the proposition that
$\sum_{i=1}^{n}(2 i-1)=n^{2}$
- Basis step : $\mathrm{P}(1)$ is true, since $1=1^{2}$
- Inductive step : Let $P(k)$ is true for a positive integer k, i.e., $1+3+5+\ldots+(2 k-1)=k^{2}$
- Note that: $1+3+5+\ldots+(2 k-1)+(2 k+1)=k^{2}+2 k+1=(k+1)^{2} \therefore P(k+1)$ true, by induction, $P(n)$ is true for all $n \in Z^{+}$

Another Proof

$$
\sum_{i=1}^{n}(2 i-1)=2 \sum_{i=1}^{n} i-n=n(n+1)-n=n^{2}
$$

Proving Inequalities

Example 3

- Use mathematical Induction to prove that the inequality

$$
\mathrm{n}<2^{\mathrm{n}} \text { for all } \mathrm{n} \in \mathrm{Z}^{+}
$$

Proof

- Let $\mathrm{P}(\mathrm{n})$ be the proposition that $\mathrm{n}<2^{\mathrm{n}}$
- Basis step : $P(1)$ is true since $1<2^{1}$.
- Inductive step :
- Assume that $P(n)$ is true for a positive integer $n=k$, i.e., $\mathrm{k}<2^{\mathrm{k}}$.
- Now consider for $\mathrm{P}(\mathrm{k}+1)$:

Since, $k+1<2^{k}+1 \leq 2^{k}+2^{k}=2.2^{k}=2^{k+1}$
$\therefore \mathrm{P}(\mathrm{k}+1)$ is true.
It proves that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{Z}^{+}$.

Example 4: Harmonic Numbers

The harmonic numbers $\mathrm{H}_{\mathrm{k}}, \mathrm{k}=1,2,3, \ldots$, are
defined by $H_{k}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k}$
Use mathematical induction to show that $H_{2^{n}} \geq 1+\frac{n}{2}$ whenever n is a nonnegative integer.
Proof
Let $\mathrm{P}(\mathrm{n})$ be the proposition that $\quad H_{2^{n}} \geq 1+n / 2$
Basis step :
$\mathrm{P}(0)$ is true, since, $\quad H_{2^{\circ}}=H_{1}=1 \geq 1+0 / 2=1$
Inductive step
Assume that $\mathrm{P}(\mathrm{k})$ is true for some $\mathrm{k}, H_{2^{k}} \geq 1+k / 2$

Example 4: Harmonic Numbers

Now consider

$$
\begin{aligned}
H_{2^{k+1}} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}=2^{k}+2^{k}} \\
& =H_{2^{k}}+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}} \\
& \geq\left(1+\frac{k}{2}\right)+\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}} \\
& \geq\left(1+\frac{k}{2}\right)+\frac{1}{2^{k}+2^{k}}+\frac{1}{2^{k}+2^{k}}+\cdots+\frac{1}{2^{k}+2^{k}} \\
& =\left(1+\frac{k}{2}\right)+\frac{2^{k}}{2^{k}+2^{k}}=1+\frac{k}{2}+\frac{1}{2}=1+\frac{k+1}{2}
\end{aligned}
$$

Hence the statement is true for all $n \in \mathrm{Z}^{+}$.

Strong Mathematical Induction

- Let $P(n)$ be a predicate defined for integers n, and a and b are fixed integers with $a \leq b$.
- Suppose the following statements are true:

1. $P(a), P(a+1), \ldots, P(b)$ are all true
(basis step)
2. For any integer $k>b$, if $P(i)$ is true for all integers i with $\mathrm{a} \leq \mathrm{i}<\mathrm{k}$,
then $P(k)$ is true. (inductive step)

- Then $P(n)$ is true for all integers $n \geq a$.

Example 1: Divisibility by a Prime

Theorem:

- For any integer $\mathrm{n} \geq 2, \mathrm{n}$ is divisible by a prime.

Proof

(by strong mathematical induction):

- Basis step:

The statement is true for $\mathrm{n}=2$. This is because $2 \mid 2$ and 2 is a prime number.
Inductive step:
Assume the statement is true for all i with $2 \leq \mathrm{i}<\mathrm{k}$ (inductive hypothesis) ;
To show that it is true for k.

Example 1: Divisibility by a Prime

- We know that $\forall \mathrm{i} \in \mathbf{Z}$, with $2 \leq \mathrm{i}<\mathrm{k}, \mathrm{P}(\mathrm{i})$, i.e. i is divisible by a prime number.
- Now we show $P(k)$, i.e., k is divisible by a prime.

Take two cases:
Case $1: \mathrm{k}$ is prime.
Then k is divisible by itself. And nothing to prove
Case 2: k is composite.
Then $k=a \cdot b$, where $2 \leq a<k$ and $2 \leq b<k$
Based on (1), p|a for some prime p.
Based on Case 2, a|k
By transitivity, p|a and a|k $\Rightarrow \mathrm{p} \mid \mathrm{k}$
Thus, $\mathrm{P}(\mathrm{n})$ is true by strong induction.

Example 2: Another Example in Number Theory

If $\mathrm{n} \in \mathrm{Z}, \mathrm{n}>1$, then n can be written as product of primes.

Proof :

Let $\mathrm{P}(\mathrm{n}) \equiv \mathrm{n}$ can be written as the product of primes.
Basis: $P(2)$ is true, since 2 is the first prime number
Inductive : Assume that the statement is true for $n=k$, i.e.
$P(2), P(3), \ldots, P(k)$ can be written as product of primes.
Prove that: true for $n=k$, i.e. $P(k+1)$ is product of primes.
Case $1: k+1$ is prime, then nothing to prove
Case $2: k+1$ is composite, then

$$
k+1=x y \text {, where } 2 \leq x \leq y<k+1
$$

Inductive hypothesis, a and b are product of primes.
Hence $P(k+1)$ can be written as product of primes.

Any Amount Limited Coins: More Steps in Basis

Statement
Show that any amount in cents ≥ 8 cents can be obtained using 3 cents and 5 cents coins only.
Proof
We have to prove that, amount $=3 . m+5 . n, m \geq 0, n \geq 0$
Basis Step
This time check for a five particular values:

$$
\begin{aligned}
& 8=1.3+1.5 \\
& 9=3.3 \\
& 10=2.5 \\
& 11=2.3+1.5 \\
& 12=4.3
\end{aligned}
$$

Now we generalize it?

Any Amount Limited Coins: More Steps in Basis

Let $P(n)$ be the statement that:
" n cents can be obtained using 3 and 5 cents".
Inductive Hypothesis
We want to show that

$$
P(k) \text { is true } \Rightarrow P(k+1), \forall k \geq 8
$$

There are two cases now
Case 1
$P(k)$ is true and k cents contain at least one 5 coin.
Case 2
$P(k)$ true, k cents do not contain any coin of 5 cent.

Case 1

- $P(k)$ is true and k cents contain at least one 5 coin.
- Since $P(k)$ is true

$$
k \geq 8
$$

Hence k can be expressed as

$$
\begin{aligned}
& k=3 \cdot m+5 \cdot n \quad m \geq 0 \text { and } n \geq 1 \\
& k+1=3 \cdot m+5 \cdot n+1 \\
& k+1=3 \cdot m+5 \cdot(n-1)+1+5 \\
& k+1=3 \cdot(m+2)+5 \cdot(n-1), \quad m \geq 2 \text { and } n \geq 0
\end{aligned}
$$

Hence the statement is true for $\mathrm{n}=\mathrm{k}+1$
Case 2

- $P(k)$ is true and k cents do not contain any coin of 5 cent. for $k \geq 8$ Hence k can be expressed as

$$
\begin{array}{ll}
k=3 \cdot m & m \geq 3 \\
k+1=3 .(m-3)+9+1 & \\
k+1=3 .(m-3)+2 \cdot 5 & m^{\prime} \geq 0 \text { and } n=2 \\
k+1=3 . m^{\prime}+5 \cdot n &
\end{array}
$$

- Hence the statement is true for $n=k+1$
- Hence $P(k+1)$ is true

Lecture No 5

Strong Mathematical Induction
(Proving, Validation and Verification, etc.)

Today Covered

- Generalization of Demargon's Laws
- Strong Mathematical Induction
- Converting problems to be proved using strong mathematical induction
- Proving Problems using Strong Induction
- Fibonacci Problem and its Sequence
- Construction of Mathematical Model
- Explicit Formula Computing Fibonacci Numbers
- Recursive Algorithms
- Conclusion

Proof: Generalized Demargon's Law by Induction

Prove $\bigcap_{j=1}^{n} A_{j}=\bigcup_{j=1}^{n} \overline{A_{j}}$ when $\mathrm{n} \geq 2$, i.e., $\left(\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{n}}\right)$
Proof
Basis step: Since, $\left(\overline{A_{1} \cap A_{2}}=\overline{A_{1}} \cup \overline{A_{2}}\right)$ true for $\mathrm{n}=2$
Induction step: Assume the result is true $\mathrm{n}=\mathrm{k}$ and then prove for $\mathrm{n}=\mathrm{k}+1$.

$$
\begin{aligned}
\overline{\bigcap_{j=1}^{k+1} A_{j}}=\stackrel{\bigcap_{j=1}^{k} A_{j} \cap A_{k+1}}{ } & \\
& =\overline{\bigcap_{j=1}^{k} A_{j}} \cup \overline{A_{k+1}} \\
& =\bigcup_{j=1}^{k} \overline{A_{j}} \cup \overline{A_{k+1}} \text { (by induction hy pothesis) } \\
& =\bigcup_{j=1}^{k+1} \overline{A_{j}}
\end{aligned}
$$

Postage Ticket: Again More Steps in Basis

Prove that postage ticket of amount ≥ 12 cents can be formed using only 4 cent and 5 cent stamps.
Proof
Let $P(n) \equiv n$ cents can be formed using only 4 and 5 cent
$\mathrm{P}(\mathrm{n}) \equiv \mathrm{n}=4 \mathrm{~s}+5 \mathrm{t} \quad \mathrm{s} \geq 0$, and $\mathrm{t} \geq 0 \quad \forall \mathrm{n} \geq 12$
Basis: $\mathrm{P}(12)$ is true, since $12=4 \times 3$;
$P(13)$ is true, since $13=4 \times 2+5 \times 1$;
$P(14)$ is true, since $14=4 \times 1+5 \times 2$;
$P(15)$ is true, since $15=5 \times 3$;
Inductive : Assume $\mathrm{P}(12), \mathrm{P}(13), \ldots, \mathrm{P}(\mathrm{k})$ are true.
Now prove for $P(k+1) \quad(k-3 \geq 12)$
Suppose k-3 $=4 \times s+5 \times \mathrm{t}$.
Then $\mathrm{k}+1=4 \times(\mathrm{s}+1)+5 \times \mathrm{t}$. true for $\mathrm{n}=\mathrm{k}+1$.
By Strong Induction, $P(n)$ is true if $n \in Z$ and $n \geq 12$.

Proving a Property of a Sequence

Proposition:
Suppose $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:
$a_{0}=1, a_{1}=2, a_{2}=3$,
$a_{k}=a_{k-1}+a_{k-2}+a_{k-3}$ for all integers $k \geq 3$.
Then $a_{n} \leq 2^{n}$ for all integers $n \geq 0$.
$P(n)$
Proof (by strong induction)
Basis step:
The statement is true

```
for \(n=0: a_{0}=1 \leq 1=2^{0}\)
\(P(0)\)
for \(n=1: a_{1}=2 \leq 2=2^{1}\)
\(P(1)\)
for \(n=2: a_{2}=3 \leq 4=2^{2}\)

Inductive step:
For any \(k>2\), assume \(P(i)\) is true for all \(i\) with \(0 \leq i<k\), i.e., \(a_{i} \leq 2^{i}\) for all \(0 \leq i<k\) (1)

Show that
\(P(k)\) is true: \(\quad a_{k} \leq 2^{k}\)
Now consider
\[
\begin{align*}
a_{k} & =a_{k-1}+a_{k-2}+a_{k-3}  \tag{2}\\
& \leq 2^{k-1}+2^{-k-2}+2^{k-3} \quad \text { based on (1) } \\
& \leq 2^{0}+2^{1}+\ldots+2^{k-3}+2^{k-2}+2^{k-1} \\
& =2^{k}-1 \leq 2^{k}
\end{align*}
\]

Thus, \(P(n)\) is true by strong mathematical induction.
Hence it proves the result

\section*{Existence of Binary Integer Representation}

Theorem
Given any positive integer \(n\), there exists a unique representation of \(n\) in the form:
\[
\mathrm{n}=\mathrm{c}_{\mathrm{r} \cdot} \cdot 2^{r}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{r-1}+\ldots+\mathrm{c}_{1} \cdot 2^{1}+\mathrm{c}_{0}
\]
- Where \(r\) is non-negative integer
- \(c_{r}=1\), and \(c_{j}=0\) or \(1, \forall j=0,1,2, \ldots, r-1\)

Proof (by strong induction)
Let \(\mathrm{P}(\mathrm{n})\) be the statement that n can be written in the form
\(n=c_{r} \cdot 2^{r}+c_{r-1} \cdot 2^{r-1}+\ldots+c_{1} \cdot 2^{1}+c_{0}\)
Basis step:
If \(\mathrm{n}=1\), then \(\mathrm{n}=\mathrm{c}_{\mathrm{r}} . \mathrm{2}^{\mathrm{r}}=\mathrm{c}_{0}\), where \(\mathrm{r}=0\), and \(\mathrm{c}_{0}=1\)
Hence the statement is true for \(n=1\), i.e. \(P(1)\) is true
Inductive Hypothesis:
Let us suppose that statement is true for all \(\mathrm{i}, 1 \leq \mathrm{i}<\mathrm{k}\),
\(i=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\ldots+c_{1} \cdot 2^{1}+c_{0}\)
- \(c_{r}=1\), and \(c_{j}=0\) or \(1, \forall j=0,1,2, \ldots, r-1\)

Show that
Now we prove that statement is true for \(k\)

\section*{Case 1}

Suppose \(k\) is even, \(k / 2\) is an integer and \(k / 2<k\), hence
\[
\mathrm{k} / 2=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\ldots+\mathrm{c}_{1} \cdot 2^{1}+\mathrm{c}_{0}
\]

Let \(\mathrm{f}_{0}(x)=\frac{1}{2-x}\), and \(\mathrm{f}_{n+1}=\mathrm{f}_{0} \circ \mathrm{f}_{n}, n \geq 0\).
where \(r\) is non-negative integer and
\(c_{r}=1\), and \(c_{j}=0\) or \(1, \forall j=0,1,2, \ldots, r-1\)
\(\mathrm{k}=2 . \mathrm{c}_{\mathrm{r}} \cdot 2^{r}+2 . \mathrm{c}_{\mathrm{r}-1} \cdot 2^{r-1}+\ldots+2 . \mathrm{c}_{1} \cdot 2^{1}+2 . \mathrm{c}_{0}\)
\(\mathrm{k}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\ldots+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2^{1}\), true
which is the required form
Case 2
Let \(k \geq 3\), is odd, \((k-1) / 2\) is an integer and \(1 \leq(k-1) / 2<k\),
\[
(k-1) / 2=c_{r} \cdot 2^{r}+c_{r-1} \cdot 2^{r-1}+\ldots+c_{1} \cdot 2^{1}+c_{0}
\]
where \(r\) is non-negative integer and
\(c_{r}=1\), and \(c_{j}=0\) or \(1, \forall j=0,1,2, \ldots, r-1\)
Now, \(k-1=c_{r} .2^{r+1}+c_{r-1} \cdot 2^{r}+\ldots+c_{1} \cdot 2^{2}+c_{0} \cdot 2^{1}\)
And, \(k=c_{r} \cdot 2^{r+1}+c_{r-1} \cdot 2^{r}+\ldots+c_{1} \cdot 2^{2}+c_{0} \cdot 2^{1}+1\), true
- Hence by strong mathematical induction, \(\mathrm{P}(\mathrm{n})\) is true

\section*{Uniqueness}

Now we prove that n has a unique representation
\[
\mathrm{n}=\mathrm{c}_{\mathrm{r}} \cdot 2^{r}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\ldots+\mathrm{c}_{1} \cdot 2^{1}+\mathrm{c}_{0}
\]
- Where \(r\) is non-negative integer
- \(c_{r}=1\), and \(c_{j}=0\) or \(1, \forall j=0,1,2, \ldots, r-1\)

On contrary, suppose that \(n\) has two different representations, i.e.
\(\mathrm{n}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\ldots+\mathrm{c}_{1} \cdot 2^{1}+\mathrm{c}_{0}\)
(1) and
\(n=b_{r} \cdot 2^{r}+b_{r-1} \cdot 2^{r-1}+\ldots+b_{1} \cdot 2^{1}+b_{0}\)

Now subtract (2) from (1) we get
\(0=\left(b_{r}-c_{r}\right) 2^{r}+\left(b_{r-1}-c_{r-1}\right) \cdot 2^{r-1}+\ldots+\left(b_{0}-c_{0}\right) \Leftrightarrow\)
\(b_{r}=c_{r}, b_{r-1}=c_{r-1}, \ldots, b_{1}=c_{1}\). and \(b_{0}=c_{0}\), proved

\section*{More Complicated Example}

\section*{Problem}

Let \(\mathrm{f}_{0}(x)=\frac{1}{2-x}\), and \(\mathrm{f}_{n+1}=\mathrm{f}_{0} \circ \mathrm{f}_{n}, n \geq 0\).
- Find an expression for \(f_{n}\) and prove it by induction.

Solution
Since \(\mathrm{f}_{0}=\frac{1}{2-x}\) and \(\mathrm{f}_{\mathrm{n}+1}=\mathrm{f}_{\mathrm{o}} \circ \mathrm{f}_{0}\) therefore
\(\mathrm{f}_{1}(x)=\mathrm{f}_{0} \circ \mathrm{f}_{0}(\mathrm{x})=\mathrm{f}_{0}\left(\frac{1}{2-x}\right)=\frac{1}{2-\frac{1}{2-x}}=\frac{2-x}{3-2 x}\)
And, \(\mathrm{f}_{2}(x)=\mathrm{f}_{0} \circ \mathrm{f}_{1}(\mathrm{x})=\mathrm{f}_{0}\left(\frac{2-x}{3-2 x}\right)=\frac{1}{2-\frac{2-x}{3-2 x}}=\frac{3-2 x}{4-3 x}\)
And, \(\mathrm{f}_{3}(x)=\mathrm{f}_{0} \circ \mathrm{f}_{2}(\mathrm{x})=\mathrm{f}_{0}\left(\frac{3-2 x}{4-3 x}\right)\)
\[
=\frac{1}{2-\frac{3-2 x}{4-3 x}}=\frac{4-3 x}{5-4 x}
\]
\(\mathrm{f}_{\mathrm{n}-1}(\mathrm{x})=\mathrm{f}_{0}\left(\frac{n-(n-1) x}{(n+1)-n x}\right)\)
\[
=\frac{1}{2-\frac{n-(n-1) x}{(n+1)-n x}}=\frac{(n+1)-n x}{(n+2)-(n+1) x}
\]

Now generalized function is
\(\mathrm{f}_{\mathrm{n}}(x)=\frac{(n+1)-n x}{(n+2)-(n+1) x}\)
Now we prove this guess by mathematical Induction
Basis case: take \(\mathrm{n}=0\)
\(\mathrm{f}_{0}=\frac{1}{2-x}\), which is true
Inductive hypothesis: assume that statement is true \(\mathrm{n}=\mathrm{k}\)
\(\mathrm{f}_{\mathrm{k}}(x)=\frac{(k+1)-k x}{(k+2)-(k+1) x}\)
Claim: Now we have to prove that statement is true \(\mathrm{n}=\mathrm{k}+1\) \(\mathrm{f}_{\mathrm{k}+1}(x)=\frac{(k+1+1)-(k+1) x}{(k+1+2)-(k+1+1) x}=\frac{(k+2)-(k+1) x}{(k+3)-(k+2) x}\)
By definition:
\(\mathrm{f}_{\mathrm{k}+1}(x)=\mathrm{f}_{0}\left(\frac{(k+1)-k x}{(k+2)-(k+1) x}\right)=\frac{1}{2-\frac{(k+1)-k x}{(k+2)-(k+1) x}}\)
Aftersimplification, \(\mathrm{f}_{\mathrm{k}+1}(x)=\frac{(k+2)-(k+1) x}{(k+3)-(k+2) x}\), proved.

\section*{Lecture No 6 Fibonacci Sequences Natural Models}

\section*{Today Covered}

In this lecture we will cover the following:
- Fibonacci Problem and its Sequence
- Construction of Mathematical Model
- Explicit Formula Computing Fibonacci Numbers
- Recursive Algorithms
- Generalizations of Rabbits Problem and Constructing its Mathematical Models
- Applications of Fibonacci Sequences

\section*{Fibonacci Sequence}
- By studying Fibonacci numbers and constructing Fibonacci sequence we can imagine how mathematics is connected to apparently unrelated things in this universe.
- Even though these numbers were introduced in 1202 in Fibonacci's book Liber abaci, but these numbers and sequence are still fascinating and mysterious to people of today.
- Fibonacci, who was born Leonardo da Pisa gave a problem in his book whose solution was the Fibonacci sequence as we will discuss it today.

\section*{Statement:}
- Start with a pair of rabbits, one male and one female, born on January 1.
- Assume that all months are of equal length and that rabbits begin to produce two months after their own birth.
- After reaching age of two months, each pair produces another mixed pair, one male and one female, and then another mixed pair each month, and no rabbit dies.
How many pairs of rabbits will there be after one year?
Answer: The Fibonacci Sequence! 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

\section*{Construction of Mathematical Model}

- Total pairs at level \(k=\) Total pairs at level \(k-1+\) Total pairs born at level \(k\)
- Since

Total pairs born at level \(\mathrm{k}=\) Total pairs at level \(\mathrm{k}-2\)
- Hence by equation (1) and (2)

Total pairs at level \(k=\) Total pairs at level \(k-1+\) Total pairs at level \(k-2\)
- Now let us denote
\[
\mathrm{F}_{\mathrm{k}}=\text { Total pairs at level } \mathrm{k}
\]
- Now our recursive mathematical model will become
\[
F_{k}=F_{k-1}+F_{k-2}
\]

\section*{Computing Values using Mathematical Model}

Since \(F_{k}=F_{k-1}+F_{k-2}\)
\(F_{0}=0, F_{1}=1\)
- \(F_{2}=F_{1}+F_{0}=1+0=1\)
- \(F_{3}=F_{2}+F_{1}=1+1=2\)
- \(F_{4}=F_{3}+F_{2}=2+1=3\)
- \(F_{5}=F_{4}+F_{3}=3+2=5\)
- \(F_{6}=F_{5}+F_{4}=5+3=8\)
- \(\mathrm{F}_{7}=\mathrm{F}_{6}+\mathrm{F}_{5}=8+5=13\)
- \(\mathrm{F}_{8}=\mathrm{F}_{7}+\mathrm{F}_{6}=13+8=21\)
- \(\mathrm{F}_{9}=\mathrm{F}_{8}+\mathrm{F}_{7}=21+13=34\)
- \(F_{10}=F_{9}+F_{8}=34+21=55\)
- \(\mathrm{F}_{11}=\mathrm{F}_{10}+\mathrm{F}_{9}=55+34=89\)
- \(F_{12}=F_{11}+F_{10}=89+55=144\)

\section*{Explicit Formula Computing Fibonacci Numbers}

Theorem:
The fibonacci sequence \(F_{0}, F_{1}, F_{2}, \ldots\). Satisfies the recurrence relation
\(F_{k}=F_{k-1}+F_{k-2} \quad \forall k \geq 2\)
with initial condition \(F_{0}=F_{1}=1\)
Find the explicit formula for this sequence.
Solution:
The given fibonacci sequence
\(F_{k}=F_{k-1}+F_{k-2}\)
Let \(\mathrm{t}^{\mathrm{k}}\) is solution to this, then characteristic equation \(t^{2}-t-1=0\)

Fibonacci Sequence
\(t=\frac{1 \pm \sqrt{1+4}}{2}\)
\(t_{1}=\frac{1+\sqrt{5}}{2}, t_{2}=\frac{1-\sqrt{5}}{2}\)
For some real \(C\) and \(D\) fibonacci sequence satisfies the relation
\[
\begin{aligned}
& F_{n} \\
&=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n} \forall n \geq 0 \\
& n=0 \\
& F_{0}=C\left(\frac{1+\sqrt{5}}{2}\right)^{0}+D\left(\frac{1-\sqrt{5}}{2}\right)^{0} \\
& \Rightarrow \mathrm{~F}_{0}=C+D \\
& \Rightarrow C+D=0(1) \quad \because F_{0}=0
\end{aligned}
\]

Now \(n=1\)
\[
\begin{aligned}
& \mathrm{F}_{1}=C\left(\frac{1+\sqrt{5}}{2}\right)+D\left(\frac{1-\sqrt{5}}{2}\right) \\
\Rightarrow & \frac{1+\sqrt{5}}{2} \cdot C+\frac{1-\sqrt{5}}{2} \cdot D=1 \quad(2) \quad \because F_{1}=1
\end{aligned}
\]

Solving (1) and (2) simultaneously weget
C \(=\frac{1}{\sqrt{5}}, D=-\frac{1}{\sqrt{5}}\)
Hence
\(\mathrm{F}_{\mathrm{n}}=\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right)^{n}\)
After simplifying we get
\(\mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}\)
which is called the explicit formula for the Fibonacci sequence recurrence relation.
Let \(\Phi=\left(\frac{1+\sqrt{5}}{2}\right)\) and \(\ddot{\Phi}=\left(\frac{1-\sqrt{5}}{2}\right)\) then
\(\mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}} \Phi^{\mathrm{n}}-\frac{1}{\sqrt{5}} \Phi^{\mathrm{n}}\)

\section*{Verification of the Explicit Formula}

Example: Compute \(\mathrm{F}_{3}\)
Since \(F_{n}=\frac{1}{\sqrt{5}} \Phi^{n}-\frac{1}{\sqrt{5}} \Phi^{n}\) where \(\Phi=\left(\frac{1+\sqrt{5}}{2}\right)\) and \(\ddot{\Phi}=\left(\frac{1-\sqrt{5}}{2}\right)\) then
Now, \(\mathrm{F}_{3}=\frac{1}{\sqrt{5}}\left(\frac{1+3 \cdot 1^{2} \cdot \sqrt{5}+3 \cdot 1 \cdot 5+5 \sqrt{5}}{8}\right)-\frac{1}{\sqrt{5}}\left(\frac{1-3 \cdot 1^{2} \cdot \sqrt{5}+3 \cdot 1 \cdot 5-5 \sqrt{5}}{8}\right)\)
\(\mathrm{F}_{3}=\frac{1}{8 \cdot \sqrt{5}}(1+3 \cdot 1 \cdot \sqrt{5}+3 \cdot 1 \cdot 5+5 \sqrt{5})-\frac{1}{8 \cdot \sqrt{5}}(1-3 \cdot 1 \cdot \sqrt{5}+3 \cdot 1 \cdot 5-5 \sqrt{5})\)
\(\mathrm{F}_{3}=\frac{1}{8 \cdot \sqrt{5}}(1+3 \cdot 1 \cdot \sqrt{5}+3 \cdot 1 \cdot 5+5 \sqrt{5}-1+3 \cdot 1 \cdot \sqrt{5}-3 \cdot 1 \cdot 5+5 \sqrt{5})=2\)

\section*{Recursive Algorithm Computing Fibonacci Numbers}

Fibo-R(n)
\[
\begin{array}{ll}
\text { if } \mathrm{n}=0 & \text { then } 0
\end{array} \quad \text { Terminating conditions }
\]

\section*{Running Time of Recursive Fibonacci Algorithm}
- Least Cost: To find an asymptotic bound of computational cost of this algorithm, we can use a simple trick to solve this recurrence containing big oh expressions
- Simply drop the big O from the recurrence, solve the recurrence, and put the O back. Our recurrence
\[
T(n)=\left\{\begin{array}{lr}
O(1) & \text { if } n<2 \\
T(n-1)+T(n-2) & \mathrm{n} \geq 2
\end{array}\right.
\]
will be refined to
\[
T(n)=\left\{\begin{array}{l}
1 \quad \text { if } n<2 \\
T(n-1)+T(n-2) \quad \mathrm{n} \geq 2
\end{array}\right.
\]

\section*{Construction of Mathematical Model}


\section*{Running Time of Recursive Fibonacci Algorithm}
- Guess that \(F_{n+1}\) is the least cost to solve this recurrence. Why this guess?
\(\forall \mathrm{n} \geq 0, \mathrm{~T}(\mathrm{n}) \geq \mathrm{F}_{\mathrm{n}+1}\)
then \(F_{n+1}\) will be minimum cost for this recurrence
- We prove it by mathematical induction

\section*{Base Case}

There are two base cases
For \(\mathrm{n}=0, \mathrm{~T}(0)=1\) and \(\mathrm{F}_{1}=1\), hence \(\mathrm{T}(0) \geq \mathrm{F}_{1}\)
For \(n=1, T(1)=1\) and \(F_{2}=1\), hence \(T(1) \geq F_{2}\)
- Inductive Hypothesis
- Let us suppose that statement is true some \(k \geq 1 \quad T(k) \geq F_{k+1}\), for \(k=0,1,2, \ldots\) and \(\mathrm{k} \geq 1\)
- Now we show that statement is true for \(\mathrm{k}+1\)
- Now, \(T(k+1)=T(k)+T(k-1) \quad\) By definition on \(T(n)\)
\[
\begin{aligned}
& T(k+1)=T(k)+T(k-1) \geq F_{k+1}+F_{k}=F_{k+2} \text { Assumption } \\
& T(k+1) \geq F_{k+2}
\end{aligned}
\]
- Hence the statement is true for \(\mathrm{k}+1\).
- We can now say with certainty that running time of this recursive Fibonacci algorithm is at least \(\Omega\left(\mathrm{F}_{n+1}\right)\).
- Now we have proved that
\[
\begin{equation*}
T(n) \geq F_{n+1}, n \geq 0 \tag{1}
\end{equation*}
\]
- We already proved in solution to recursive relation that
\[
\begin{equation*}
\mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}} \Phi^{\mathrm{n}}-\frac{1}{\sqrt{5}} \Phi^{\mathrm{n}} \text { where } \Phi=\left(\frac{1+\sqrt{5}}{2}\right) \text { and } \ddot{\Phi}=\left(\frac{1-\sqrt{5}}{2}\right) \tag{2}
\end{equation*}
\]
\(t\) can be easily verified that \(F_{n} \geq \Phi^{n} / 5 \geq(3 / 2)^{n}\)
From the equations (1) and (2), \(T(n) \geq F_{n+1} \geq F_{n} \geq(3 / 2)^{n}\)
Hence we can conclude that running time of our recursive Fibonacci Algorithm is:
\(T(n)=\Omega(3 / 2)^{n}\)

\section*{Golden Ratio}
- W say that two quantities, \(x\) and \(y,(x<y)\), are in the golden ratio if the ratio between the sum, \(x+y\), of these quantities and the larger one, \(y\), is the same as the ratio between the larger one, y , and the smaller one x . \(\frac{x+y}{y}=\frac{y}{x} \approx 1.62\)
- Mathematicians have studied the golden ratio because of its unique and interesting properties.
\[
\begin{aligned}
& \Phi=\frac{1+\sqrt{5}}{2} \approx 1.62 \\
& x=\Phi-1 \approx 0.62, \\
& y=1 \\
& \text { of course } \mathrm{x}<\mathrm{y} \text { and } \\
& \frac{\mathrm{x}+\mathrm{y}}{\mathrm{y}}=\frac{y}{x} \text { i.e. } \frac{\Phi}{1}=\frac{1}{\Phi-1} \\
& \Leftrightarrow \Phi^{2}-\Phi-1=0
\end{aligned}
\]

\section*{Drawback in Recursive Algorithms}

Recursion Tree


\section*{Generalization of Rabbits Problem}

\section*{Statement:}
- Start with a pair of rabbits, one male and one female, born on January 1.
- Assume that all months are of equal length and that rabbits begin to produce two months after their own birth.
- After reaching age of two months, each pair produces two other mixed pairs, two male and two female, and then two other mixed pair each month, and no rabbit dies.

How many pairs of rabbits will there be after one year?

Answer: Generalization of Fibonacci Sequence! 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, ...

\section*{Construction of Mathematical Model}

- Total pairs at level \(\mathrm{k}=\)

Total pairs at level \(\mathrm{k}-1+\) Total pairs born at level k
- Since

Total pairs born at level \(\mathrm{k}=\) \(2 \times\) Total pairs at level k-2
- By (1) and (2), Total pairs at level \(k=\)

Total pairs at level \(k-1+2 \times\) Total pairs at level \(k-2\)
- Now let us denote
\[
\mathrm{F}_{\mathrm{k}}=\text { Total pairs at level } \mathrm{k}
\]
- Our recursive mathematical model:
\[
F_{k}=F_{k-1}+2 . F_{k-2}
\]
- General Model (m pairs production): \(\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}-1}+\mathrm{m} \cdot \mathrm{F}_{\mathrm{k}-2}\)

\section*{Generalization}
- Recursive mathematical model

> (one pair production)
\[
F_{k}=F_{k-1}+F_{k-2}
\]
- Recursive mathematical model

> (two pairs production)
\[
F_{k}=F_{k-1}+2 . F_{k-2}
\]
- Recursive mathematical model

> (m pairs production)
\[
F_{k}=F_{k-1}+m \cdot F_{k-2}
\]

\section*{Computing Values using Mathematical Model}

Since \(F_{k}=F_{k-1}+2 . F_{k-2} \quad F_{0}=0, F_{1}=1\)
- \(F_{2}=F_{1}+2 \cdot F_{0}=1+0=1\)
- \(F_{3}=F_{2}+2 \cdot F_{1}=1+2=3\)
- \(F_{4}=F_{3}+2 . F_{2}=3+2=5\)
- \(F_{5}=F_{4}+2 . F_{3}=5+6=11\)
- \(F_{6}=F_{5}+F_{4}=11+10=21\)
- \(F_{7}=F_{6}+F_{5}=21+22=43\)
- \(\mathrm{F}_{8}=\mathrm{F}_{7}+\mathrm{F}_{6}=43+42=85\)
- \(F_{9}=F_{8}+F_{7}=85+86=171\)
- \(\mathrm{F}_{10}=\mathrm{F}_{9}+\mathrm{F}_{8}=171+170=341\)
- \(F_{11}=F_{10}+F_{9}=341+342=683\)
- \(F_{12}=F_{11}+F_{10}=683+682=1365\).

\section*{Another Generalization of Rabbits Problem}

Statement:
- Start with a different kind of pair of rabbits, one male and one female, born on January 1.
- Assume all months are of equal length and that rabbits begin to produce three months after their own birth.
- After reaching age of three months, each pair produces another mixed pairs, one male and other female, and then another mixed pair each month, and no rabbit dies.

How many pairs of rabbits will there be after one year?

Answer: Generalization of Fibonacci Sequence!
\(0,1,1,1,2,3,4,6,9,13,19,28,41,60, \ldots\)

\section*{Construction of Mathematical Model}

- Total pairs at level \(\mathrm{k}=\)

Total pairs at level \(k-1+\) Total pairs born at level \(k\)
- Since

Total pairs born at level \(k=\) Total pairs at level \(k-3\)
- By (1) and (2)

Total pairs at level \(k=\)
Total pairs at level k-1 + Total pairs at level k-3
- Now let us denote
\(F_{k}=\) Total pairs at level \(k\)
- This time mathematical model: \(\quad F_{k}=F_{k-1}+F_{k-3}\)

\section*{Computing Values using Mathematical Model}

Since \(F_{k}=F_{k-1}+F_{k-3}\)
\(\mathrm{F}_{0}=0, \mathrm{~F}_{1}=\mathrm{F}_{2}=1\)
- \(F_{3}=F_{2}+F_{0}=1+0=1\)
- \(F_{4}=F_{3}+F_{1}=1+1=2\)
- \(F_{5}=F_{4}+F_{2}=2+1=3\)
- \(F_{6}=F_{5}+F_{3}=3+1=4\)
- \(\mathrm{F}_{7}=\mathrm{F}_{6}+\mathrm{F}_{4}=4+2=6\)
- \(\mathrm{F}_{8}=\mathrm{F}_{7}+\mathrm{F}_{5}=6+3=9\)
- \(F_{9}=F_{8}+F_{6}=9+4=13\)
- \(F_{10}=F_{9}+F_{7}=13+6=19\)
- \(F_{11}=F_{10}+F_{8}=19+9=28\)
- \(F_{12}=F_{11}+F_{9}=28+13=41 \ldots\)

\section*{More Generalization}
- Recursive mathematical model

> (one pair, production after three months)
\[
F_{k}=F_{k-1}+F_{k-3}
\]
- Recursive mathematical model
(two pairs, production after three months)
\[
F_{k}=F_{k-1}+2 . F_{k-3}
\]
- Recursive mathematical model
(m pairs, production after three months)
\[
F_{k}=F_{k-1}+m \cdot F_{k-3}
\]
- Recursive mathematical model

> (m pairs, production after n months)
\[
F_{k}=F_{k-1}+m \cdot F_{k-n}
\]

\section*{Applications of Fibonacci Sequences}

\section*{Fibonacci sequences}
- Are used in trend analysis
- By some pseudorandom number generators
- The number of petals is a Fibonacci number.
- Many plants show the Fibonacci numbers in the arrangements of the leaves around the stems.
- Seen in arrangement of seeds on flower heads
- Consecutive Fibonacci numbers give worst case behavior when used as inputs in Euclid's algorithm.
- As \(n\) approaches infinity, the ratio \(F(n+1) / F(n)\) approaches the golden ratio:
\[
\Phi=1.6180339887498948482 \ldots
\]

\section*{Applications of Fibonacci Sequences}

\section*{Fibonacci sequences}
- The Greeks felt that rectangles whose sides are in the golden ratio are most pleasing
- The Fibonacci number \(F(n+1)\) gives the number of ways for \(2 \times 1\) dominoes to cover a 2 x n checkerboard.
- Sum of the first \(n\) Fibonacci numbers is \(F(n+2)-1\).
- The shallow diagonals of Pascal's triangle sum to Fibonacci numbers.
- Except \(n=4\), if \(F(n)\) is prime, then \(n\) is prime.
- Equivalently, if \(n\) not prime, then \(F(n)\) is not prime.
- \(\operatorname{gcd}(F(n), F(m))=F(\operatorname{gcd}(n, m))\)

\title{
Lecture No 7 \\ Recurrence Relations \\ Mathematical Models, Analysis Techniques
}

\section*{Today Covered}
- What is Recursion?
- Recursive Mathematical Models
- Solving Recurrence Relations
- First Order Linear Homogenous Recurrence Relations, with Constant Coefficients
- Second Order Linear Homogenous Recurrence Relations, Constant Coefficients
- Characteristics of Second Order Recurrences
- Solution to Second order with distinct roots
- Solution to Second order with repeated roots
- General Homogenous Recurrences
- Characteristics and solution

\section*{What is Recursion?}
- Sometimes problems are too difficult or too complex to solve because these are too big.
- A problem can be broken down into sub-problems and find a way to solve these subproblems
- Then build up to a solution to the entire problem.
- This is the idea behind recursion
- Recursive algorithms break down problem in pieces which you either already know the answer, or can be solved applying same algorithm to each piece
- And finally combine the results of these sub-problems to find the final solution
- More concisely, a recursive function or definition is defined in terms of itself.
- Recursion is a computer algorithm that calls itself in a steps having a termination condition.
- The successive repetitions are processed up to the critical step where the condition is met.
- In recursive algorithms, each repetition is processed from the last one called to the first.
- Recursion is a wonderful technique for dealing with many problems where problems and sub-problems have same mechanism to solve it.

\section*{Merits and Demerits of Recursion}
- Recursive solutions are much easier to conceive of and code than their iterative counterparts.
- Every problem is not solvable using this approach

What kinds of problems are solved with recursion?
- Generally, problems which are defined in terms of themselves are usually good candidates for recursive techniques.
Example
- Finding factorial of a number is an easiest example one can think using recursion

\section*{Recursive Mathematical Model}
- Since \(n!\) can be computed as: \(5!=5^{*} 4^{*} 3^{*} 2^{*} 1\).
- If we have a close look at this, we notice that
\[
5!=5 * 4!.
\]
- Now if denote \(F(n)=n\) ! then it can be written as
\[
F(n)=n \cdot F(n-1)
\]
- Assume 0 ! = 1 i.e. \(F(0)=1\), and solve till termination
\[
\begin{gathered}
F(n)=n \cdot F(n-1)=n \cdot(n-1) \cdot F(n-2)=n \cdot(n-1) \cdot(n-2) \cdot F(n-3) \\
\ldots \\
F(n)=n \cdot(n-1) \cdot(n-2) \ldots 2 \cdot 1 \cdot F(0)=n \cdot(n-1) \cdot(n-2) \ldots 2 \cdot 1 \cdot 1
\end{gathered}
\]
\[
F(n)=\left\{\begin{array}{lc}
1 & \text { if } n=0 \\
n \cdot F(n-1) & \text { otherwise }
\end{array}\right.
\]

\section*{Solving Recurrence}
- The indispensable last step when analyzing an algorithm is often to solve a recurrence equation.
- With little experience recurrence equation can be solved by intelligent guesswork.
- However, there exist a powerful techniques that can be use to solve certain classes of recurrence almost automatically.
- This is a main topic of this lecture, techniques solving recurrence equations of form:
- First order linear homogenous recurrences
- Second order linear homogenous recurrences
- Higher order recurrences

First Order Linear Homogenous Recurrence Relations with Constant Coefficients (FOLHRRCC)

Definition and Examples of FOLHRRCC

\section*{Definition}
\(a_{k}=A \cdot a_{k-1} \quad \forall k \geq 1\)
where \(A\) is a real numbers and \(\mathrm{A} \neq 0\)
\begin{tabular}{ll}
\(a_{k}=2 \cdot a_{k-2}\) & \\
\(a_{k}=2 \cdot a_{k-2}\) & No \\
\(\mathrm{c}_{\mathrm{k}}=k \frac{1}{2} c_{k-1}\) & Yes \\
\(a_{k}=a_{k-1} a_{k-1}\) & No
\end{tabular}

\section*{Solving First Order Recurrences}

Solve the recurrence: \(\mathrm{b}_{\mathrm{k}}=a . b_{k-1} \quad\) if \(\mathrm{b}_{0}=\mathrm{c}\)
Solution
- \(\mathrm{b}_{\mathrm{k}}=\mathrm{a} \cdot \mathrm{b}_{\mathrm{k}-1}\)
- \(b_{k}=a \cdot\left(a \cdot b_{k-2}\right)=a^{2} \cdot b_{k-2}\)
- \(b_{k}=a^{2} \cdot\left(a \cdot b_{k-3}\right)=a^{3} \cdot b_{k-3}\)
- \(b_{k}=a^{k} \cdot b_{k-k}=a^{k} \cdot b_{0}\)
- \(b_{k}=a^{k} \cdot \mathrm{c}\)
- Now the explicit formula is \(\mathrm{c} . \mathrm{a}^{\mathrm{k}}\) which is a geometric sequence.
- Hence first order recurrence is nothing but G.S.

\section*{Example}
- Solve the recurrence: \(\mathrm{b}_{\mathrm{k}}=5 b_{k-1}\) if \(\mathrm{b}_{0}=3\)

Solution
- \(b_{k}=5 . b_{k-1}\)
- \(b_{k}=5 .\left(5 . b_{k-2}\right)=5^{2} . b_{k-2}\)
- \(b_{k}=5^{2} .\left(5 . b_{k-3}\right)=5^{3} . b_{k-3}\)
- ...
- \(b_{k}=5^{k} . b_{k-k}=5^{k} . b_{0}=5^{k} \cdot 3\)
- Now the solution sequence becomes
- \(3.5^{0}, 3.5^{1}, 3.5^{2}, 3.5^{3}, 3.5^{4}, \ldots, 3.5^{\mathrm{k}}, \ldots\)
- \(3,15,75,375, \ldots\) geometric sequence

Second Order Linear Homogenous Recurrence Relations with Constant Coefficients Definition and Examples of SOLHRRCC

\section*{Definition:}
\(a_{k}=A \cdot a_{k-1}+B \cdot a_{k-2} \quad \forall k \geq 2\)
where \(A\) and \(B\) are real numbers with \(B \neq 0\)
\(a_{k}=3 a_{k-1}+2 a_{k-2} \quad\) Yes
\(\mathrm{b}_{\mathrm{k}}=b_{k-1}+b_{k-2}+b_{k-3} \quad\) No
\(\mathrm{c}_{\mathrm{k}}=\frac{1}{2} c_{k-1}-\frac{3}{7} c_{k-2} \quad\) Yes

\section*{Some More Examples}
\(\mathrm{d}_{\mathrm{k}}=d_{k-1}^{2}+d_{k-1} \cdot d_{k-2} \quad\) No
\(\mathrm{e}_{\mathrm{k}}=2 e_{k-2} \quad\) Yes
\(\mathrm{f}_{\mathrm{k}}=2 f_{k-1}+1 \quad\) No
\(\mathrm{g}_{\mathrm{k}}=g_{k-1}+g_{\mathrm{k}-2} \quad\) Yes
\(\mathrm{h}_{\mathrm{k}}=(-1) h_{k-1}+(k-1) h_{k-2} \quad\) No

Theorem: Let A and B are real numbers. A recurrence of the form
\(a_{k}=A a_{k-1}+B a_{k-2}\)
is satisfied by the sequence
\[
1, t, t^{2}, \ldots . t^{n}, \ldots . t \neq 0
\]
where \(t\) is a non-zero real no, if and only if \(t\) satisfies the
equation: \(t^{2}-A t-B=0\)
Proof: Let us suppose that the sequence
\(1, t, t^{2}, \ldots, t^{n}, \ldots\), where,\(t \neq 0\)
Satisfies the recurrence relation
\(a_{k}=A a_{k-1}+B a_{k-2}\)

It mean each form of sequence is equal to \(A\) times the previous form plus \(B\) times the form before it
Hence
\(t^{k}=A t^{k-1}+B t^{k-2}\)
since \(t \neq 0 \Rightarrow t^{k-2} \neq 0\)
Dividing both sides by \(t^{k-2}\)
\(t^{2}-A t-B=0\)
Conversely suppose that \(t^{2}-A t-B=0\)
\(\Rightarrow t^{k}=A t^{k-1}+B t^{k-2}\)
Hence \(1, t, t^{2}, t^{3} \ldots, t^{n} \ldots\) satisfies the above recurrence relation

\section*{Characteristic Equation}

Definition: Given a second order linear homogeneous recurrence relation with constant coefficients \(a_{k}=A \cdot a_{k-1}+B \cdot a_{k-2} \quad \forall k \geq 2\)
The characteristic equation of the relation is \(t^{2}-A t-B=0\)
Example 1: Using characteristic equation, find solution to a recurrence relation
\[
a_{k}=a_{k-1}+2 \cdot a_{k-2} \quad \forall k \geq 2
\]

Find all sequences that satisfy relation and have the form \(1, t, t^{2}, \ldots, t^{n}, \ldots, t \neq 0\)

Solution: Above recurrence relation is satisfied by a sequence \(1, t, t^{2}, \ldots, t^{n}, \ldots, t \neq 0\)
if and only if, \(t^{2}-t-2=0\)
\(\Rightarrow(t-2)(t+1)=0 \quad \Rightarrow t=2,-1\)
Hence \(2^{0}, 2,2^{2}, 2^{3}, \ldots, 2^{n}, \ldots\) and \((-1)^{0},(-1)^{1},(-1)^{2},(-1)^{3}, \ldots\)
are both particular solutions for this recurrence relation

\section*{Repeated Roots}

Theorem: Let \(A\) and \(B\) be real numbers, and suppose that the characteristic equation
\(t^{2}-A t-B=0\)
has a single root r , than the sequences
\(1, r, r^{2}, \ldots, r^{n}\) and \(0, r, 2 r^{2}, 3 r^{3}, \ldots, n r^{n} \ldots\)
Both satisfy the recurrence relation
\(a_{k}=A a_{k-1}+B a_{k-2}\)
Proof
if \(t^{2}-A t-B=0\)
has a single repeated root ' \(r\) ' than
\[
\begin{aligned}
& t^{2}-A t-B=(t-r)^{2} \\
\Rightarrow & t^{2}-A t-B=t^{2}-2 r t+r^{2} \\
\Rightarrow & A=2 r \quad \text { and } \quad B=-r^{2}
\end{aligned}
\]

We know that \(\mathrm{r}^{\mathrm{n}}\) is a solution. Now we prove that \(S_{n}=n r^{n}\) is also a solution, i.e.
\(S_{n}\) satisfies the recurrence \(a_{k}=A a_{k-1}+B a_{k-2}\)
i.e., \(\quad \mathrm{S}_{k}=A S_{k-1}+B S_{k-2}=k r^{k}\)

In fact we have to prove that
\[
A \cdot S_{k-1}+B \cdot S_{k-2}=k \cdot r^{k}
\]

Consider the left hand side
\[
\begin{aligned}
A S_{k-1}+B S_{k-2} & =A\left((k-1) \cdot r^{k-1}\right)+B\left((k-2) \cdot r^{k-2}\right) \\
& =2 r \cdot(k-1) \cdot r^{k-1}-r^{2} \cdot(k-2) \cdot r^{k-2} \\
& =2(k-1) \cdot r^{k}-(k-2) r^{k} \\
& =(2 k-2-k+2) r^{k} \\
& =\mathrm{k} \cdot \mathrm{r}^{\mathrm{k}}=\text { RHS, } \quad \text { hence proved }
\end{aligned}
\]

\section*{Example 1: Single root case}

Suppose sequence, b0, b1, b2,... satisfies recurrence relation
\(b_{k}=4 b_{k-1}-4 b_{k-2} \quad \forall k \geq 2\)
with initial condition: \(\mathrm{b}_{0}=1\) and \(b_{1}=3\)
then find the explicit formula for \(\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \ldots\)
Solution:
Characteristic equation \(t^{2}-4 t+4=0\)
\((t-2)^{2}=0 \Rightarrow t=2\), is repeated root
\(2^{\mathrm{n}}\) and \(n .2^{n}\) are sequences which satisfy the same recurrence relation, but do not satisfy the initial conditions
Supposegeneral solution: \(\mathrm{b}_{\mathrm{n}}=C .2^{n}+\) D.n. \(2^{n}\)
which satisfies the original recurrence, C and D are constants
Since \(b_{0}=1, b_{1}=3\)
For \(n=0, \quad C+D \cdot 0 \cdot 2^{0}=1 \Rightarrow C=1\)
For \(n=1, \quad b_{1}=C \cdot 2^{1}+D \cdot 1 \cdot 2^{1}\)
\(\Rightarrow 2 C+2 D=3 \Rightarrow 2 \cdot 1+2 D=3 \Rightarrow D=\frac{3-2}{2}=\frac{1}{2}\)
Hence, \(b_{n}=1 \cdot 2^{n}+\frac{1}{2} \cdot n \cdot 2^{n}=2^{n}\left(1+\frac{n}{2}\right)\)
\[
=\left(1+\frac{n}{2}\right) 2^{n} \text { is the required solution for repeated roots. }
\]

\section*{Checking Explicit Formula}
\(b_{n}=(1+n / 2) \cdot 2^{n}\)
First term \(\quad b_{0}=(1+0 / 2) \cdot 2^{0}=1 \cdot 1=1\)
Second term \(b_{1}=(1+1 / 2) \cdot 2^{1}=3 / 2 \cdot 2=3\)
Third term
\[
b_{2}=(1+2 / 2) \cdot 2^{2}=2 \cdot 4=8
\]

Fourth term \(\quad b_{3}=(1+3 / 2) \cdot 2^{3}=5 / 2 \cdot 8=20\), and so on

\section*{Theorem (Linear Combination is also a Solution)}

Theorem: if \(r_{0}, r_{1}, r_{2}, \ldots\) and \(s_{0}, s_{1}, s_{2}, \ldots\) are sequences that satisfy the some second order linear homogeneous recurrence relation with constant coefficients, and if \(C\) and \(D\) are any numbers then the sequence \(a_{0}, a_{1}, a_{2}, \ldots\) defined by the formula \(a_{n}=C r_{n}+D s_{n} \quad \forall n \geq 0\) also satisfies the same recurrence relation.

Proof: Since \(r_{0}, r_{1}, r_{2}, \ldots\), and \(s_{0}, s_{1}, s_{2}, \ldots\)
Satisfy the same second order LHRRWCC
\(\Rightarrow \exists A\) and \(B\) constants real no. s.t
\(r_{k}=A r_{k-1}+B r_{k-2}\) and \(s_{k}=A s_{k-1}+B s_{k-2}\)
If \(a_{n}=C r_{n}+D s_{n} \quad \forall n \geq 0\)
Then we have to prove that \(a_{k}=A a_{k-1}+B a_{k-2}\)
Consider R. H. S
\(A a_{k-1}+B a_{k-2}=A\left(C \cdot r_{k-1}+D \cdot s_{k-1}\right)+B\left(C r_{k-2}+D s_{k-2}\right)\)
\[
\begin{aligned}
& =C\left(A r_{k-1}+B r_{k-2}\right)+D\left(A s_{k-1}+B s_{k-2}\right) \\
& =C\left(r_{k}\right)+D\left(s_{k}\right)=\mathrm{a}_{\mathrm{k}} \\
& \Rightarrow a_{k}=A a_{k-1}+B a_{k-2}
\end{aligned}
\]

It proves that \(a_{n}=C r_{n}+D s_{n}\) satisfies same recurrence

\section*{Solution as Linear Combination}

Find a sequence that satisfies the recurrence relation
\(a_{k}=a_{k-1}+2 \cdot a_{k-2} \quad \forall k \geq 2\)
And that also satisfies the initial condition
\(a_{0}=1\) and \(a_{1}=8\)
Solution: The characteristics equation of the relation
\(a_{k}=a_{k-1}+2 \cdot a_{k-2} \quad \forall k \geq 2\)
\(t^{2}-t-2=0 \Rightarrow(t-2)(t+1)=0\)
\(t=-1,2\)
\(r_{n}=2^{0}, 2^{1}, 2^{2}, \ldots\) and \(s_{n}=(-1)^{0},(-1)^{1},(-1)^{2}, \ldots\)
Are both sequence which satisfy above relation but neither one is having
\(a_{0}=1\) and \(a_{1}=8\)
Now since \(a_{n}=C r_{n}+D s_{n}\) also satisfies the same recurrence relation and
For \(\mathrm{n}=0\) we get \(a_{o}=C r_{o}+D s_{o} \Rightarrow 1=C+D\)
For \(\mathrm{n}=1\) we get \(a_{1}=C r_{1}+D s_{1} \Rightarrow 8=2 C-D\)
Solving equation (1) and (2) we get, \(C=3\) and \(\mathrm{D}=-2\)
Now \(a_{n}=C r_{n}+D s_{n} \Rightarrow a_{n}=3 \cdot(2)^{n}-2(-1)^{n}\)
is the required sequence which satisfies the given conditions

\section*{General Homogenous Recurrence Relations (Constant Coefficients) K order: General Homogenous Recurrence}
- First order: linear combination of two cons. terms,
- Second order: linear combination of three consecutive terms,
- We extend technique of recurrence equation with resolution of homogeneous linear recurrence with constant coefficient, that is recurrence of the form
\[
\begin{equation*}
a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0 \tag{1}
\end{equation*}
\]
where \(t_{i}\) are value we are looking for
- In equation (1), values of \(t_{i}\) such that ( \(1<\mathrm{i}<\mathrm{k}\) ) are need to determine a sequence.
- Equation 1 typically has infinite many solutions, because linear combination is also a solution.
\(K=1\) : General Homogenous Recurrence
\(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\)
If we put \(k=1\) then above equation becomes
\(a_{0} t_{n}+a_{1} t_{n-1}=0\)
\(t_{n}=-\left(a_{1} / a_{0}\right) t_{n-1}\)
- The resultant equation becomes a recurrence relation which is
- first order
- linear
- homogenous
- with constant coefficients.

\section*{K = 2: General Homogenous Recurrence}
\(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\)
If we put \(k=2\) then above equation becomes
\(a_{0} t_{n}+a_{1} t_{n-1}+a_{2} t_{n-2}=0\)
\(\mathrm{t}_{\mathrm{n}}=-\left(\mathrm{a}_{1} / \mathrm{a}_{0}\right) \mathrm{t}_{\mathrm{n}-1}-\left(\mathrm{a}_{2} / \mathrm{a}_{0}\right) \mathrm{t}_{\mathrm{n}-2}=\mathrm{c}_{1} \mathrm{t}_{\mathrm{n}-1}+\mathrm{c}_{0} \mathrm{t}_{\mathrm{n}-2}\)
- This time we have a recurrence relation which is
- second order
- linear
- homogenous
- with constant coefficients.

\section*{\(K=3\) : General Homogenous Recurrence}
\[
\begin{equation*}
a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0 \tag{1}
\end{equation*}
\]

If we put \(k=3\) then above equation becomes
\(a_{0} t_{n}+a_{1} t_{n-1}+a_{2} t_{n-2}+a_{3} t_{n-3}=0\)
\(t_{n}=-\left(a_{1} / a_{0}\right) t_{n-1}-\left(a_{2 /} a_{0}\right) t_{n-2}-\left(a_{3 /} a_{0}\right) t_{n-3}\)
- This is a recurrence relation which is
- third order
- linear
- homogenous
- with constant coefficients.
- Similarly we can have fourth order and higher order recurrence relations.

\section*{Characteristics of General Recurrence}
\[
\begin{equation*}
a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0 \tag{1}
\end{equation*}
\]

The recurrence is:
- Linear because it does not contain terms of the form \(t_{n-i} . t_{n-j}, t_{n-i}^{2}\) and so on
- Homogeneous because the linear combination of the \(t_{n-i}\) equal to zero
- This is \(\mathrm{K}^{\text {th }}\) order because current term is linear combination of previous k number of terms
- Constant coefficients because all \(a_{i}\) are constants

Example:
- Consider Fibonacci sequence: \(f_{n}=f_{n-1}+f_{n-2}\)
- This recurrence fits Eq. (1) after obvious rewriting. \(f_{n}-f_{n-1}-f_{n-2}=0\)

\section*{Observation of Homogenous Recurrence}
- \(f_{n}-f_{n-1}-f_{n-2}=0\)
- The Fibonacci sequence corresponds to a second homogeneous linear recurrence relation with constant coefficient, where
\[
\begin{aligned}
& \mathrm{k}=2, \\
& \mathrm{a}_{0}=1, \\
& \mathrm{a}_{1}=-1 \\
& \mathrm{a}_{2}=-1
\end{aligned}
\]
- Before we even start to look for solutions to Equation 1, it would be interesting to note that any linear combination of solutions is itself a solution.

\section*{Theorem}

Statement: Prove that any linear combination of solutions of equation given below is also a solution.
\[
a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0
\]

Proof: Assume that \(f_{n}\) and \(g_{n}\) are solutions of above equation and hence satisfy it, i.e.
\(\sum_{i=0}^{k} a_{i} f_{n-i}=0\) and \(\sum_{i=0}^{k} a_{i} g_{n-i}=0\)
- If we set \(t_{n}=c . f_{n}+d . g_{n}\) for arbitrary constants \(c\) and \(d\), we have to prove that \(t_{n}\) is also solution, i.e.,
- \(\quad a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\)
\(a_{0} t_{n}+a_{1} t_{n-1}+\ldots \ldots+a_{k} t_{n-k}=\)
\(a_{0}\left(c f_{n}+d g_{n}\right)+a_{1}\left(\right.\) cf \(\left._{n-1}+d g_{n-1}\right)+\ldots+a_{k}\left(\mathrm{cf}_{n-k}+d g_{n-k}\right)=\)
\(c\left(a_{0} f_{n}+a_{1} f_{n-1}+\ldots+a_{k} f_{n-k}\right)+d\left(a_{0} g_{n}+a_{1} g_{n-1}+\ldots+a_{k} g_{n-k}\right)=\)
\(=c .0+d .0=0\)
- Hence \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\)

Note :
- It is to be noted that this rule can be generalized to linear combinations of any number of solutions.

\section*{More Generalized Results}

Statement: If \(f_{n}, g_{n}\) and \(h_{n}\) are solutions to recurrence below then their linear combination is also a solution
\[
a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0
\]

Proof: As \(f_{n}, g_{n}\) and \(h_{n}\) are solutions of above, hence
\[
\sum_{i=0}^{k} a_{i} f_{n-i}=0, \sum_{i=0}^{k} a_{i} g_{n-i}=0, \text { and } \sum_{i=0}^{k} a_{i} h_{n-i}=0
\]
- Let \(t_{n}=c . f_{n}+d . g_{n}+e . h_{n}\) for arbitrary constants \(c, d\) and \(e\), now we prove that \(t_{n}\) is also solution, i.e., \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\), easy to prove

\section*{Conclusion}
- Why recurrence?
- Type of recurrences
- Techniques solving recurrences
- Generalized form of recurrence
- Linear combination of solutions itself solution
- Reusability of models when initial conditions are changed but pattern remains same
- It empowers the recursive models to be used in more general phenomena
- Easy implementation

\section*{Lecture No 8 Recurrence Relations \\ (Algorithms Design and Analysis Techniques)}

\section*{Today Covered}
- Solution: General Homogenous Recurrences when
- Roots are distinct
- Roots are repeated
- multiplicity of a root is k
- many roots with different multiplicities
- Non-homogenous Recurrence Relations
- Characteristics of various type of non-homogenous recurrence relations
- Solution to various non-homogenous recurrence relations
- Conclusion

\section*{Solution to Generalized Recurrence with Distinct Roots}

\section*{Statement:}
- Find the general solution of the \(\mathrm{k}^{\text {th }}\) order recurrence given below assuming that all roots are distinct \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\)
Solution:
Let \(T_{n}=x^{n}, x\) is a constant as yet unknown.
- If we assume that \(T_{n}\) is a solution of equation \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots . .+a_{k} t_{n-k}=0\) Then, \(a_{0} x^{n}+a_{1} x^{n-1}+\ldots \ldots .+a_{k} x^{n-k}=0\)
- Equation satisfied if \(x=0\),trivial solution, no interest.
- Otherwise, the equation is satisfied if and only if \(a_{0}+a_{1} x^{1}+\ldots . . .+a_{k} x^{k}=0\)
- This equation of degree \(k\) in \(x\) is called the characteristic equation of above recurrence and
\[
P(x)=a_{0}+a_{1} x^{1}+\ldots \ldots+a_{k} x^{k} \text { is called its characteristic polynomial }
\]
- Fundamental theorem of algebra states that polynomial \(P(x)\) of degree \(k\) has \(k\) roots, not necessarily distinct
- It means that it can be factorized as a product of \(k\) terms \(P(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right) \ldots\left(x-r_{k}\right)\) where \(r_{i}\) may be complex numbers.
- Moreover, these \(r_{i}\) are only solutions of equation \(P(x)=0\)
- Consider any root \(r_{i}\) of the characteristic polynomial \(P(x)=a_{0}+a_{1} x^{1}+\ldots \ldots .+a_{k} x^{k}\)
\[
=\prod_{i=1}^{k}\left(x-r_{i}\right)
\]
- Since, \(p\left(r_{1}\right)=0, p\left(r_{2}\right)=0, p\left(r_{3}\right)=0, \ldots, p\left(r_{k}\right)=0\)
- Hence all \(x=r_{i}\), for \(i \in\{1,2, \ldots, k\}\) are solutions to above characteristic polynomial.
- Therefore, \(r_{1}{ }^{n}, r_{2}{ }^{n}, \ldots, r_{k}{ }^{n}\) are solution to our original recurrence relation.
- Since linear combination of solutions is also a solution to recurrence, therefore below is a solution. \(T(n)=\sum_{i=1}^{k} c_{i} r_{i}^{n}\)
where, \(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}\) are all constants to be determined finding particular solution
- The remarkable fact is that this equation has only solutions of this form provided all \(r_{i}\) are distinct.
- Constants can be determined from \(k\) initial conditions by solving system of \(k\) linear equations in \(k\) unknowns

\section*{Solving Recurrence Problem with Distinct Roots}

Problem: Consider the recurrence \(\quad \mathrm{t}_{\mathrm{n}}=\mathrm{n} \quad\) if \(\mathrm{n}=0,1,2\)
\[
t_{n}=7 . t_{n-2}+6 . t_{n-3} \quad \text { otherwise }
\]

Find the general solution of the recurrence above.
Solution: First we rewrite the recurrence.
\(\mathrm{t}_{\mathrm{n}}-7 . \mathrm{t}_{\mathrm{n}-2}-6 \mathrm{t}_{\mathrm{n}-3}=0\)
- The characteristic equation become.
\[
x^{3}-7 x+6=(x+1)(x+2)(x-3)
\]
- The roots are: \(r_{1}=-1, r_{2}=-2\) and \(r_{3}=+3\)
\[
t_{n}=c_{1}(-1)^{n}+c_{2}(-2)^{n}+c_{3}\left(3^{n}\right)
\]
\(t_{n}=c_{1}(-1)^{n}+c_{2}(-2)^{n}+c_{3}\left(3^{n}\right)\)
The initial conditions give
\[
\mathrm{c}_{1}+\mathrm{c}_{2+}+\mathrm{c}_{3}=0 \quad \text { for } \mathrm{n}=0
\]
\[
\begin{array}{cc}
-c_{1}-2 c_{2}+3 c_{3}=1 & \text { for } n=1 \\
c_{1}+4 c_{2}+9 c_{3}=2 & \text { for } n=2
\end{array}
\]

Solving these equations, we obtain
\[
c_{1}=-1 / 4, c_{2}=0 \text { and } c_{3}=1 / 4
\]

Therefore, \(t_{n}=c_{1}(-1 / 4)(-1)^{n}+(1 / 4) \cdot(3)^{n}\)

\section*{Solution to Generalized Recurrence with One Repeated Root}

\section*{Statement:}

If the characteristic polynomial \(P(x)=a_{0}+a_{1} x^{1}+\ldots \ldots .+a_{k} x^{k}\) then conclude that
if \(r\) is a double root then \(t_{n}=r^{n}\) and \(t_{n}=n r^{n}\) are both solutions to recurrence.
Solution:
- It can be found as in case of second order linear homogenous recurrence relation.
- Since \(r\) is a multiple root. By definition of multiple roots, there exists a polynomial \(q(x)\) of degree \(k-2\) such that the following holds
\[
p(x)=(x-r)^{2} q(x) \text {, for every } n \geq k
\]

Consider the \(\mathrm{k}^{\text {th }}\) degree polynomials
\(u_{n}(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{k} x^{n-k}\) and
\(v_{n}(x)=a_{0} n x^{n}+a_{1}(n-1) x^{n-1}+\ldots+a_{k}(n-k) x^{n-k}\)
- It is to be noted that \(v_{n}(x)=x . u_{n}(x)\), where \(u_{n}^{\prime}(x)\) denotes the derivative of \(u_{n}(x)\) with respect to \(x\).
- But \(u_{n}(x)\) can be written as
\(u_{n}(x)=x^{n-k} p(x)=x^{n-k}(x-r)^{2} q(x)=(x-r)^{2}\left(x^{n-k} q(x)\right)\)
- Using rule for computing the derivative of a product of functions, we obtain that derivative of \(u_{n}(x)\) with respect to \(x\) is given by
\(u_{n}^{\prime}(x)=2(x-r) x^{n-k}, q(x)+(x-r)^{2}\left(x^{n-k} q(x)\right)\)
therefore \(u_{n}(r)=0\), which implies that \(v_{n}(r)=r . u_{n}(r)=0\) for all \(n \geq k\).
- It means: \(a_{0} n r^{n}+a_{1}(n-1) r^{n-1}+\ldots+a_{k}(n-k) r^{n-k}=0\)
- Hence, \(t_{n}=n r^{n}\) is also solution to the recurrence.
- Now we conclude that if \(r\) is a double root then \(t_{n}=r^{n}\) and \(t_{n}=n r^{n}\) are both solutions to the recurrence.
- Rest of k -2 are all distinct roots hence general solution
where \(c_{1}, c_{2}, b_{1}, b_{2}, \ldots\), and \(b_{k-2}\) are all real constants

Higher Order Homogenous Recurrence with k-multiplicity of a Root
Now if we have to solve recurrence order \(k\), then to solve polynomial, degree \(k\), given below is sufficient
Statement:
If the characteristic polynomial
\[
P(x)=a_{0}+a_{1} x^{1}+\ldots \ldots .+a_{k} x^{k}
\]
has \(r\) as double root then it can be written as \(p(x)=(x-r)^{2} q(x)\), for every \(n \geq k\) and solutions are: \(r^{n}\) and \(n r^{n}\) has \(r\) as triple root then it can be written as \(p(x)=(x-r)^{3} q 1(x)\), for every \(n \geq k\) and solutions are: \(\mathrm{r}^{\mathrm{n}}, \mathrm{n} \cdot \mathrm{r}^{\mathrm{n}}\) and \(\mathrm{n}^{2} \cdot \mathrm{r}^{\mathrm{n}}\)

\section*{K-Multiplicity of a Root: General Result}
\(r\) has multiplicity \(k\) then it can be written as
\(p(x)=(x-r)^{k}\), for every \(n \geq k\)
and solutions are: \(r^{n}, n \cdot r^{n}, n^{2} \cdot r^{n}, \ldots, n^{k-1} \cdot r^{n}\)
then general solution is
\(t_{n}=c_{1} r^{n}+c_{2} n r^{n}+\ldots+c_{k} n^{k-1} r^{n}\)
\(t_{n}=\sum_{j=1}^{k} c_{j} n^{j-1} r^{n}\)
where \(b_{1}, b_{2}, \ldots, b_{k}\) are all real constants

\section*{Multiplicity of Roots: More General Result}

If there are I roots, \(r_{1}, r_{2}, \ldots, r_{1}\) with multiplicities \(m_{1}, m_{2}, \ldots, m_{1}\) respectively, of the polynomial: \(P(x)=a_{0}+a_{1} x^{1}+\ldots+a_{k} x^{k}\) s.t. \(m_{1}+m_{2}+\ldots+m_{1}=k\) then the general solution to the recurrence is
\[
\begin{aligned}
t_{n}= & c_{11} r_{1}^{n}+c_{12} n r_{1}^{n}+c_{13} n^{2} r_{1}^{n}+\ldots+c_{1 m_{1}} n^{m_{1}-1} r_{1}^{n}+ \\
& c_{21} r_{2}^{n}+c_{22} n r_{2}^{n}+c_{23} n^{2} r_{2}^{n}+\ldots+c_{2 m_{2}} n^{m_{2}-1} r_{2}^{n}+
\end{aligned}
\]
\[
c_{l 1} r_{l}^{n}+c_{l 2} n r_{l}^{n}+c_{l 3} n^{2} r_{l}^{n}+\ldots+c_{l m_{l}} n^{m_{l}-1} r_{l}^{n}
\]
\[
t_{n}=c_{11} r_{1}^{n}+c_{12} n r_{1}^{n}+c_{13} n^{2} r_{1}^{n}+\ldots+c_{1 m_{1}} n^{m_{1}-1} r_{1}^{n}+
\]
\[
c_{21} r_{2}^{n}+c_{22} n r_{2}^{n}+c_{23} n^{2} r_{2}^{n}+\ldots+c_{2 m_{2}} n^{m_{2}-1} r_{2}^{n}+
\]
\[
c_{l 1} r_{l}^{n}+c_{l 2} n r_{l}^{n}+c_{l 3} n^{2} r_{l}^{n}+\ldots+c_{l m_{l}} n^{m_{l}-1} r_{l}^{n}
\]
\[
t_{n}=\sum_{j=1}^{m_{1}} c_{1 j} n^{j-1} r_{1}^{n}+\sum_{j=1}^{m_{2}} c_{2 j} n^{j-1} r_{2}^{n}+\ldots+\sum_{j=1}^{m_{1}} c_{l j} n^{j-1} r_{l}^{n}
\]
\[
t_{n}=\sum_{i=1}^{l} \sum_{j=1}^{m_{i}} c_{i j}{ }^{j-1} r_{i}^{n}
\]
where all \(\mathrm{c}_{\mathrm{i}, \mathrm{j}}\) are constants

Statement: Consider the recurrence
\[
\begin{aligned}
& t_{n}=n \\
& t_{n}=5 t_{n-1}-8 t_{n-2}+4 t_{n-3}
\end{aligned}
\]
if \(\mathrm{n}=0,1,2\)
otherwise
Find general solution of the recurrence above.
Solution: First we rewrite the recurrence.
\(\mathrm{t}_{\mathrm{n}}-5 \mathrm{t}_{\mathrm{n}-1}+8 \mathrm{t}_{\mathrm{n}-2}-4 \mathrm{t}_{\mathrm{n}-3}=0\)
- The characteristic equation become.
\[
x^{3}-5 x^{2}+8 x-4=(x-1)(x-2)^{2}
\]
- The roots are: \(r_{1}=1\) of multiplicity \(m_{1}=1\) and \(r_{2}=2\) of multiplicity \(m_{2}=2\), and hence the general solution is \(t_{n}=c_{1} 1^{n}+c_{2} 2^{n}+c_{3} n 2^{n}\)
The initial conditions give
\[
\begin{array}{lr}
c_{1}+c_{2}=0 & \text { for } n=1 \\
c_{1}+2 c_{2}+2 c_{3}=1 & \text { for } n=2 \\
c_{1}+4 c_{2}+8 c_{3}=2 & \\
\text { Solving these equations, we obtain } c_{1}=-2, c_{2}=2 \text { and } c_{3}=-1 / 2 \\
\text { Therefore, } & t_{n}=c_{1} 1^{n}+c_{2} 2^{n}+c_{3} n 2^{n}=-2+2 \cdot 2^{n}-1 / 2 \cdot n \cdot 2^{n}=2^{n+1}-n \cdot 2^{n-1}-2
\end{array}
\]

\section*{Non-homogeneous Recurrence of Higher Order}
- Solution of a linear recurrence with constant coefficients becomes more difficult when the recurrence is not homogeneous
- That is when linear combination is not equal to zero
- In particular, it is no longer true that any linear combination of solutions is a solution.
- Consider the following recurrence \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots+a_{k} t_{n-k}=b^{n} p(n)\)
- The left-hand side is the same as before, but on the right-hand side we have \(b^{n} p(n)\) where \(b\) is a constant and \(p(n)\) is a polynomial in \(n\) of degree \(d\).

\section*{Generalization: Non-homogeneous Recurrences}
- If a recurrence is of the form
- Then the characteristics polynomial is
- Which contains one factor for the left hand side
- And other factor corresponding to the right hand side, where d is degree of polynomial
- Characteristics polynomial can be used to solve the above recurrence.

\section*{Problem 1: Non-homogeneous Recurrences}

Problem:
Consider the recurrence below. Find its solution \(t_{n}-2 t_{n-1}=3^{n}\)
Solution:
- Compare the above recurrence with
\[
a_{0} t_{n}+a_{1} t_{n-1}+\ldots+a_{k} t_{n-k}=b^{n} p(n)
\]
- Here: \(b=3, p(n)=1\), a polynomial of degree 0 .
- Reducing to homogeneous case, we are given
\[
\begin{equation*}
\mathrm{t}_{\mathrm{n}}-2 \mathrm{t}_{\mathrm{n}-1}=3^{\mathrm{n}} \tag{1}
\end{equation*}
\]

Replace n by \(\mathrm{n}-1\) and multiply by 3, we obtain
\[
\begin{aligned}
t_{n-1}-2 t_{n-2} & =3^{n-1} \\
3 t_{n-1}-6 t_{n-2} & =3^{n}
\end{aligned}
\]

From (1) and (2)
\[
\begin{align*}
\mathrm{t}_{\mathrm{n}}-2 \mathrm{t}_{\mathrm{n}-1} & =3^{\mathrm{n}}  \tag{1}\\
+3 \mathrm{t}_{n-1}-6 \mathrm{t}_{\mathrm{n}-2} & =3^{\mathrm{n}} \tag{2}
\end{align*}
\]

\section*{Subtracting 2 from equation 1, we get}
\[
t_{n}-5 t_{n-1}+6 t_{n-2}=0
\]
- The characteristic equation is \(x^{2}-5 x+6=0\)

Roots of this equation are: \(x=2\) and \(x=3\)
- And therefore general solution is \(t_{n}=c_{1} 2^{n}+c_{2} 3^{n}\)

It is not always true that an arbitrary choice of c1 and c2 produces a solution to the recurrence even when initial conditions are not taken into account.
Note:
It is to be noted that solutions:
\[
\begin{aligned}
& t_{n}=2^{n} \text { and } \\
& t_{n}=3^{n}
\end{aligned}
\]
which are solutions to reduced recurrence, are not solution to original one
What is the reason?

\section*{Problem 2: Non-homogeneous Recurrences}

Find general solution of the following recurrence. \(t_{n}-2 t_{n-1}=(n+5) 3^{n} n \geq 1\) Solution:

The manipulation needed to transform this into a homogeneous recurrence is slightly more complicated than with first example.
\(t_{n}-2 t_{n-1}=(n+5) 3^{n} n \geq 1\)
replace \(n\) by \(n-1\), \(n-2\), we get
\(t_{n-1}-2 t_{n-2}=(n+4) 3^{n-1} n \geq 2\)
\(t_{n-2}-2 t_{n-3}=(n+3) 3^{n-2} n \geq 3\)
Above equations can be written as
\(t_{n}-2 t_{n-1}=9(n+5) 3^{n-2} n \geq 1\)
\(\mathrm{t}_{\mathrm{n}-1}-2 \mathrm{t}_{\mathrm{n}-2}=3(\mathrm{n}+4) 3^{\mathrm{n}-2} \mathrm{n} \geq 2\)
\(t_{n-2}-2 t_{n-3}=(n+3) 3^{n-2} n \geq 3\)
- Our objective is to eliminate the right hand side of the above equations to make it homogenous.
- Multiply (5) by -6, and (6) by 9 we get
\(\mathrm{t}_{\mathrm{n}}-2 \mathrm{t}_{\mathrm{n}-1}\)
\(=9(n+5) 3^{n-2}\)
\(-6 \mathrm{t}_{\mathrm{n}-1}+12 \mathrm{t}_{\mathrm{n}-2}\)
\(=-18(n+4) 3^{n-2}\)
\(+9 t_{n-2}-18 t_{n-3}\)
\(=9(n+3) 3^{n-2}\)

After simplification, the above equations can be written as
\[
\begin{aligned}
t_{n}-2 t_{n-1} & =(9 n+45) 3^{n-2} \\
-6 t_{n-1}+12 t_{n-2} & \\
+9 t_{n-2}-18 t_{n-3} & =(9 n+27) 3^{n-2}
\end{aligned}
\]

Adding these equation, we get homogenous equation, which can be solved easily
\(\mathrm{t}_{\mathrm{n}}-8 \mathrm{t}_{\mathrm{n}-1}+21 \mathrm{t}_{\mathrm{n}-2}-18 \mathrm{t}_{\mathrm{n}-3}=0\)
\(t_{n}-8 t_{n-1}+21 t_{n-2}-18 t_{n-3}=0\)
The characteristics equation of the above homogenous equation is:
\[
x^{3}-8 x^{2}+21 x-18=0
\]
\((x-2)(x-3)^{2}=0\)
and hence, \(x=2,3,3\)
- General solution is: \(t_{n}=c_{1} 2^{n}+c_{2} 3^{n}+c_{3} n 3^{n}\)
- For \(\mathrm{n}=0,1,2\)

We can find values of \(c_{1}, c_{2}, c_{3}\) and then
\[
t_{n}=\left(t_{0}-9\right) 2^{n}+(n+3) 3^{n+1}
\]

\section*{Tower of Hanoi: Problem 3}

Tower of Hanoi is a mathematical game or puzzle. It consists of three towers, a number of disks of different sizes which can slide onto any tower. The puzzle starts with disks stacked in order of size on one tower, smallest at top, making a conical shape.

Objective is to move entire stack to another tower, obeying following rules:
- Only one disk may be moved at a time.
- Each move consists of taking upper disk from one of towers and sliding it onto another tower
- You can put on top of other disks already present

No disk may be placed on top of a smaller disk.

\section*{More Generalized Non-homogeneous Recurrences}
- If a recurrence is of the form \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots+a_{k} t_{n-k}=b_{1}^{n} p_{1}(n)+b_{2}^{n} p_{2}(n)+\ldots\)
- Then the characteristics polynomial is \(\left(a_{0} x^{k}+a_{1} x^{k-1}+\ldots+a_{k}\right)\left(x-b_{1}^{d_{1}+1}\right)\left(x-b_{2}^{d_{2}+1}\right) \ldots\),
- Which contains one factor for the left hand side
- And other factor corresponding to the each term on right hand side.
- Once the characteristics polynomial is obtained the recurrence can be solved as before.

\section*{Problem 6 : Non-homogeneous Recurrences}

Consider the recurrence
\[
t_{n}=2 t_{n-1}+n+2^{n} \quad \text { otherwise }
\]

Solution:
- Compare the recurrence: \(\mathrm{t}_{\mathrm{n}}-2 \mathrm{t}_{\mathrm{n}-1}=\mathrm{n}+2^{\mathrm{n}}\) with
- Here, \(b_{1}=1, p_{1}(n)=n, b_{2}=2\), and \(p_{2}(n)=1\).
- Degree of \(p_{1}(n)=d_{1}=1\),
- Degree of \(p_{2}(n)=d_{2}=0\).
- The characteristic polynomial: \((x-2)(x-1)^{2}(x-2)\)
- The roots are, \(x=1,2\), both of multiplicity 2 .
- All solutions of recurrence therefore have form \(\mathrm{t}^{\mathrm{n}}=\mathrm{c}_{1} 1^{\mathrm{n}}+\mathrm{c}_{2} \mathrm{n} 1^{n}+\mathrm{c}_{3} 2^{\mathrm{n}}+\mathrm{c}_{4} \mathrm{n} 2^{\mathrm{n}}\)
\(\mathrm{n}+2^{\mathrm{n}}=\left(2 \mathrm{c}_{2}-\mathrm{c}_{1}\right)-\mathrm{c}_{2} \mathrm{n}+\mathrm{c}_{4} 2^{\mathrm{n}}\)
- For \(\mathrm{n}=0,1,2,3 \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\) and \(\mathrm{c}_{4}\) can be solved and hence solution is
\[
t_{n}=n .2^{n}+2^{n+1}-n-2
\]

\section*{Conclusion}
- Recursive relations are important because used in divide and conquer, dynamic programming and in many other e.g. optimization problems
- Analysis of such algorithms is required to compute complexity
- Recursive algorithms may not follow homogenous behavior, it means there must be some cost in addition to recursive cost
- Solution to homogenous recursive relations is comparatively easy, but not so easy in case of non-homogenous recursive relations

\section*{Lecture 9 \\ Further Techniques Solving Recurrence Relations Algorithms Analysis Techniques}

\section*{Review of Previous Lecture}
- If a recurrence is of the form \(a_{0} t_{n}+a_{1} t_{n-1}+\ldots+a_{k} t_{n-k}=b_{1}^{n} p_{1}(n)+b_{2}^{n} p_{2}(n)+\ldots\)
- Then the characteristics polynomial is \(\left(a_{0} x^{k}+a_{1} x^{k-1}+\ldots+a_{k}\right)\left(x-b_{1}\right)^{d_{1}+1}\left(x-b_{2}\right)^{d_{2}+1} \ldots\),
- It has one factor for left hand side for homogenous part, and factor corresponding to each term on right hand side for non-homogenous part.
- Once the characteristics polynomial is obtained the recurrence can be solved as before.

\section*{Today Covered}

In this lecture following will be covered
- Assumptions in solving recurrence
- The Substitution Method
- The Recursion Tree Method
- The Master Theorem
- Conclusion

\section*{Assumption in Solving Recurrence Relation}
- Neglect certain technical details solve recurrences
- Assume integer arguments to functions
- Because running time \(T(n)\) is always defined when \(n\) is an integer
- Consequently, for convenience, we shall omit statements of boundary conditions of recurrences and assume that \(T(n)\) is constant for small \(n\)
- Recurrence for worst-case time of MERGE-SORT
\(T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ T\left\lceil\frac{n}{2}\right\rceil+T\left\lfloor\frac{n}{2}\right\rfloor+\Theta(n) & \text { otherwise }\end{cases}\)
- We do not give any explicit value for small \(n\)
- Because changing \(n, T\) (1) changes solution to recurrence. Solution typically doesn't change by more than a constant factor, so order of growth is unchanged
- Solve recurrences, often omit floors, ceilings, etc.
- First analyze without these details and later determine whether such assumptions matter or not.
- Usually it dose not matter but it is important to know when it does and when it does not
\[
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }\end{cases}
\]

\section*{Methods Solving Recurrence Relation Substitution Method}
- Substitution method has two steps
- Guess the form of the solution
- Use mathematical induction to find constants and show that the solution does work
- The name Substitution comes from the substitution of guessed answer for the function when the inductive hypothesis is applied to smaller values.
- Method is powerful, but it can be applied only in cases when it is easy to guess the form of answer
- The substitution method can be used to establish either upper or lower bounds on a recurrence.

\section*{Some Important Rules used in this Section}

Prove that \(\log _{a} b \cdot \log _{b} c=\log _{a} c\)
Proof
let us suppose that: \(\quad \log _{a}^{b}=s \quad \log _{b}^{c}=t\)
\(\Rightarrow a^{s}=b\) and \(b^{t}=c\)
Now \(b^{t}=c, \quad\left(a^{s}\right)^{t}=c\)
\(a^{s t}=c, \quad \log _{a}^{c}=s \cdot t\)
\(s \cdot t=\log _{a}^{c}, \quad \log _{a}^{b} \cdot \log _{b}^{c}=\log _{a}^{c} \quad\) proved

\section*{Some Important Rules used in this Section}

Prove that \(3^{\log _{4}^{n}}=n^{\log _{4}^{3}}\)
Proof \(3^{\log _{4}^{n}}=n^{\log _{4}^{3}}\)
\(\Leftrightarrow \log _{3}\left(3^{\log _{4}^{n}}\right)=\log _{3}\left(n^{\log _{4}^{3}}\right)\)
\(\Leftrightarrow \log _{4}^{n} \cdot \log _{3}^{3}=\log _{4}^{3} \cdot \log _{3}^{n}\)
\(\Leftrightarrow \log _{4}^{n}=\log _{4}^{3} \cdot \log _{3}^{n}\)
\(\Leftrightarrow \log _{4}^{n}=\log _{4}^{n} \quad \because \log _{a}^{b} \cdot \log _{b}^{c}=\log _{a}^{c}\)

\section*{The Substitution Method}

Solve the recurrence relation given below.
\[
T(n)= \begin{cases}1 & \text { if } n=1 \\ 3 \cdot T\left(\frac{n}{4}\right)+n & \text { otherwise }\end{cases}
\]

Solution:
(1) \(T(n)=3 \cdot T\left(\frac{n}{4}\right)+n\)
replace the value of \(n\) by \(n / 4\) in (1)
(2) \(T\left(\frac{n}{4}\right)=3 \cdot T\left(\frac{n}{4^{2}}\right)+\frac{n}{4}\)
(3) \(T\left(\frac{n}{4^{2}}\right)=3 \cdot T\left(\frac{n}{4^{3}}\right)+\frac{n}{4^{2}}\) and so on
(4) \(T\left(\frac{n}{4^{k-1}}\right)=3 \cdot T\left(\frac{n}{4^{k}}\right)+\frac{n}{4^{k-1}}\)

Now substitutethe value of \(T\left(\frac{n}{4}\right)\) from (2) to (1)
(5) \(T(n)=3\left[3 T\left(\frac{n}{4^{2}}\right)+\frac{n}{4}\right]+n\)
\[
=3^{2} \cdot T\left(\frac{n}{4^{2}}\right)+\left(\frac{3}{4}\right) \cdot n+n
\]
substitute the value of \(T\left(\frac{n}{4^{2}}\right)\) from (3) to (5) equation, we have
\(T(n)=3^{2}\left[3 \cdot T\left(\frac{n}{4^{3}}\right)+\frac{n}{4^{2}}\right]+\left(\frac{3}{4}\right) n+n\)
After continuing this process
\(T(n)=3^{k} \cdot T\left(\frac{n}{4^{k}}\right)+\left(\frac{3}{4}\right)^{k-1} n+\left(\frac{3}{4}\right)^{k-2}+\cdots+\left(\frac{3}{4}\right) n+\left(\frac{3}{4}\right)^{0} n\)
Let us supposethat \(n\) can be expressed as \(n=4^{k}\)
\[
\begin{aligned}
& T(n)=3^{k} \cdot T\left(\frac{n}{n}\right)+n\left[1+\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}+\ldots .+\left(\frac{3}{4}\right)^{k-1}\right] \\
& T(n)=3^{k} \cdot T(1)+n\left[1 \cdot\left(\frac{1-\left(\frac{3}{4}\right)^{k}}{1-\frac{3}{4}}\right)\right] \quad \because 1+x+x^{2}+\ldots+x^{k-1}=1 \cdot\left(\frac{1-x^{k}}{1-x}\right) \\
& \begin{aligned}
T(n)=3^{k} \cdot 1+4 n\left(1-\frac{3^{k}}{4^{k}}\right) \quad \because T(1)=1
\end{aligned} \\
& \begin{aligned}
& T(n)=3^{k}+4 n \cdot\left(1-\frac{3^{k}}{4^{k}}\right)=3^{k}+4 n \cdot\left(1-\frac{3^{k}}{n}\right) \\
&=3^{k}+4 n\left(\frac{n-3^{k}}{n}\right) \\
&=3^{k}+4\left(n-3^{k}\right)=1 \cdot 3^{k}+4 n-4 \cdot 3^{k} \\
&=4 \cdot n-3 \cdot 3^{k}=4 n-3 \cdot 3^{\log _{4}^{n}} \\
& \because 4^{k}=n, \quad k=\log _{4}^{n}
\end{aligned} \\
& T(n)=4 n-3 \cdot 3^{\log _{4}^{n}} \quad \begin{array}{r}
T(n)=4 n-3 \cdot n^{\log _{4}^{3}} \\
T(n)=4 n-3 \cdot n^{\alpha} \quad \because 0 \leq \alpha \leq 1 \\
\Rightarrow T(n)=4 n-3 \cdot n^{\alpha} \\
\text { Hence } T(n) \in \theta(n)
\end{array} \\
& \quad \text { let } \quad \alpha=\log _{4}^{3}
\end{aligned}
\]

\section*{A Hard Example}

Solve the recurrence relation given below
\(T(n)=\left\{\begin{array}{l}1 \quad \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n \text { otherwise }\end{array} \quad\right.\) where \(0<a<b\)

\section*{Solution :}
\(T(n)=a T\left(\frac{n}{b}\right)+n=a \cdot a \cdot T\left(\frac{n}{b^{2}}\right)+a \cdot \frac{n}{b}+n\)
\(=a^{2} \cdot T\left(\frac{n}{b^{2}}\right)+\left(\frac{a}{b}\right) n+n=a^{2}\left[a T\left(\frac{n}{b^{3}}\right)+\frac{n}{b^{2}}\right]+\left(\frac{a}{b}\right) n+n\)
\(=a^{3} T\left(\frac{n}{b^{3}}\right)+\left(\frac{a}{b}\right)^{2} n+\left(\frac{a}{b}\right) n+n\)
Continuing this process we get
\[
\begin{aligned}
T(n)= & a^{k} T\left(\frac{n}{b^{k}}\right)+\left(\frac{a}{b}\right)^{k-1} n+\left(\frac{a}{b}\right)^{k-2} n+\ldots .+\left(\frac{a}{b}\right)^{1} n+n \\
& =a^{k} T\left(\frac{n}{b^{k}}\right)+n\left[1+\left(\frac{a}{b}\right)+\left(\frac{a}{b}\right)^{2}+\ldots .+\left(\frac{a}{b}\right)^{k-1}\right]
\end{aligned}
\]

Let us supposethat, \(n=b^{k}\)
\[
\begin{aligned}
T(n)= & a^{k} \cdot T(1)+n\left[1+\left(\frac{a}{b}\right)+\ldots+\left(\frac{a}{b}\right)^{k-1}\right] \\
& =a^{k} T(1)+n\left[\frac{1-\left(\frac{a}{b}\right)^{k}}{1-\frac{a}{b}}\right]=a^{k} \cdot T(1)+n\left(\frac{b}{b-a}\right)\left(1-\frac{a^{k}}{b^{k}}\right) \\
& =a^{k} \cdot 1+n\left(\frac{b}{b-a}\right)\left(\frac{b^{k}-a^{k}}{b^{k}}\right)=a^{k}+n\left(\frac{b}{b-a}\right)\left(\frac{b^{k}-a^{k}}{n}\right) \quad \because n=b^{k} \\
& =a^{k}+\left(\frac{b}{b-a}\right)\left(b^{k}-a^{k}\right)=a^{k}+\frac{b}{b-a} \cdot b^{k}-\frac{b}{b-a} \cdot a^{k} \\
& =\frac{b}{b-a} \cdot b^{k}+\left(\frac{b-a-b}{b-a}\right) a^{k}=\frac{b}{b-a} \cdot b^{k}+\left(\frac{b-a-b}{b-a}\right) a^{k} \\
& T(n)=\left(\frac{b}{b-a}\right) \cdot b^{k}-\frac{a}{b-a} \cdot a^{\log _{b}^{n}} \\
& =\frac{b}{b-a} \cdot b^{k}-\frac{a}{b-a} \cdot n^{\log _{b}^{a}} \\
& \because a<b \Rightarrow \log _{b}^{a}<1 \quad \Rightarrow 0<\alpha<1 \\
& \Rightarrow T(n)=\frac{b}{b-a} \cdot n-\frac{a}{b-a} \cdot n^{\alpha} \Rightarrow T(n) \in \theta(n)
\end{aligned}
\]

\section*{More Hard Example using Substitution Method}

Solve the recurrence relation given below.
\(T(n)= \begin{cases}1 & \text { if } n=1 \\ 3 \cdot T\left(\frac{n}{4}\right)+c n^{2} & \text { otherwise }\end{cases}\)
Solution:
(1) \(T(n)=3 \cdot T\left(\frac{n}{4}\right)+c n^{2}\)
(2) \(T\left(\frac{n}{4}\right)=3 \cdot T\left(\frac{n}{4^{2}}\right)+c\left(\frac{n}{4}\right)^{2}\)
(3) \(T\left(\frac{n}{4^{2}}\right)=3 \cdot T\left(\frac{n}{4^{3}}\right)+c\left(\frac{n}{4^{2}}\right)^{2}\)
(4) \(T\left(\frac{n}{4^{3}}\right)=3 \cdot T\left(\frac{n}{4^{4}}\right)+c\left(\frac{n}{4^{3}}\right)^{2}\)
and so on
(5) \(T\left(\frac{n}{4^{k-1}}\right)=3 \cdot T\left(\frac{n}{4^{k}}\right)+c\left(\frac{n}{4^{k-1}}\right)^{2}\)

Now substitutethe value of \(T\left(\frac{n}{4}\right)\) from (2) to (1)
(6) \(T(n)=3\left[3 T\left(\frac{n}{4^{2}}\right)+c\left(\frac{n}{4}\right)^{2}\right]+c n^{2}\)
\[
=3^{2} T\left(\frac{n}{4^{2}}\right)+3 c\left(\frac{n}{4}\right)^{2}+c n^{2}
\]
substitute the value of \(T\left(\frac{n}{4^{2}}\right)\) from (3) to (6), we have
\[
\begin{aligned}
T(n)= & 3^{2}\left[3 T\left(\frac{n}{4^{3}}\right)+c\left(\frac{n}{4^{2}}\right)^{2}\right]+3 c \cdot\left(\frac{n}{4}\right)^{2}+c n^{2} \\
& =3^{3} T\left(\frac{n}{4^{3}}\right)+3^{2} c\left(\frac{n}{4^{2}}\right)^{2}+3 c \cdot\left(\frac{n}{4}\right)^{2}+c n^{2} \\
& =3^{3} T\left(\frac{n}{4^{3}}\right)+\left(\frac{3}{4^{2}}\right)^{2} c n^{2}+\left(\frac{3}{4^{2}}\right)^{1} c n^{2}+c n^{2}
\end{aligned}
\]

After continuing this process, we get
\(T(n)=3^{k} T\left(\frac{n}{4^{k}}\right)+\left[\left(\frac{3}{4^{2}}\right)^{k-1}+\left(\frac{3}{4^{2}}\right)^{k-2}+\cdots+\left(\frac{3}{4^{2}}\right)^{0}\right] c n^{2}\)
Let us supposethat \(n\) can be expressed as \(n=4^{k}\)
\(T(n)=3^{k} T(1)+c n^{2}\left[1+\frac{3}{16}+\left(\frac{3}{16}\right)^{2}+\cdots+\left(\frac{3}{16}\right)^{k-1}\right]\)
\(\left.T(n)=3^{k} \cdot 1+c n^{2}\left[\frac{1-\left(\frac{3}{16}\right)^{k}}{1-\frac{3}{16}}\right)\right]=3^{k}+c n^{2} \cdot \frac{16}{13}\left(1-\frac{3^{k}}{16^{k}}\right)\)
since \(4^{k}=n \Rightarrow\left(4^{k}\right)^{2}=n^{2}\)
\(\Rightarrow\left(4^{2}\right)^{k}=n^{2} \Rightarrow 16^{k}=n^{2}\)
\(T(n)=3^{k}+c n^{2} \cdot \frac{16}{13}\left(1-\frac{3^{k}}{16^{k}}\right)=3^{k}+c n^{2} \cdot \frac{16}{13}\left(\frac{n^{2}-3^{k}}{n^{2}}\right)\)
\(=3^{k}+\frac{16}{13} \cdot c \cdot\left(n^{2}-3^{k}\right)=\frac{16}{13} c \cdot n^{2}+\left(1-\frac{16}{13} c\right) 3^{k}\)
\(T(n)=\frac{16}{13} c n^{2}+\left(1-\frac{16}{13} c\right) 3^{\log _{4}^{n}}\)
\[
=\frac{16}{13} c n^{2}+\left(1-\frac{16}{13} c\right) n^{\log _{4} 3}
\]
let \(\log _{4}^{3}=\alpha\) where \(0<\alpha<1\)
\(T(n)=\frac{16}{13} c n^{2}+\left(1-\frac{16}{13} c\right) n^{\alpha}\)
Hence \(T(n) \in \theta\left(n^{2}\right)\)

\section*{Observations}
\(T(n)= \begin{cases}1 & \text { if } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+c n^{k} & \text { otherwise }\end{cases}\)
\(=e n^{k}+f n^{\log }{ }_{b}{ }^{a}\) suppose \(b^{k_{1}}=a\)
\(=e n^{k}+f n^{\log _{b} b^{k_{1}}}\)
\(=e n^{k}+f \cdot n^{k_{1} \cdot \log _{b}}{ }_{b}=e n^{k}+f \cdot n^{k_{1}}\)
\(=\Theta\left(n^{\max \left(k, k_{1}\right)}\right)\)

\section*{Recursion Tree Method}
- Although substitution method can provide a sufficient proof that a solution to a recurrence is correct, sometimes difficult to give a good guess.
- Drawing out a recursion tree, is a straight forward way to devise a good guess.
- In recursion tree, nodes represent costs of a sub-problems in the set of recursive function invocations.
- We sum costs within each level of the tree to obtain a set of per-level costs.
- And then we sum all per-level costs to determine the total cost of all levels of the recursion.
- Recursion trees are particularly useful when recurrence describes running time of divide and conquer algos.
- Recursion tree is best one used to generate a good guess, which is then verified by substitution method
- When using a recursion tree to generate a good guess, we can often tolerate a small
amount of sloppiness since we have to verify it later on.
- If we are careful when drawing out a recursion tree and summing costs, then we can use a recursion tree as a direct proof of a solution to any recurrence of any problem.
- Here, we will use recursion trees directly to prove theorem that forms the basis of the master method.

Example: Solve the following recurrence using recurrence tree method
\[
T(n)=\left\{\begin{array}{lll}
\Theta(1) & \text { if } n=1 \\
3 \cdot T\left(\frac{n}{4}\right)+\Theta\left(n^{2}\right) & \text { if } & \text { otherwise }
\end{array}\right.
\]

Solution: The above recurrence can be written in the form
\[
T(n)= \begin{cases}1 & \text { if } n=1 \\ 3 . T\left(\frac{n}{4}\right)+c n^{2} & \text { if } \text { otherwise }\end{cases}
\]

Assumption: We assume that n is exact power of 4 .



Now the total computation cost would be
= Cost of Childs + Cost of tree excluding childes
\(=\) Cost of Child \(x\) total number of Childs + Cost of all levels excluding childes level
\(=\) total number of Childs + sum of costs at each level excluding childes level.
\(T(n)=3^{\log _{4}^{n}}+\) cost at Levels above child level
\(T(n)=\Theta\left(n^{\log _{3}^{4}}\right)+\left[\left(\frac{3}{4^{2}}\right)^{0}+\left(\frac{3}{4^{2}}\right)^{1}+\cdots+\left(\frac{3}{4^{2}}\right)^{k-1}\right] c n^{2}\)
Now total computational cost can be calculated as
\(T(n)=\Theta\left(n^{\log _{3}^{4}}\right)+\left[\left(\frac{3}{4^{2}}\right)^{0}+\left(\frac{3}{4^{2}}\right)^{1}+\cdots+\left(\frac{3}{4^{2}}\right)^{k-1}\right] c n^{2}\)
Where \(4^{k}=n \Rightarrow k=\log _{4} n\)
\(T(n) \leq \Theta\left(n^{\log _{3}{ }^{4}}\right)+\left[\left(\frac{3}{4^{2}}\right)^{0}+\left(\frac{3}{4^{2}}\right)^{1}+\cdots\right] c n^{2}\)
\(T(n) \leq \Theta\left(n^{\log _{3}{ }^{4}}\right)+\left(\frac{1}{1-\left(\frac{3}{16}\right)}\right) c n^{2}=\Theta\left(n^{\log _{3}{ }^{4}}\right)+\frac{16}{13} c n^{2}\)
Hence \(T(n)=\mathrm{O}\left(n^{2}\right)\)

\section*{Master Theorem}

Lemma 1: Let \(\mathrm{a} \geq 1, \mathrm{~b}>1\) be constants, \(\mathrm{f}(\mathrm{n})\) a non-negative function defined on exact power of b by recurrence
\[
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } n=b^{i}\end{cases}
\]
where i is a positive integer. Then
\[
T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b^{n}}-1} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)
\]

Lemma 2: Let \(\mathrm{a} \geq 1, \mathrm{~b}>1\) be constants, let \(\mathrm{f}(\mathrm{n})\) be a non-negative function defined on exact power of \(b\). A function \(g(n)\) defined over exact powers of \(b\) by
\[
g(n)=\sum_{j=0}^{\log _{g^{n}}-1} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)
\]
can be bounded asymptotically for exact powers of \(b\) as
1. If \(f(n)=\mathrm{O}\left(n^{\log _{b}{ }^{a-\varepsilon}}\right)\), for some constants \(\varepsilon>0\), then \(g(n)=\mathrm{O}\left(n^{\log _{b}{ }^{a}}\right)\)
2. If \(f(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)\), then \(g(n)=\Theta\left(n^{\log _{b}{ }^{a}} \cdot \lg \mathrm{n}\right)\)
3. If a. \(\mathrm{f}(\mathrm{n} / \mathrm{b}) \leq \mathrm{c} . \mathrm{f}(\mathrm{n})\), for some constant \(\mathrm{c}<1\) and for all \(\mathrm{n} \geq \mathrm{b}\), then \(\mathrm{g}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))\)

Proof:
Case 1: \(f(n)=\mathrm{O}\left(n^{\log _{b}{ }_{b}-\varepsilon}\right)\)
Which implies that \(f\left(\frac{n}{b^{j}}\right)=\mathrm{O}\left(\left(\frac{n}{b^{j}}\right)^{\log _{b}{ }^{a-\varepsilon}}\right)\)
We are given that: \(g(n)=\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
Substituting value from Equation (1) in Equation (2)
\[
g(n)=\mathrm{O}\left(\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot\left(\frac{n}{b^{j}}\right)^{\log _{b} a^{a-s}}\right)
\]
- Consider: \(\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot\left(\frac{n}{b^{j}}\right)^{\log _{b}{ }_{b}^{a-\varepsilon}}=n^{\log _{b}}{ }^{a-\varepsilon} \cdot \sum_{j=0}^{\log _{b^{n}-1}}\left(\frac{a \cdot b^{\varepsilon}}{b^{\log _{b} a^{a}}}\right)^{j}\)
- Assume that: \(\frac{a}{b^{\log _{b} a}}=x\)
- Taking log on both sides: \(\log _{b}\left(\frac{a}{b^{\log _{b^{a}}}}\right)=\log _{b} x\)
\[
\begin{aligned}
& \log _{b}{ }^{a}-\log _{b}{ }^{\operatorname{bog}_{b} a^{a}}=\log _{b} x \Leftrightarrow \log _{b}{ }^{a}-\log _{b}{ }^{a} \cdot \log _{b}{ }^{b}=\log _{b} x \\
& \log _{b}{ }^{a}-\log _{b}{ }^{a}=\log _{b} x \Leftrightarrow 0=\log _{b} x \Leftrightarrow x=1
\end{aligned}
\]
\[
\begin{gathered}
\sum_{j=0}^{\log _{b}^{n}-1} a^{j} \cdot\left(\frac{n}{b^{j}}\right)^{\log _{b}{ }^{a-\varepsilon}}=n^{\log _{b}{ }^{a-\varepsilon}} \cdot \sum_{j=0}^{\log _{b} b^{n}-1}\left(\frac{a \cdot b^{\varepsilon}}{b^{\log _{b}}}\right)^{j}=n^{\log _{b}{ }^{a-\varepsilon}} \cdot \sum_{j=0}^{\log _{b}{ }^{n}-1}\left(b^{\varepsilon}\right)^{j} \\
=n^{\log _{b} b^{a-\varepsilon}} \cdot\left(\left(b^{\varepsilon}\right)^{0}+\left(b^{\varepsilon}\right)^{1}+\ldots+\left(b^{\varepsilon}\right)^{\log _{b}{ }^{n}-1}\right)
\end{gathered}
\]

It is a geometric series with first term 1, common ratio \(b^{\varepsilon}\) and number of terms as \(\log _{\mathrm{b}} \mathrm{n}\). Hence \(\mathrm{g}(\mathrm{n})\),
\[
\begin{aligned}
& =n^{\log _{b}{ }^{a-\varepsilon}}\left(\frac{\left(b^{\varepsilon}\right)^{\log _{b}{ }^{n}}-1}{b^{\varepsilon}-1}\right)=n^{\log _{b}{ }^{a-\varepsilon}}\left(\frac{b^{\varepsilon . \log _{b} n}-1}{b^{\varepsilon}-1}\right)=n^{\log _{b}{ }^{a-\varepsilon}}\left(\frac{n^{\varepsilon \cdot \log _{b} b}-1}{b^{\varepsilon}-1}\right) \\
& =n^{\log _{b}{ }^{a-\varepsilon}}\left(\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}\right)=c . n^{\log _{b}{ }^{a}}-c \cdot n^{\log _{b}{ }^{a-\varepsilon}}=\mathrm{O}\left(n^{\log _{b}{ }^{a}}\right) \quad \text { Hence proved }
\end{aligned}
\]

Case 2: \(f(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)\)
Which implies that: \(f\left(\frac{n}{b^{j}}\right)=\Theta\left(\left(\frac{n}{b^{j}}\right)^{\log _{b}{ }^{a}}\right)\)
We are given that: \(g(n)=\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
Substituting value from Equation (3) in Equation (4)
\[
g(n)=\Theta\left(\sum_{j=0}^{\log _{b}{ }^{n}-1} a^{j} \cdot\left(\frac{n}{b^{j}}\right)^{\log _{b}{ }^{a}}\right)=\Theta\left(n^{\log _{b}{ }^{a}} \cdot \sum_{j=0}^{\log _{b^{n}}-1}\left(\frac{a}{b^{\log ^{a}}}\right)^{j}\right)
\]

We have already proved that \(\frac{a}{b^{\log _{a} a}}=1\)
\(g(n)=\Theta\left(n^{\log _{b}{ }^{a}} \cdot \sum_{j=0}^{\log _{b}{ }^{n}-1} 1\right)=(n^{\log _{b}{ }^{a}} \cdot \underbrace{(1+1+\ldots+1}_{\log _{b}{ }^{n} \text { numberof terms }})=\Theta\left(n^{\log _{b}{ }^{a}} \cdot \log _{b}{ }^{n}\right) \quad\) case is proved
Case 3:
Given that: \(a . f\left(\frac{n}{b}\right) \leq c . f(n) \Rightarrow f\left(\frac{n}{b}\right) \leq \frac{c}{a} . f(n)\)
\[
\begin{aligned}
& f\left(\frac{n}{b^{2}}\right) \leq \frac{c}{a} \cdot f\left(\frac{n}{b}\right) \leq\left(\frac{c}{a}\right)^{2} \cdot f(n) \Rightarrow f\left(\frac{n}{b^{2}}\right) \leq\left(\frac{c}{a}\right)^{2} \cdot f(n) \\
& f\left(\frac{n}{b^{3}}\right) \leq\left(\frac{c}{a}\right)^{2} \cdot f\left(\frac{n}{b}\right) \leq\left(\frac{c}{a}\right)^{3} \cdot f(n) \Rightarrow f\left(\frac{n}{b^{3}}\right) \leq\left(\frac{c}{a}\right)^{3} \cdot f(n)
\end{aligned}
\]

In general: \(f\left(\frac{n}{b^{j}}\right) \leq\left(\frac{c}{a}\right)^{j} \cdot f(n)\)
Equivalently: \(a^{j} . f\left(\frac{n}{b^{j}}\right) \leq c^{j} . f(n)\)
We are given that: \(g(n)=\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
We have proved that: \(a^{j} \cdot f\left(\frac{n}{b^{j}}\right) \leq c^{j} . f(n)\)
From equation (5) and (6)
\[
\begin{align*}
& g(n)=\sum_{j=0}^{\log _{n_{n}}-1} a^{j} \cdot f\left(\frac{n}{b^{j}}\right) \leq \sum_{j=0}^{\log _{b^{n}}-1} c^{j} \cdot f(n) \leq \sum_{j=0}^{\infty} c^{j} \cdot f(n) \\
& g(n)=f(n)\left(\frac{1}{1-c}\right)=\mathrm{O}(f(n)) \tag{7}
\end{align*}
\]

Since \(f(n)\) appears in definition of \(g(n)\) and all terms of \(g(n)\) are non-negative, we can conclude easily that
\[
\begin{equation*}
g(n)=\Omega(f(n)) \tag{8}
\end{equation*}
\]

We have already proved, equation (7), that
\[
\begin{equation*}
g(n)=\mathrm{O}(f(n)) \tag{9}
\end{equation*}
\]

From Equations (8) and (9) \(\quad g(n)=\Theta(f(n))\)
Hence it proves the lemma

\section*{Lemma 3:}

Let \(a \geq 1, b>1\) be constants, let \(f(n)\) be a non-negative function defined on exact power of \(b\). Define \(T(n)\) on exact powers of \(b\) by the recurrence
\[
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } \quad n=b^{i}\end{cases}
\]
where is a positive integer. Then \(T(n)\) can be bounded asymptotically for exact powers of \(b\) as
1. If \(f(n)=\mathrm{O}\left(n^{\log _{b^{a-\varepsilon}}}\right)\), for some constants \(\varepsilon>0\), then \(T(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)\)
2. If \(f(n)=\Theta\left(n^{\log _{b}{ }^{a}}\right)\), then \(T(n)=\Theta\left(n^{\log _{b}{ }^{a}} \cdot \lg \mathrm{n}\right)\)
3. If \(f(n)=\Omega\left(n^{\log _{b}{ }^{a+\varepsilon}}\right)\) for some \(\varepsilon>0\), and a.f(n/b) \(\leq \mathrm{c} . \mathrm{f}(\mathrm{n})\) for some constant \(\mathrm{c}<1\) and sufficiently large \(n\), then \(T(n)=\Theta(f(n))\)
Proof: Case 1
Given that \(T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } n=b^{i}\end{cases}\)
By Lemma 4.2: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b}{ }^{n}-1} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
By Lemma 4.3: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\mathrm{O}\left(n^{\log _{b}{ }^{a}}\right)\)
Hence for case 1 it is proved
Case 2
Again given that \(T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } n=b^{i}\end{cases}\)
By Lemma 4.2: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b^{n}-1}} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
By Lemma 4.3: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\Theta\left(n^{\log _{b} a} \cdot \lg n\right)\)
Hence for case 2 it is also proved
Case 3
By Lemma 4.2: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b}{ }^{n}-1} a^{j} \cdot f\left(\frac{n}{b^{j}}\right)\)
By Lemma 4.3: \(T(n)=\Theta\left(n^{\log _{b} a}\right)+\Theta(f(n))\)
Since \(f(n)=\Omega\left(n^{\log _{b}{ }^{a+\varepsilon}}\right)\)
Hence \(T(n)=\Theta(f(n))\)
This proves the Lemma 3

\section*{Conclusion}
- First Order homogenous linear recurrence is in fact a geometric sequence
- We studied characteristics of second and higher order linear homogenous recurrence relations with constant coefficients
- Then non-homogenous recurrence relations with constant coefficients
- Different methods to solve such recurrences
- As most of the algorithms are recursive therefore to give analysis of such algorithms, we have discussed this powerful technique.

Lecture No. 10
Time Complexity of Algorithms
(Asymptotic Notations)

\section*{Today Covered}
- Major Factors in Algorithms Design
- Complexity Analysis
- Growth of Functions
- Asymptotic Notations
- Usefulness of Notations
- Reflexivity, Symmetry, Transitivity Relations over \(\Theta, \Omega, \mathrm{O}, \omega\) and o
- Relation between \(\Theta, \Omega\) and \(O\)
- Various Examples Explaining each concept

\section*{What is Complexity?}
- The level in difficulty in solving mathematically posed problems as measured by
- The time
(time complexity)
- number of steps or arithmetic operations
(computational complexity)
- memory space required
- (space complexity)

\section*{Major Factors in Algorithms Design}
1. Correctness

An algorithm is said to be correct if
- For every input, it halts with correct output.
- An incorrect algorithm might not halt at all OR
- It might halt with an answer other than desired one.
- Correct algorithm solves a computational problem
2. Algorithm Efficiency

Measuring efficiency of an algorithm,
- do its analysis i.e. growth rate.
- Compare efficiencies of different algorithms for the same problem.

\section*{Algorithms Growth Rate}

Algorithm Growth Rates
- It measures algorithm efficiency

What means by efficient?
- If running time is bounded by polynomial in the input

Notations for Asymptotic performance
- How running time increases with input size
- O, Omega, Theta, etc. for asymptotic running time
- These notations defined in terms of functions whose domains are natural numbers
- convenient for worst case running time
- Algorithms, asymptotically efficient best choice

\section*{Complexity Analysis}
- Algorithm analysis means predicting resources such as
- computational time
- memory
- computer hardware etc
- Worst case analysis
- Provides an upper bound on running time
- An absolute guarantee
- Average case analysis
- Provides the expected running time
- Very useful, but treat with care: what is "average"?
- Random (equally likely) inputs
- Real-life inputs

\section*{Worst-case Analysis}

Let us suppose that
- \(D_{n}=\) set of inputs of size n for the problem
- I = an element of \(D_{n}\).
- \(t(I)=\) number of basic operations performed on I
- Define a function W by
\[
W(n)=\max \left\{t(I) \mid I \in D_{n}\right\}
\]
called the worst-case complexity of the algorithm
- \(W(n)\) is the maximum number of basic operations performed by the algorithm on any input of size \(n\).
- Please note that the input, I, for which an algorithm behaves worst depends on the particular algorithm.

\section*{Average Complexity}
- Let \(\operatorname{Pr}(\mathrm{I})\) be the probability that input I occurs.
- Then the average behavior of the algorithm is defined as
\[
A(n)=\Sigma \operatorname{Pr}(I) t(I), \quad \text { summation over all } I \in D_{n}
\]
- We determine \(t(I)\) by analyzing the algorithm, but \(\operatorname{Pr}(\mathrm{I})\) cannot be computed analytically.
- Average cost =
\[
A(n)=\operatorname{Pr}(s u c c) A s u c c(n)+\operatorname{Pr}(f a i l) \text { Afail(n) }
\]
- An element I in \(D_{n}\) may be thought as a set or equivalence class that affect the behavior of the algorithm
Worst Analysis computing average cost
- Take all possible inputs, compute their cost, take average

\section*{Asymptotic Notations Properties}
- Categorize algorithms based on asymptotic growth rate e.g. linear, quadratic, polynomial, exponential
- Ignore small constant and small inputs
- Estimate upper bound and lower bound on growth rate of time complexity function
- Describe running time of algorithm as n grows to \(\infty\).
- Describes behavior of function within the limit.

Limitations
- not always useful for analysis on fixed-size inputs.
- All results are for sufficiently large inputs.

\section*{Asymptotic Notations}

Asymptotic Notations \(\Theta, \mathrm{O}, \boldsymbol{\Omega}, \mathbf{o}, \omega\)
- We use \(\Theta\) to mean "order exactly",
- O to mean "order at most",
- \(\Omega\) to mean "order at least",
- o to mean "tight upper bound",
- \(\omega\) to mean "tight lower bound",

Define a set of functions: which is in practice used to compare two function sizes.

\section*{Big-Oh Notation (O)}

If \(\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}^{+}\), then we can define Big-Oh as
For a given function \(g(n) \geq 0\), denoted by \(\mathrm{O}(g(n))\) the set of functions,
\(\mathrm{O}(g(n))=\left\{f(n)\right.\) : there exist positive constants \(c\) and \(n_{o}\) such that
\(0 \leq f(n) \leq c g(n)\), for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\mathrm{O}(g(n))\) means function \(g(n)\) is an asymptotically
upperbound for \(f(n)\).
We may write \(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})) \mathrm{OR} \mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))\)

\section*{Intuitively:}


Set of all functions whose rate of growth is the same as or lower than that of \(\mathrm{g}(\mathrm{n})\).
\(\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))\)
\(\exists c>0, \exists n_{0} \geq 0\) and \(\forall n \geq n_{0}, 0 \leq f(n) \leq c . g(n)\) \(\mathrm{g}(\mathrm{n})\) is an asymptotic upper bound for \(\mathrm{f}(\mathrm{n})\).

Example 1: Prove that \(2 n^{2} \in O\left(n^{3}\right)\)
Proof:
Assume that \(f(n)=2 n^{2}\), and \(g(n)=n^{3}\)
\(\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n})) ?\)
Now we have to find the existence of \(c\) and \(n_{0}\)
\(\mathrm{f}(\mathrm{n}) \leq \mathrm{c} . \mathrm{g}(\mathrm{n}) \square 2 \mathrm{n}^{2} \leq \mathrm{c} . \mathrm{n}^{3} \square 2 \leq \mathrm{c} . \mathrm{n}\)
if we take, \(\mathrm{c}=1\) and \(\mathrm{n}_{0}=2 \quad\) OR
\(\mathrm{c}=2\) and \(\mathrm{n}_{0}=1\) then
\[
2 n^{2} \leq c . n^{3}
\]

Hence \(f(n) \in O(g(n)), c=1\) and \(n_{0}=2\)

Example 2: Prove that \(n^{2} \in O\left(n^{2}\right)\)
Proof:
Assume that \(f(n)=n^{2}\), and \(g(n)=n^{2}\)
Now we have to show that \(f(n) \in O(g(n))\)
Since
\(\mathrm{f}(\mathrm{n}) \leq \mathrm{c} . \mathrm{g}(\mathrm{n}) \square \mathrm{n}^{2} \leq \mathrm{c} . \mathrm{n}^{2} \square 1 \leq \mathrm{c}\), take, \(\mathrm{c}=1, \mathrm{n}_{0}=1\)
Then
\[
n^{2} \leq c . n^{2} \quad \text { for } c=1 \text { and } n \geq 1
\]

Hence, \(2 \mathrm{n}^{2} \in \mathrm{O}\left(\mathrm{n}^{2}\right)\), where \(\mathrm{c}=1\) and \(\mathrm{n}_{0}=1\)
Example 3: Prove that 1000. \(\mathrm{n}^{2}+1000 . \mathrm{n} \in \mathrm{O}\left(\mathrm{n}^{2}\right)\)
Proof:
Assume that \(f(n)=1000 . n^{2}+1000 . n\), and \(g(n)=n^{2}\)
We have to find existence of \(c\) and \(n_{0}\) such that
\(0 \leq f(n) \leq c . g(n)\)
\(\mathrm{n} \geq \mathrm{n}_{0}\)
\(1000 . n^{2}+1000 . n \leq c . n^{2}=1001 . n^{2}\), for \(c=1001\)
\(1000 . n^{2}+1000 . n \leq 1001 . n^{2}\)
Û \(\quad 1000 . n \leq n^{2} \square n^{2} \geq 1000 . n \square n^{2}-1000 . n \geq 0\)
Û \(n(n-1000) \geq 0\), this true for \(n \geq 1000\)
\(\mathrm{f}(\mathrm{n}) \leq \mathrm{c} . \mathrm{g}(\mathrm{n}) \quad \square \mathrm{n} \geq \mathrm{n}_{0}\) and \(\mathrm{c}=1001\)
Hence \(f(n) \in O(g(n))\) for \(c=1001\) and \(n_{0}=1000\)
Example 4: Prove that \(n^{3} \square O\left(n^{2}\right)\)
Proof:
On contrary we assume that there exist some positive constants c and \(\mathrm{n}_{0}\) such that
\[
\begin{aligned}
& 0 \leq n^{3} \leq c . n^{2} \quad \square n \geq n_{0} \\
& 0 \leq n^{3} \leq c . n^{2} \square n \leq c
\end{aligned}
\]

Since c is any fixed number and n is any arbitrary constant, therefore \(\mathrm{n} \leq \mathrm{c}\) is not possible in general. Hence our supposition is wrong and \(n^{3} \leq c . n^{2}\),
\(n \geq n_{0}\) is not true for any combination of \(c\) and \(n_{0}\). And hence, \(n^{3} \square O\left(n^{2}\right)\)

\section*{Some More Examples}
1. \(n^{2}+n^{3}=O\left(n^{4}\right)\)
2. \(n^{2} / \log (n)=O(n . \log n)\)
3. \(5 n+\log (n)=O(n)\)
4. \(n^{\log n}=O\left(n^{100}\right)\)
5. \(3^{n}=O\left(2^{n} \cdot n^{100}\right)\)
6. \(n!=O\left(3^{n}\right)\)
7. \(n+1=O(n)\)
8. \(2 n+1=O(2 n)\)
9. \((n+1)!=O(n!)\)
10. \(1+c+c^{2}+\ldots+c^{n}=O\left(c^{n}\right) \quad\) for \(c>1\)
11. \(1+c+c^{2}+\ldots+c^{n}=O(1) \quad\) for \(c<1\)

\section*{Big-Omega Notation ( \(\Omega\) )}

If \(\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}^{+}\), then we can define Big-Omega as
For a given function \(g(n)\) denote by \(\Omega(g(n))\) the set of functions,
\(\Omega(g(n))=\left\{f(n)\right.\) : there exist positiveconstants \(c\) and \(n_{o}\) such that
\(0 \leq c g(n) \leq f(n)\) for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\Omega(g(n))\), means that function \(g(n)\) is an asy mptotially
lower bound for \(f(n)\).
We may write \(\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))\) OR \(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))\)

\section*{Intuitively:}

Set of all functions whose rate of growth is the same as or higher than that of \(\mathrm{g}(\mathrm{n})\).

\(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))\)
\(\exists \mathrm{c}>0, \exists \mathrm{n}_{0} \geq 0, \forall \mathrm{n} \geq \mathrm{n}_{0}, \mathrm{f}(\mathrm{n}) \geq \mathrm{c} . \mathrm{g}(\mathrm{n})\)
\(g(n)\) is an asymptotically lower bound for \(f(n)\).
Example 1: Prove that \(5 . \mathrm{n}^{2} \in \Omega(\mathrm{n})\)
Proof:
Assume that \(\mathrm{f}(\mathrm{n})=5 . \mathrm{n}^{2}\), and \(\mathrm{g}(\mathrm{n})=\mathrm{n}\)
\[
\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})) ?
\]

We have to find the existence of \(c\) and \(n_{0}\) s.t.
\[
\begin{aligned}
& c . g(n) \leq f(n) \quad \square n \geq n_{0} \\
& c . n \leq 5 . n^{2} \square c \leq 5 . n
\end{aligned}
\]
if we take, \(c=5\) and \(n_{0}=1\) then
\[
\text { c. } n \leq 5 . n^{2} \quad \square n \geq n_{0}
\]

And hence \(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))\), for \(\mathrm{c}=5\) and \(\mathrm{n}_{0}=1\)
Example 2: Prove that \(5 . \mathrm{n}+10 \in \Omega(\mathrm{n})\)
Proof:
Assume that \(f(n)=5 . n+10\), and \(g(n)=n\)
\[
\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})) ?
\]

We have to find the existence of \(c\) and \(n_{0}\) s.t.
\[
\begin{aligned}
& c . g(n) \leq f(n) \quad n \geq n_{0} \\
& c . n \leq 5 . n+10 \square c . n \leq 5 . n+10 . n \square c \leq 15 . n
\end{aligned}
\]
if we take, \(\mathrm{c}=15\) and \(\mathrm{n}_{0}=1\) then
\[
\text { c. } \mathrm{n} \leq 5 . \mathrm{n}+10 \quad \square \mathrm{n} \geq \mathrm{n}_{0}
\]

And hence \(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))\), for \(\mathrm{c}=15\) and \(\mathrm{n}_{0}=1\)
Example 3: Prove that \(100 . n+5 \notin \Omega\left(\mathrm{n}^{2}\right)\)
Proof:
Let \(\mathrm{f}(\mathrm{n})=100 . \mathrm{n}+5\), and \(\mathrm{g}(\mathrm{n})=\mathrm{n}^{2}\)
Assume that \(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))\) ?
Now if \(f(n) \in \Omega(g(n))\) then there exist \(c\) and \(n_{0}\) s.t.
c. \(g(n) \leq f(n) \quad \square n \geq n_{0}\)
c. \(n^{2} \leq 100 . n+5\)
c. \(n \leq 100+5 / n\)
\(n \leq 100 / \mathrm{c}\), for a very large n , which is not possible
And hence \(\mathrm{f}(\mathrm{n}) \square \Omega(\mathrm{g}(\mathrm{n}))\)

\section*{Theta Notation ( \(\Theta\) )}

If \(\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}^{+}\), then we can define Big-Theta as
given function \(g(n)\) denoted by \(\Theta(g(n))\) the set of functions,
\(\Theta(g(n))=\left\{f(n)\right.\) : there exist positive constants \(c_{1}, c_{2}\) and \(n_{o}\) such that
\(0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\) for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\Theta(g(n))\) means function \(f(n)\) is equal to \(g(n)\) to within a constant
factor, and \(g(n)\) is an asy mptotically tight bound for \(f(n)\).
We may write \(f(n)=\Theta(g(n))\) OR \(f(n) \in \Theta(g(n))\)
Intuitively: Set of all functions that have same rate of growth as \(\mathrm{g}(\mathrm{n})\).

\(\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))\)
\(\exists c_{1}>0, c_{2}>0, \exists n_{0} \geq 0, \forall n \geq n_{0}, c_{2} . g(n) \leq f(n) \leq c_{1 .} g(n)\)
We say that \(\mathrm{g}(\mathrm{n})\) is an asymptotically tight bound for \(\mathrm{f}(\mathrm{n})\).

Example 1: Prove that \(1 / 2 . n^{2}-1 / 2 . n=\Theta\left(n^{2}\right)\)
Proof
Assume that \(f(n)=1 / 2 . n^{2}-1 / 2 . n\), and \(g(n)=n^{2}\)
\(f(n) \in \Theta(g(n)) ?\)
We have to find the existence of \(c_{1}, c_{2}\) and \(n_{0}\) s.t.
\(c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n) \square n \geq n_{0}\)
Since, \(1 / 2 n^{2}-1 / 2 n \leq 1 / 2 n^{2} \quad \forall n \geq 0 \quad\) if \(c_{2}=1 / 2\) and
\(1 / 2 n^{2}-1 / 2 n \geq 1 / 2 n^{2}-1 / 2 n \cdot 1 / 2 n(\forall n \geq 2)=1 / 4 n^{2}, c_{1}=1 / 4\)
Hence \(1 / 2 n^{2}-1 / 2 n \leq 1 / 2 n^{2} \leq 1 / 2 n^{2}-1 / 2 n\)
\(c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n) \forall n \geq 2, c_{1}=1 / 4, c_{2}=1 / 2\)
Hence \(f(n) \in \Theta(g(n)) \Rightarrow 1 / 2 . n^{2}-1 / 2 . n=\Theta\left(n^{2}\right)\)
Example 2: Prove that \(a . n^{2}+b \cdot n+c=\Theta\left(n^{2}\right)\) where \(a, b, c\) are constants and \(a>0\)
Proof
If we take \(c_{1}=1 / 4 . a, c_{2}=7 / 4\). a and
Then it can be easily verified that
\(0 \leq c_{1} \cdot g(n) \leq f(n) \leq c_{2} . g(n), \forall n \geq n_{0}, c_{1}=1 / 4 . a, c_{2}=7 / 4 . a\)
Hence \(f(n) \in \Theta(g(n)) \Rightarrow a . n^{2}+b . n+c=\Theta\left(n^{2}\right)\)
Hence any polynomial of degree 2 is of order \(\Theta\left(n^{2}\right)\)
Example 3: Prove that \(2 . n^{2}+3 . n+6 \square \Theta\left(n^{3}\right)\)
Proof: Let \(f(n)=2 \cdot n^{2}+3 \cdot n+6\), and \(g(n)=n^{3}\)
we have to show that \(f(n) \square \Theta(g(n))\)
On contrary assume that \(f(n) \in \Theta(g(n))\) i.e.
there exist some positive constants \(\mathrm{c}_{1}, \mathrm{c}_{2}\) and \(\mathrm{n}_{0}\) such that: \(\mathrm{c}_{1} \cdot \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \cdot \mathrm{~g}(\mathrm{n})\)
\(\mathrm{c}_{1} . \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} . \mathrm{g}(\mathrm{n}) \square \mathrm{c}_{1} . \mathrm{n}^{3} \leq 2 . \mathrm{n}^{2}+3 . \mathrm{n}+6 \leq \mathrm{c}_{2} . \mathrm{n}^{3} \square\)
\(c_{1} \cdot n \leq 2+3 / n+6 / n^{2} \leq c_{2} \cdot n \Rightarrow\)
\(\mathrm{c}_{1} . \mathrm{n} \leq 2 \leq \mathrm{c}_{2}\). n , for large \(\mathrm{n} \Rightarrow\)
\(\mathrm{n} \leq 2 / \mathrm{c}_{1} \leq \mathrm{c}_{2} / \mathrm{c}_{1}\). n which is not possible
Hence \(\mathrm{f}(\mathrm{n}) \square \Theta(\mathrm{g}(\mathrm{n})) \Rightarrow 2 . \mathrm{n}^{2}+3 . \mathrm{n}+6 \square \Theta\left(\mathrm{n}^{3}\right)\)

\section*{Little-Oh Notation}
o-notation is used to denote a upper bound that is not asymptotically tight.
r a given function \(g(n) \geq 0\), denoted by \(o(g(n))\) the set of functions,
\(o(g(n))=\left\{\begin{array}{l}f(n) \text { : for any positiveconstants } c, \text { there exists a constant } n_{o} \\ \left.\text { such that } 0 \leq f(n)<c g(n) \text { for all } n \geq n_{o}\right\}\end{array}\right.\)
\(\mathrm{f}(\mathrm{n})\) becomes insignificant relative to \(\mathrm{g}(\mathrm{n})\) as n approaches infinity
e.g., \(2 \mathrm{n}=o\left(n^{2}\right)\) but \(2 n^{2} \neq o\left(n^{2}\right)\).
\(\mathrm{g}(\mathrm{n})\) is an upper bound for \(\mathrm{f}(\mathrm{n})\), not asymptotically tight
\[
\lim _{\mathrm{n} \rightarrow \infty} \frac{f(n)}{g(n)}=0
\]

Example 1: Prove that \(2 n^{2} \in o\left(n^{3}\right)\)
Proof:
Assume that \(f(n)=2 n^{2}\), and \(g(n)=n^{3}\)
\[
f(n) \in o(g(n)) ?
\]

Now we have to find the existence \(\mathrm{n}_{0}\) for any c
\(\mathrm{f}(\mathrm{n})<\mathrm{c} . \mathrm{g}(\mathrm{n})\) this is true
\(2 \mathrm{n}^{2}<\mathrm{c} . \mathrm{n}^{3} \square 2<\mathrm{c}\). \(n\)
This is true for any c , because for any arbitrary c we can choose \(\mathrm{n}_{0}\) such that the above inequality holds. Hence \(f(n) \in O(g(n))\)

Example 2: Prove that \(\mathrm{n}^{2} \notin \mathrm{o}\left(\mathrm{n}^{2}\right)\)
Proof:

> Assume that \(f(n)=n^{2}\), and \(g(n)=n^{2}\)
> Now we have to show that \(f(n) \notin O(g(n))\)
> Since
> \(f(n)<c . g(n) \square n^{2}<c . n^{2} \square 1 \leq c\),

In our definition of small o , it was required to prove for any c but here there is a constraint over c . Hence, \(\mathrm{n}^{2} \notin \mathrm{o}\left(\mathrm{n}^{2}\right)\), where \(\mathrm{c}=1\) and \(\mathrm{n}_{0}=1\)

Example 3: Prove that \(1000 . n^{2}+1000 . n \notin o\left(n^{2}\right)\)
Proof:
Assume that \(f(n)=1000 . n^{2}+1000 . n\), and \(g(n)=n^{2}\)
we have to show that \(\mathrm{f}(\mathrm{n}) \notin \mathrm{o}(\mathrm{g}(\mathrm{n}))\) i.e.
We assume that for any \(c\) there exist \(n_{0}\) such that
\(0 \leq \mathrm{f}(\mathrm{n})<\mathrm{c} . \mathrm{g}(\mathrm{n}) \quad \square \mathrm{n} \geq \mathrm{n}_{0}\)
\(1000 . \mathrm{n}^{2}+1000 . \mathrm{n}<\mathrm{c} . \mathrm{n}^{2}\)
If we take \(\mathrm{c}=2001\), then, \(1000 . \mathrm{n}^{2}+1000 . \mathrm{n}<2001 . \mathrm{n}^{2}\)
1000. \(\mathrm{n}<1001 . \mathrm{n}^{2}\) which is not true

Hence \(\mathrm{f}(\mathrm{n}) \notin \mathrm{o}(\mathrm{g}(\mathrm{n}))\) for \(\mathrm{c}=2001\)

\section*{Little-Omega Notation}

Little- \(\omega\) notation is used to denote a lower bound that is not asymptotically tight.
For a given function \(g(n)\), denote by \(\omega(g(n))\) the set of all functions.
\(\omega(g(n))=\left\{f(n)\right.\) : for any positiveconstants \(c\), there exists a constant \(n_{o}\) such that
\(0 \leq c g(n)<f(n)\) for all \(\left.n \geq n_{o}\right\}\)
\(\mathrm{f}(\mathrm{n})\) becomes arbitrarily large relative to \(\mathrm{g}(\mathrm{n})\) as n approaches infinity \(\lim _{\mathrm{n} \rightarrow \infty} \frac{f(n)}{g(n)}=\infty\)
e.g., \(\frac{\mathrm{n}^{2}}{2}=\omega(n)\) but \(\frac{n^{2}}{2} \neq \omega\left(n^{2}\right)\).

Example 1: Prove that \(5 . \mathrm{n}^{2} \in \omega(\mathrm{n})\)
Proof:
Assume that \(f(n)=5 \cdot n^{2}\), and \(g(n)=n\)
\(\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})) ?\)
We have to prove that for any c there exists \(\mathrm{n}_{0}\) s.t., c.g(n) \(<\mathrm{f}(\mathrm{n}) \square \mathrm{n} \geq \mathrm{n}_{0}\) c. \(n<5 . \mathrm{n}^{2} \square \mathrm{c}<5 . \mathrm{n}\)

This is true for any c, because for any arbitrary c e.g. \(\mathrm{c}=1000000\), we can choose \(\mathrm{n}_{0}\) \(=1000000 / 5=200000\) and the above inequality does hold.
And hence \(f(n) \in \omega(g(n))\),
Example 2: Prove that \(5 . \mathrm{n}+10 \notin \omega(\mathrm{n})\)
Proof:
Assume that \(f(n)=5 . n+10\), and \(g(n)=n\)
\(\mathrm{f}(\mathrm{n}) \notin \Omega(\mathrm{g}(\mathrm{n}))\) ?
We have to find the existence \(\mathrm{n}_{0}\) for any c , s.t.
\(c . g(n)<f(n) \quad \square n \geq n_{0}\)
c. \(n<5 . n+10\), if we take \(c=16\) then
16.n \(<5 . n+10 \Leftrightarrow 11 . n<10\) is not true for any positive integer.

Hence \(\mathrm{f}(\mathrm{n}) \notin \omega(\mathrm{g}(\mathrm{n}))\)
Example 3: Prove that \(100 . \mathrm{n} \notin \omega\left(\mathrm{n}^{2}\right)\)
Proof:
Let \(\mathrm{f}(\mathrm{n})=100 . \mathrm{n}\), and \(\mathrm{g}(\mathrm{n})=\mathrm{n}^{2}\)
Assume that \(\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n}))\)
Now if \(f(n) \in \omega(g(n))\) then there \(n_{0}\) for any c s.t.
c. \(g(n)<f(n) \quad \square n \geq n_{0} \quad\) this is true
c. \(n^{2}<100 . n \square c . n<100\)

If we take \(c=100, n<1\), not possible
Hence \(f(n) \square \omega(g(n))\) i.e. 100. \(n \notin \omega\left(n^{2}\right)\)

\section*{Usefulness of Notations}
- It is not always possible to determine behaviour of an algorithm using \(\Theta\)-notation.
- For example, given a problem with \(n\) inputs, we may have an algorithm to solve it in a. \(n^{2}\) time when \(n\) is even and c. \(n\) time when \(n\) is odd. OR
- We may prove that an algorithm never uses more than e.n \({ }^{2}\) time and never less than f.n time.
- In either case we can neither claim \(\Theta(\mathrm{n})\) nor \(\Theta\left(\mathrm{n}^{2}\right)\) to be the order of the time usage of the algorithm.
- Big \(O\) and \(\Omega\) notation will allow us to give at least partial information

\section*{Lecture 11 \\ Relations over Asymptotic Notations}

\section*{Overview of Previous Lecture}

\section*{Although Estimation but Useful}
- It is not always possible to determine behaviour of an algorithm using \(\Theta\)-notation.
- For example, given a problem with \(n\) inputs, we may have an algorithm to solve it in \(a . n^{2}\) time when \(n\) is even and c. \(n\) time when \(n\) is odd. OR
- We may prove that an algorithm never uses more than e.n \({ }^{2}\) time and never less than f.n time.
- In either case we can neither claim \(\Theta(n)\) nor \(\Theta\left(n^{2}\right)\) to be the order of the time usage of the algorithm.
- Big O and \(\Omega\) notation will allow us to give at least partial information

\section*{Reflexive Relation}

\section*{Definition:}
- Let \(X\) be a non-empty set and \(R\) is a relation over \(X\) then \(R\) is said to be reflexive if
\[
(\mathrm{a}, \mathrm{a}) \in \mathrm{R}, \forall \mathrm{a} \in \mathrm{X},
\]

Example 1:
- Let G be a graph. Let us define a relation R over G as if node x is connected to y then ( x , \(y) \in G\). Reflexivity is satisfied over \(G\) if for every node there is a self loop.
Example 2:
- Let \(P\) be a set of all persons, and \(S\) be a relation over \(P\) such that if \((x, y) \in S\) then \(x\) has same birthday as \(y\).
- Of course this relation is reflexive because
\[
(x, x) \in S, \quad \forall a \in P
\]

\section*{Reflexivity Relations over \(\Theta, \Omega, 0\)}

Example 1
Since, \(0 \leq f(n) \leq \operatorname{cf}(n) \quad \forall n \geq n_{0}=1\), if \(c=1\)
Hence \(f(n)=O(f(n))\)
Example 2
Since, \(0 \leq \operatorname{cf}(n) \leq f(n) \quad \forall n \geq n_{0}=1\), if \(c=1\)
Hence \(\mathrm{f}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))\)

\section*{Example 3}

Since, \(0 \leq \mathrm{c}_{1} \mathrm{f}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}=1\), if \(\mathrm{c}_{1}=\mathrm{c}_{2}=1\)
Hence \(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))\)
Note: All the relations, Q, W, O, are reflexive

\section*{Little \(o\) and \(\omega\) are not Reflexivity Relations}

\section*{Example}

As we can not prove that \(f(n)<f(n)\), for any \(n\), and for all \(c>0\)
Therefore
1. \(\quad f(n) \neq o(f(n))\) and
2. \(\quad f(n) \neq \omega(f(n))\)

Note : Hence small o and small omega are not reflexive relations

\section*{Symmetry}

Definition:
- Let \(X\) be a non-empty set and \(R\) is a relation over \(X\) then \(R\) is said to be symmetric if \(\forall \mathrm{a}, \mathrm{b} \in \mathrm{X},(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R}\)

\section*{Example 1:}
- Let \(P\) be a set of persons, and \(S\) be a relation over \(P\) such that if \((x, y) \in\) \(S\) then \(x\) has the same sign as \(y\).
- This relation is symmetric because
\[
(x, y) \in S \Rightarrow(y, x) \in S
\]

\section*{Example 2:}

\section*{Symmetry over \(\Theta\)}

Property : prove that
\(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \Leftrightarrow \mathrm{g}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))\)
Proof
- Since \(f(n)=\Theta(g(n))\) i.e. \(f(n) \in \Theta(g(n)) \Rightarrow\)
\(\exists\) constants \(c_{1}, c_{2}>0\) and \(n_{0} \in N\) such that
\(0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}\)
(1) \(\quad \Rightarrow 0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \quad \Rightarrow 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})\)
\(\Rightarrow 0 \leq\left(1 / \mathrm{c}_{2}\right) \mathrm{f}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\)
(1) \(\quad \Rightarrow 0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \quad \Rightarrow 0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})\)
\(\Rightarrow 0 \leq g(n) \leq\left(1 / c_{1}\right) f(n)\)
From (2),(3): \(0 \leq\left(1 / c_{2}\right) f(n) \leq g(n) \wedge 0 \leq g(n) \leq\left(1 / c_{1}\right) f(n)\)
\(\Rightarrow \quad 0 \leq\left(1 / c_{2}\right) f(n) \leq g(n) \leq\left(1 / c_{1}\right) f(n)\)
Suppose that \(1 / c_{2}=c_{3}\), and \(1 / c_{1}=c_{4}\),
Now the above equation implies that
\[
\begin{aligned}
& 0 \leq \mathrm{c}_{3}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{c}_{4} \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0} \\
& \Rightarrow \mathrm{~g}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n})), \forall \mathrm{n} \geq \mathrm{n}_{0}
\end{aligned}
\]

Hence it proves that, \(f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))\)
Exercise: prove that big O , big omega \(\Omega\), little \(\omega\), and little 0 , do not satisfy the symmetry property.

\section*{Transitivity}

Definition:
- Let \(X\) be a non-empty set and \(R\) is a relation over \(X\) then \(R\) is said to be transitive if \(\forall a, b, c \in X,(a, b) \in R \wedge(b, c) \in R \Rightarrow(a, c) \in R\)

\section*{Example 1:}
- Let \(P\) be a set of all persons, and \(B\) be a relation over \(P\) such that if ( \(x, y\) ) \(\in B\) then \(x\) is brother of \(y\).
- This relation is transitive this is because
\((x, y) \in B \wedge(y, z) \in B \Rightarrow(x, z) \in B\)

\section*{Example 2:}
- Let \(P\) be a set of all persons, and \(F\) be a relation over \(P\) such that if ( \(x, y\) ) \(\in F\) then \(x\) is father of \(y\).
- Of course this relation is not a transitive because if \((x, y) \in F \wedge(y\), \(z) \in F \Rightarrow(x, z) \notin F\)

\section*{Transitivity Relation over Q, W, O, o and \(\omega\)}

Prove the following
1. \(\quad f(n)=\Theta(g(n)) \& g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n))\)
2. \(\quad f(n)=O(g(n)) \& g(n)=O(h(n)) \Rightarrow f(n)=O(h(n))\)
3. \(\quad f(n)=\Omega(g(n)) \& g(n)=\Omega(h(n)) \Rightarrow f(n)=\Omega(h(n))\)
4. \(\quad f(n)=o(g(n)) \& g(n)=o(h(n)) \Rightarrow f(n)=o(h(n))\)
5. \(\quad \mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n}))\)

Note
It is to be noted that all these algorithms complexity measuring notations are in fact relations which satisfy the transitive property.

\section*{Transitivity Relation over Q}

Property 1
\(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n}))\)
Proof
- Since \(f(n)=\Theta(g(n))\) i.e. \(f(n) \in \Theta(g(n)) \Rightarrow\)
\(\exists\) constants \(\mathrm{c}_{1}, \mathrm{c}_{2}>0\) and \(\mathrm{n}_{01} \in \mathrm{~N}\) such that \(0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{01}\)
2. Now since \(g(n)=\Theta(h(n))\) i.e. \(g(n) \in \Theta(h(n)) \Rightarrow\) \(\exists\) constants \(c_{3}, c_{4}>0\) and \(n_{02} \in N\) such that \(0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{c}_{4} \mathrm{~h}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02}\)
3. Now let us suppose that \(n_{0}=\max \left(n_{01}, n_{02}\right)\)
4. Now we have to show that \(f(n)=\Theta(h(n))\) i.e. we have to prove that
\(\exists\) constants \(\mathrm{C}_{5}, \mathrm{c}_{6}>0\) and \(\mathrm{n}_{0} \in \mathrm{~N}\) such that
\(0 \leq \mathrm{c}_{5} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{6} \mathrm{~h}(\mathrm{n}) \quad\) ?
(2) \(\Rightarrow 0 \leq c_{3} h(n) \leq g(n) \leq c_{4} h(n)\)
\(\Rightarrow 0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\)
\[
\begin{align*}
(1) & \Rightarrow 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \\
& \Rightarrow 0 \leq c_{1} g(n) \leq f(n) \\
& \Rightarrow 0 \leq g(n) \leq\left(1 / c_{1}\right) f(n) \tag{4}
\end{align*}
\]

From (3) and (4), \(0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \leq\left(1 / \mathrm{c}_{1}\right) \mathrm{f}(\mathrm{n})\)
\(\Rightarrow 0 \leq \mathrm{c}_{1} \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})\)
(1) \(\quad \Rightarrow 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\)
\(\Rightarrow 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \Rightarrow 0 \leq\left(1 / \mathrm{c}_{2}\right) \mathrm{f}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\)
(2) \(\Rightarrow 0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{c}_{4} \mathrm{~h}(\mathrm{n})\)
\(\Rightarrow 0 \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{C}_{4} \mathrm{~h}(\mathrm{n})\)
From (6) and (7), \(0 \leq\left(1 / c_{2}\right) f(n) \leq g(n) \leq\left(c_{4}\right) h(n)\)
\[
\begin{align*}
& \Rightarrow 0 \leq\left(1 / c_{2}\right) \mathrm{f}(\mathrm{n}) \leq\left(\mathrm{c}_{4}\right) \mathrm{h}(\mathrm{n}) \\
& \Rightarrow 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{c}_{4} \mathrm{~h}(\mathrm{n}) \tag{8}
\end{align*}
\]

From (5), (8), \(0 \leq c_{1} c_{3} h(n) \leq f(n) \wedge 0 \leq f(n) \leq c_{2} C_{4} h(n)\)
\(0 \leq c_{1} c_{3} h(n) \leq f(n) \leq c_{2} C_{4} h(n)\)
\(0 \leq \mathrm{c}_{5} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{6} \mathrm{~h}(\mathrm{n})\)
And hence \(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}\)

\section*{Transitivity Relation over Big 0}

Property 2
\[
\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\mathrm{O}(\mathrm{~h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~h}(\mathrm{n}))
\]

Proof
- Since \(f(n)=O(g(n))\) i.e. \(f(n) \in O(g(n)) \Rightarrow\) \(\exists\) constants \(c_{1}>0\) and \(n_{01} \in N\) such that \(0 \leq f(n) \leq c_{1} g(n) \quad \forall n \geq n_{01}\)
2. Now since \(g(n)=O(h(n))\) i.e. \(g(n) \in O(h(n)) \Rightarrow\) \(\exists\) constants \(\mathrm{c}_{2}>0\) and \(\mathrm{n}_{02} \in \mathrm{~N}\) such that \(0 \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02}\)
3. Now let us suppose that \(n_{0}=\max \left(n_{01}, n_{02}\right)\) Now we have to two equations
\[
\begin{align*}
& 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{01}  \tag{1}\\
& 0 \leq \mathrm{g}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02}  \tag{2}\\
& \text { (2) } \quad \Rightarrow 0 \leq c_{1} g(n) \leq c_{1} c_{2} h(n) \quad \forall n \geq n_{02} \tag{3}
\end{align*}
\]

From (1) and (3)
\[
0 \leq f(n) \leq c_{1} g(n) \leq c_{1} c_{2} h(n)
\]

Now suppose that \(c_{3}=c_{1} c_{2}\)
\[
0 \leq f(n) \leq c_{1} c_{2} h(n)
\]

And hence \(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n})) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}\)

\section*{Transitivity Relation over Big \(\Omega\)}

Property 3
\(\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n}))\)
Proof
- \(\quad\) Since \(\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \Rightarrow\)
\(\exists\) constants \(c_{1}>0\) and \(n_{01} \in N\) such that
\[
\begin{equation*}
0 \leq c_{1} g(n) \leq f(n) \quad \forall n \geq n_{01} \tag{1}
\end{equation*}
\]
2. Now since \(g(n)=\Omega(h(n)) \Rightarrow\)
\[
\exists \text { constants } \mathrm{c}_{2}>0 \text { and } \mathrm{n}_{02} \in \mathrm{~N} \text { such that }
\]
\[
\begin{equation*}
0 \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02} \tag{2}
\end{equation*}
\]
3. Suppose that \(\mathrm{n}_{0}=\max \left(\mathrm{n}_{01}, \mathrm{n}_{02}\right)\)
4. We have to show that \(f(n)=\Omega(h(n))\) i.e. we have to prove that \(\exists\) constants \(c_{3}>0\) and \(n_{0} \in N\) such that
\[
0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0} \quad ?
\]
(2) \(\Rightarrow 0 \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\)
(1) \(\Rightarrow 0 \leq c_{1} g(n) \leq f(n)\)
\(\Rightarrow 0 \leq \mathrm{g}(\mathrm{n}) \leq\left(1 / \mathrm{c}_{1}\right) \mathrm{f}(\mathrm{n})\)
From (2) and (3), \(0 \leq c_{2} h(n) \leq g(n) \leq\left(1 / c_{1}\right) f(n)\)
\[
\Rightarrow 0 \leq \mathrm{c}_{1} \mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \text { hence } \mathrm{f}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n})), \forall \mathrm{n} \geq \mathrm{n}_{0}
\]

\section*{Transitivity Relation over little o}

Property 4
\[
f(n)=o(g(n)) \& g(n)=o(h(n)) \Rightarrow f(n)=o(h(n))
\]

Proof
- Since \(f(n)=O(g(n))\) i.e. \(f(n) \in O(g(n)) \Rightarrow\) \(\exists\) constants \(c_{1}>0\) and \(n_{01} \in N\) such that \(0 \leq f(n)<c_{1} g(n) \quad \forall n \geq n_{01}\)
2. Now since \(g(n)=o(h(n))\) i.e. \(g(n) \in o(h(n)) \Rightarrow\) \(\exists\) constants \(\mathrm{c}_{2}>0\) and \(\mathrm{n}_{02} \in \mathrm{~N}\) such that \(0 \leq \mathrm{g}(\mathrm{n})<\mathrm{c}_{2} \mathrm{~h}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02}\)
3. Now let us suppose that \(\mathrm{n}_{0}=\max \left(\mathrm{n}_{01}, \mathrm{n}_{02}\right)\)

Now we have to two equations
\[
\begin{array}{ll}
0 \leq f(n)<c_{1} g(n) & \forall n \geq n_{01} \\
0 \leq g(n)<c_{2} h(n) & \forall n \geq n_{01} \tag{2}
\end{array}
\]
(2) \(\quad \Rightarrow 0 \leq c_{1} g(n)<c_{1} c_{2} h(n) \quad \forall n \geq n_{02}\)

From (1) and (3)
\[
\begin{equation*}
0 \leq f(n) \leq c_{1} g(n)<c_{1} c_{2} h(n) \tag{3}
\end{equation*}
\]

Now suppose that \(\mathrm{C}_{3}=\mathrm{C}_{1} \mathrm{C}_{2}\)
\[
0 \leq f(n)<c_{1} c_{2} h(n)
\]

And hence \(\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{h}(\mathrm{n})) \quad \forall \mathrm{n} \geq \mathrm{n}_{01}\)

\section*{Transitivity Relation over little \(\omega\)}

Property 5
\(\mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n}))\)
Proof
- \(\quad\) Since \(\mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \Rightarrow\)
\(\exists\) constants \(c_{1}>0\) and \(n_{01} \in N\) such that
\[
\begin{equation*}
0 \leq c_{1} g(n)<f(n) \quad \forall n \geq n_{01} \tag{1}
\end{equation*}
\]
2. Now since \(g(n)=\omega(h(n)) \Rightarrow\)
\(\exists\) constants \(c_{2}>0\) and \(n_{02} \in N\) such that
\[
\begin{equation*}
0 \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n})<\mathrm{g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{02} \tag{2}
\end{equation*}
\]
3. Suppose that \(\mathrm{n}_{0}=\max \left(\mathrm{n}_{01}, \mathrm{n}_{02}\right)\)
4. We have to show that \(f(n)=\omega(h(n))\) i.e. we have to prove that \(\exists\) constants \(c_{3}>0\) and \(n_{0} \in N\) such that
\[
0 \leq \mathrm{c}_{3} \mathrm{~h}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0} \quad ?
\]
(2) \(\Rightarrow 0 \leq \mathrm{c}_{2} \mathrm{~h}(\mathrm{n})<\mathrm{g}(\mathrm{n})\)
(1) \(\Rightarrow 0 \leq c_{1} g(n)<f(n)\)
\(\Rightarrow 0 \leq g(n)<\left(1 / \mathrm{c}_{1}\right) \mathrm{f}(\mathrm{n})\)
From (2) and (3), \(0 \leq c_{2} h(n) \leq g(n)<\left(1 / c_{1}\right) f(n)\)
\[
\Rightarrow 0 \leq c_{1} c_{2} h(n)<f(n) \text { hence } f(n)=\omega(h(n)), \forall n \geq n_{0}
\]

\section*{Transpose Symmetry}

Property 1
Prove that \(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})) \Leftrightarrow \mathrm{g}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))\)
Proof
Since \(f(n)=O(g(n)) \Rightarrow\)
\(\exists\) constants \(c>0\) and \(n_{0} \in N\) such that
\[
0 \leq f(n) \leq c g(n) \forall n \geq n_{0}
\]

Dividing both side by \(c\)
\[
0 \leq(1 / \mathrm{c}) \mathrm{f}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}
\]

Put \(1 / c=c\)
\[
0 \leq c^{\prime} \mathrm{f}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}
\]

Hence, \(g(n)=\Omega(f(n))\)

\section*{Property 2}

Prove that \(f(n)=o(g(n)) \Leftrightarrow g(n)=\omega f(n))\)
Proof
Since \(f(n)=O(g(n)) \Rightarrow\)
\(\exists\) constants \(\mathrm{c}>0\) and \(\mathrm{n}_{0} \in \mathrm{~N}\) such that
\[
0 \leq f(n)<c g(n) \quad \forall n \geq n_{0}
\]

Dividing both side by c
\[
0 \leq(1 / \mathrm{c}) \mathrm{f}(\mathrm{n})<\mathrm{g}(\mathrm{n}) \quad \forall \mathrm{n} \geq \mathrm{n}_{0}
\]

Put \(1 / c=c\) '
\[
\begin{aligned}
0 \leq \operatorname{c}^{\prime} f(n)<g(n) & \forall n \geq n_{0} \\
\text { Hence, } g(n)=\omega(f(n)) &
\end{aligned}
\]

\section*{Relation between Q, W, O}

Trichotmy property over real numbers
- For any two real numbers \(a\) and \(b\), exactly one of the following must hold: \(a<b, a=b\), or \(\mathrm{a}>\mathrm{b}\).
The asymptotic comparision of two functions \(f\) and \(g\) and the comparision of two real numbers a and \(b\).
Trichotmy property over Q, W and O
1. \(f(n)=O(g(n)) \approx a \leq b\)
2. \(f(n)=\Omega(g(n)) \approx a \geq b\)
3. \(f(n)=\Theta(g(n)) \approx a=b\)
4. \(f(n)=o(g(n)) \approx a<b\)
5. \(f(n)=\omega(g(n)) \approx a>b\)

\section*{Some Other Standard Notations}

\section*{Monotonicity}
- monotonically increasing if \(\mathrm{m} \leq \mathrm{n} \Rightarrow \mathrm{f}(\mathrm{m}) \leq \mathrm{f}(\mathrm{n})\).
- monotonically decreasing if \(m \leq n \Rightarrow f(m) \geq f(n)\).
- strictly increasing if \(m<n \Rightarrow f(m)<f(n)\).
- strictly decreasing if \(m<n \Rightarrow f(m)>f(n)\).

Polynomials
- Given a positive integer d, a polynomial in n of degree d is a function of the form given below, \(a_{i}\) are coefficient of polynomial.
\[
p(n)=\sum_{i=0}^{d} a_{i} n^{i}
\]

\section*{Standard Logarithms Notations}

Exponent
- \(x=\log _{b} a\) is the exponent for \(a=b^{x}\).

Natural log
- \(\ln \mathrm{a}=\log _{\mathrm{e}} \mathrm{a}\)

Binary log
- \(\lg a=\log _{2} a\)

Square of log
- \(\lg ^{2} a=(\lg a)^{2}\)

Log of Log
- \(\lg \lg \mathrm{a}=\lg (\lg \mathrm{a})\)
\[
\begin{aligned}
& a=b^{\log _{b} a} \\
& \log _{c}(a b)=\log _{c} a+\log _{c} b \\
& \log _{\mathrm{b}} \mathrm{a}^{\mathrm{n}}=\mathrm{nlog}_{\mathrm{b}} \mathrm{a} \\
& \log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{c}} \mathrm{a}}{\log _{\mathrm{c}} \mathrm{~b}} \\
& \log _{\mathrm{b}}(1 / \mathrm{a})=-\log _{\mathrm{b}} \mathrm{a} \\
& \log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{~b}} \\
& \mathrm{a}^{\log _{\mathrm{b}} \mathrm{c}}=\mathrm{c}^{\log _{\mathrm{b}}}
\end{aligned}
\]

\section*{Lecture 12 \\ Design of Algorithms using Brute Force Approach}

\section*{Today Covered}

Brute Force Approach,
- Checking primality
- Sorting sequence of numbers
- Knapsack problem
- Closest pair in 2-D, 3-D and n-D
- Finding maximal points in n-D

\section*{Primality Testing}
(given number is n binary digits)

\section*{First Algorithm for Testing Primality \\ Brute Force Approach}

Prime ( n )
for \(i \leftarrow 2\) to \(n-1\)
if \(\mathrm{n} \equiv 0 \mathrm{mod}\) i then
"number is composite"
else
"number is prime"
- The computational cost is \(\Theta(\mathrm{n})\)
- The computational cost in terms of binary operation is \(\Theta\left(2^{n}\right)\)

\section*{Refined Algorithm for Testing Primality}

Prime ( n )
for \(\mathrm{i} \leftarrow 2\) to \(\mathrm{n} / 2\)
if \(\mathrm{n} \equiv 0 \mathrm{mod} \mathrm{i}\) then
"number is composite"
else
"number is prime"
- The computational cost is \(\Theta(\mathrm{n} / 2)\)
- The computational cost in terms of binary operation is \(\Theta\left(2^{n-1}\right)\), not much improvement

\section*{Algorithm for Testing Primality}
- We are not interested, how many operations are required to test if the number n is prime
- In fact, we are interested, how many operations are required to test if a number with n digits is prime.
- RSA-128 encryption uses prime numbers which are 128 bits long. Where \(2^{128}\) is: 340282366920938463463374607431768211456
- Therefore, to prime test a number with n binary digits by brute force, we need to check \(2^{n}\) numbers.
- Thus brute-force prime testing requires exponential time with the n number of digits.
- Which is not accepted in this case

\section*{Lemma}

\section*{Statement}
- If \(n \in N, n>1\) is not prime then \(n\) is divisible by some prime number \(p \leq\) square root of n.

Proof
- Since n is not prime hence it can be factored as
\[
\mathrm{n}=\mathrm{x} . \mathrm{y} \quad \text { where } 1<\mathrm{x} \leq \mathrm{y}<\mathrm{n}
\]
- \(x\) or \(y\) is a prime, if not it can be further factored out.
- Also suppose without loss of generality that \(x \leq y\)
- Now our claim is that \(x \leq s q(n)\)
- This is because otherwise \(x . y>n\), a contradiction
- We only require to check till \(\operatorname{sqr}(\mathrm{n})\) for primality test.

\section*{Refined Algorithm for Testing Primality}
```

Prime (n)
for i}\leftarrow2\mathrm{ to sqr(n)
if n \equiv0 mod i then
"number is composite"
else
"number is prime"

```
- The computational cost is \(\Theta(\operatorname{sqr}(\mathrm{n}))\), much faster
- The computational cost in terms of binary operation is \(\Theta\left(2^{\text {squareroot }(n)}\right)\), still exponential
- Computation cost can be decreased using number theoretic concepts, which will be discussed later on.

\section*{Sorting Sequence of Numbers}

\section*{An Example of Algorithm}
- Input : A sequence of n numbers (distinct) \(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\)
- Output : A permutation, \(\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle\) of the input sequence such that \(a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}\)


\section*{Sorting Algorithm: Brute Force Approach}

Sort the array [2, 4, 1, 3] in increasing order
\(s 1=[4,3,2,1], s 2=[4,3,1,2], s 3=[4,1,2,3]\)
s4 \(=[4,2,3,1], \mathrm{s} 5=[4,1,3,2], \mathrm{s} 6=[4,2,1,3]\)
s7 \(=[3,4,2,1], \mathrm{s} 8=[3,4,1,2], \mathrm{s} 9=[3,1,2,4]\)
\(s 10=[3,2,4,1], \quad s 11=[3,1,4,2], \quad s 12=[3,2,1,4]\)
\(\mathrm{s} 13=[2,3,4,1], \quad \mathrm{s} 14=[2,3,1,4], \quad \mathrm{s} 15=[2,1,4,3]\)
\(s 16=[2,4,3,1], \quad s 17=[2,1,3,4], \quad s 18=[2,4,1,3]\)
\(s 19=[1,3,2,4], \quad\) s20 \(=[1,3,1,4], \quad\) s21 \(=[1,4,2,3]\)
s22 \(=[1,2,3,4], \quad\) s23 \(=[1,4,3,2], \quad\) s24 \(=[1,2,4,3]\)

There are \(4!=24\) number of permutations.
For \(n\) number of elements there will be \(n\) ! number of permutations. Hence cost of order \(n\) ! for sorting.

\section*{Generating Permutations}
```

Permute (i) \linitial call Permute(1)
if i == N
output A[N]
else
for j = i to N do
swap(A[i], A[j])
permute(i+1)
swap(A[i], A[j])

```
- There are \(4!=24\) number of permutations.
- For n number of elements there will be n ! number of permutations. Hence cost of order n ! for sorting.

\section*{Theorem}
- Prove, by mathematical induction, that computational cost of generating permutations is n!.

\section*{Proof}
- If \(n=1\), then the statement is true, because 1 ! \(=1\)
- If there are \(k\) elements in set then no. of permutation \(=k\) !
- If we add one more element in any of the permutations, there will be \(k+1\) number of ways to add it, resulting \(k+1\) no. of permutations.
- Now total no. of permutations \(=k!(k+1)=(k+1)\) !
- Hence true for all n.

\section*{0-1 Knapsack Problem Statement}

The knapsack problem arises whenever there is resource allocation with no financial constraints Problem Statement
- You are in Japan on an official visit and want to make shopping from a store (Best Denki)
- You have a list of required items
- You have also a bag (knapsack), of fixed capacity, and only you can fill this bag with the selected items
- Every item has a value (cost) and weight,
- And your objective is to seek most valuable set of items which you can buy not exceeding bag limit.

\section*{0-1 Knapsack Example}

Input
- Given n items each
- weight \(\mathrm{w}_{\mathrm{i}}\)
- value \(v_{i}\)
- Knapsack of capacity W

Output: Find most valuable items that fit into the knapsack
Example:
\begin{tabular}{lccc} 
item & weight & value & knapsack capacity \(W=16\) \\
1 & 2 & 20 & \\
2 & 5 & 30 & \\
3 & 10 & 50 & \\
4 & 5 & 10 &
\end{tabular}

Subset Total weight Total value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1. & \(\varnothing\) & 0 & 0 & \# & W & V \\
\hline 2. & \{1\} & 2 & 20 & 1 & 2 & 20 \\
\hline 3. & \{2\} & 5 & 30 & 2 & 5 & 30 \\
\hline 4. & \{3\} & 10 & 50 & 3 & 10 & 50 \\
\hline 5. & \{4\} & 5 & 10 & 4 & 5 & 10 \\
\hline 6. & \{1,2\} & 7 & 50 & & & \\
\hline 7. & \{1,3\} & 12 & 70 & & & \\
\hline 8. & \{1,4\} & 7 & 30 & & & \\
\hline 9. & \{2,3\} & 15 & 80 & & & \\
\hline 10. & \{2,4\} & 10 & 40 & & & \\
\hline 11. & \(\{3,4\}\) & 15 & 60 & & & \\
\hline 12. & \{1,2,3\} & 17 & not fe & & & \\
\hline 13. & \{1,2,4\} & 12 & 60 & & & \\
\hline 14. & \{1,3,4\} & 17 & not fe & & & \\
\hline 15. & \(\{2,3,4\}\) & 20 & not fe & & & \\
\hline 16. & 1,2,3,4\} & 22 & not fe & & & \\
\hline
\end{tabular}

\section*{0-1 Knapsack Algorithm}

Knapsack-BF (n, V, W, C) Compute all subsets, s, of \(S=\{1,2,3,4\}\)
forall \(s \in S\)
weight \(=\) Compute sum of weights of these items
if weight > C , not feasible
new solution = Compute sum of values of these items
solution = solution \(\cup\) \{new solution\}
Return maximum of solution

\section*{0-1 Knapsack Algorithm Analysis}

\section*{Approach}
- In brute force algorithm, we go through all combinations and find the one with maximum value and with total weight less or equal to \(\mathrm{W}=16\)

Complexity
- Cost of computing subsets \(\mathrm{O}\left(2^{n}\right)\) for \(n\) elements
- Cost of computing weight \(=\mathrm{O}\left(2^{n}\right)\)
- Cost of computing values \(=\mathrm{O}\left(2^{n}\right)\)
- Total cost in worst case: \(\mathrm{O}\left(2^{n}\right)\)

\section*{The Closest Pair Problem (Finding Closest Pair )}

Problem: The closest pair problem is defined as follows:
- Given a set of \(n\) points, determine the two points that are closest to each other in terms of distance. Furthermore, if there are more than one pair of points with the closest distance, all such pairs should be identified.
Input:
is a set of \(n\) points
Output
- is a pair of points closest to each other,
- there can be more then one such pairs

\section*{Closest Pair Problem in 2-D}
- A point in 2-D is an ordered pair of values ( \(x, y\) ).
- The Euclidean distance between two points
\[
\mathrm{P}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \text { and } \mathrm{P}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right) \text { is }
\]
\[
d\left(p_{i}, p_{j}\right)=\operatorname{sqr}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
\]
- The closest-pair problem is finding the two closest points in a set of \(n\) points.
- The brute force algorithm checks every pair of points.
- Assumption: We can avoid computing square roots by using squared distance.
- This assumption will not loose correctness of the problem.

\section*{Brute Force Approach: Finding Closest Pair in 2-D}

ClosestPairBF(P)
1. mind \(\leftarrow \infty\)
2. for \(i \leftarrow 1\) to \(n\)
3. do
4. \(\quad\) for \(\mathrm{j} \leftarrow 1\) to n
5. if \(\mathrm{i} \neq \mathrm{j}\) Time Complexity
6. do
7. \(d \leftarrow\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)\)
8. if \(d<\operatorname{minn}\) then
9. \(\quad\) mind \(\leftarrow d\)
10. \(\quad\) mini \(\leftarrow\) i
11. \(\quad \operatorname{minj} \leftarrow j\)
12. return mind, \(p(\) mini, minj \()\)
\[
\begin{aligned}
& =\sum_{\mathrm{i}=1}^{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c} \\
& =\sum_{\mathrm{i}=1}^{n} c n \\
& =c n^{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
\]

\section*{Improved Version: Finding Closest Pair in 2-D}

ClosestPairBF(P)
1. mind \(\leftarrow \infty\)
2. for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n}-1\)
3. do
4. for \(\mathrm{j} \leftarrow \mathrm{i}+1\) to n
5. do
6. \(\quad d \leftarrow\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)\)
7. if \(d<m i n n\) then
8. mind \(\leftarrow d\)
9. \(\quad \mathrm{mini} \leftarrow \mathrm{i}\)
10. \(\quad \operatorname{minj} \leftarrow\) j
11. return mind, \(p(\) mini, minj \()\)

Complexity
\(=\sum_{\mathrm{i}=1}^{n-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{c}\)
\(=\sum_{i=1}^{n-1} c(n-i)\)
\(=c\left(\sum_{\mathrm{i}=1}^{n-1} n-\sum_{i=1}^{n-1} i\right)\)
\(=c n(n-1)-c \frac{(n-1) n}{2}\)
\(=\Theta\left(n^{2}\right)\)

Finding Maximal in n-dimension
Maximal Points
- Dominated Point in 2-D

A point \(p\) is said to be dominated by \(q\) if
\[
\text { p. } x \leq q \cdot x \text { and p. } y \leq q . y
\]
- Dominated Point in n-D

A point \(p\) is said to be dominated by \(q\) if
\[
p \cdot x_{i} \leq q \cdot x_{i} \forall i=1, \ldots, n
\]
- Maximal Point

A point is said to be maximal if it is not dominated by any other point.

\section*{Example: Maximal Points in 2-Dimension}


\section*{Example: Buying a Car}

Suppose we want to buy a car which is
- Fastest and
- Cheapest
- Fast cars are expensive. We want cheapest.
- We can't decide which one is more important
- Speed or
- Price.
- Of course fast and cheap dominates slow and expensive car.
- So, given a collection of cars, we want the car which is not dominated by any other.

Formal Problem: Problem can be modeled as:
- For each car C, we define \(C(x, y)\) where
\[
\begin{aligned}
& x=\text { speed of car and } \\
& y=\text { price of car }
\end{aligned}
\]
- This problem can not be solved using maximal point algorithm.

Redefine Problem:
- For each car C', we define \(C^{\prime}\left(x^{\prime}, y^{\prime}\right)\) where
\[
\begin{aligned}
& x^{\prime}=\text { speed of car and } \\
& y^{\prime}=\text { negation of car price }
\end{aligned}
\]
- This problem is reduced to designing maximal point algorithm

\section*{Problem Statement}

Problem Statement:
Given a set of \(m\) points, \(P=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}\), in \(n\) - dimension. Our objective is to compute a set of maximal points i.e. set of points which are not dominated by any one in the given list.

Mathematical Description:
Maximal Points =
\[
\left\{p \in P \mid \exists i \in\{1, \ldots, n\} \& p \cdot x_{i} \geq q \cdot x_{j}, \quad \forall, q \in\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}\right.
\]

\section*{Brute Force Algorithm in n-dimension} MAXIMAL-POINTS (int m, Point P[1. . . m])
0. \(A=\varnothing\);
1. for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{m} \quad \backslash \mathrm{m}\) used for number of points
2. do maximal \(\leftarrow\) true
3. for \(\mathrm{j} \leftarrow 1\) to m
4. do
5. if \((\mathrm{i} \neq \mathrm{j})\) \&
6. for \(\mathrm{k} \leftarrow 1\) to \(\mathrm{n} \quad\) II n stands for dimension
7. do
8. \(P[i] \cdot x[k] \leq P[j] . x[k]\)
9. then maximal \(\leftarrow\) false; break
10. if maximal
11. then \(A=A \cup P[i]\)

MAXIMAL-PINTS (int m, int n, Point P[1... \(\mathrm{m}]\) )
1. sort \(P\) in increasing order by first component
2. stack s;
3. for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{m} \quad\) I m used for number of points
4. do
5. while (s.noEmpty() \&
6. for \(\mathrm{j} \leftarrow 2\) to \(n \quad \backslash \mathrm{n}\) stands for dimension
7. do
8. s.top(). \(x[j] \leq P[i] . x[j])\)
9. do s.pop();
10. s.push(P[i]);
11. output the contents of stack s;

\section*{Plane Sweep Algorithm in n-dimension}

\section*{Conclusion}
- Brute Force approach is discussed, design of some algorithms is also discussed.
- Algorithms computing maximal points is generalization of sorting algorithms
- Maximal points are useful in Computer Sciences and Mathematics in which at least one component of every point is dominated over all points.
- In fact we put elements in a certain order
- For Brute Force, formally, the output of any sorting algorithm must satisfy the following two conditions:
- Output is in decreasing/increasing order and
- Output is a permutation, or reordering, of input.

Lecture No. 13
Designing Algorithms using
Brute Force \& Divide \& Conquer Approaches

\section*{Today Covered}

\section*{Brute Force}
- Finding closest pair in 2-D
- Improved version finding closest pair in 2-D
- Generalization in 3-D and then n-D
- Finding maximal points in n-D

Divide and Conquer
- A General Divide and Conquer approach
- Merge Sort algorithm
- Finding Maxima in 1-D, and 2-D
- Finding Closest Pair in 2-D

\section*{Finding Closest Pair in 2-D}

\section*{Problem}

The closest pair problem is defined as follows:
- Given a set of \(n\) points, determine the two points that are closest to each other in terms of distance. Furthermore, if there are more than one pair of points with the closest distance, all such pairs should be identified.
Input :
is a set of \(n\) points
Output
- is a pair of points closest to each other,
- there can be more then one such pairs

\section*{Definition: Closest Pair}

Distance
- In mathematics, particular in geometry, distance on a given set M is a function d : \(\mathrm{M} \times\) \(M \rightarrow R\), where \(R\) denotes the set of real numbers, that satisfies the following conditions:
1. \(d(x, y) \geq 0\),
2. \(d(x, y)=0\) if and only if \(x=y\).
3. Symmetric i.e.
\(d(x, y)=d(y, x)\).
4. Triangle inequality:
\(d(x, z) \leq d(x, y)+d(y, z)\)
Closest Pair Problem in 2-D
- A point in 2-D is an ordered pair of values ( \(x, y\) ).
- The Euclidean distance between two points
\(P_{i}=\left(x_{i}, y_{i}\right)\) and \(P_{j}=\left(x_{j}, y_{j}\right)\) is
\[
d\left(p_{i}, p_{j}\right)=\operatorname{sqr}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
\]
- The closest-pair problem is finding the two closest points in a set of \(n\) points.
- The brute force algorithm checks every pair of points.
- Assumption: We can avoid computing square roots by using squared distance.
- This assumption will not loose correctness of the problem.

\section*{Brute Force Approach: Finding Closest Pair in 2-D}
mind \(\leftarrow \infty\)
for \(\mathrm{i} \leftarrow 1\) to n
do
for \(\mathrm{j} \leftarrow 1\) to n
if \(i \neq j\)
do
\(d \leftarrow\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)\)
if \(d<\) mind then
mind \(\leftarrow d\)
mini \(\leftarrow\) i
\(\operatorname{minj} \leftarrow\) j
return mind, \(p(\) mini, minj \()\)

\section*{Improved Version:}

Finding Closest Pair in 2-D
ClosestPairBF(P)
mind \(\leftarrow \infty\)
for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n}-1\)
do
for \(\mathrm{j} \leftarrow \mathrm{i}+1\) to n
do
\(d \leftarrow\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)\)
if \(d<\) mind then
mind \(\leftarrow d\)
mini \(\leftarrow\) i
\(\operatorname{minj} \leftarrow\) j
return mind, \(p(\) mini, minj \()\)

\section*{Finding Closest Pair in n-D}

ClosestPairBF(P)
mind \(\leftarrow \infty\)
for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n}-1\)
do
for \(\mathrm{j} \leftarrow \mathrm{i}+1\) to n
do
\(\mathrm{d} \leftarrow\left(\left(\mathrm{x}_{\mathrm{i} 1}-\mathrm{x}_{\mathrm{j} 1}\right)^{2}+\left(\mathrm{x}_{\mathrm{i} 2}-\mathrm{x}_{\mathrm{j} 2}\right)^{2}+\ldots+\left(\mathrm{x}_{\mathrm{in}}-\mathrm{x}_{\mathrm{j} 1}\right)^{2}\right)\) if \(d<\) minn then
mind \(\leftarrow d\)
mini \(\leftarrow\) i
\(\operatorname{minj} \leftarrow\) j

Time Complexity
\(=\sum_{\mathrm{i}=1}^{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}\)
\(=\sum_{\mathrm{i}=1}^{n} c n\)
\(=c n^{2}\)
\(=\Theta\left(n^{2}\right)\)

Time Complexity
\(=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c\)
\(=\sum_{\mathrm{i}=1}^{n-1} c(n-i)\)
\(=c\left(\sum_{\mathrm{i}=1}^{n-1} n-\sum_{i=1}^{n-1} i\right)\)
\(=c n(n-1)-c \frac{(n-1) n}{2}\)
\(=c\left(n^{2}-n-\frac{n^{2}}{2}+\frac{n}{2}\right)\)
\(=c\left(\frac{n^{2}}{2}-\frac{n}{2}\right)=\Theta\left(n^{2}\right)\)
return mind, \(p(\) mini \(), p(m i n j)\)

\section*{Time Complexity}
\(=\sum_{\mathrm{i}=1}^{n-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{cn}\)
\(=\sum_{\mathrm{i}=1}^{n-1} c n(n-i)\)
\(=c\left(\sum_{\mathrm{i}=1}^{n-1} n^{2}-\sum_{i=1}^{n-1} i n\right)\)
\(=\Theta\left(n^{3}\right)\)

\section*{Maximal Points}

Maximal Points in 2-D
A point \(p\) is said to be dominated by \(q\) if \(p . x \leq q . x\) and \(p . y \leq q . y\)
A point \(p\) is said to be maximal if
p.x > q.x OR p.y > q.y

Maximal Points in n-D
A point \(p\) is said to be dominated by \(q\) if
\[
\text { p. } x_{i} \leq q \cdot x_{i} \forall i=1, . . ., n
\]

A point \(p\) is said to be maximal if
\[
\exists \mathrm{i}=1, \ldots, \mathrm{n}, \mathrm{p} \cdot \mathrm{x}_{\mathrm{i}}>\mathrm{q} \cdot \mathrm{x}_{\mathrm{i}}
\]

A point is said to be maximal if it is not dominated by any other point.


Example: Maximal Points in 2-Dimension

\section*{Problem Statement:}

Given a set of \(m\) points, \(P=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}\), in \(n\) - dimension. Our objective is to compute a set of maximal points i.e. set of points which are not dominated by any one in the given list.

\section*{Mathematical Description:}

Maximal Points \(=\left\{p \in P \mid \forall q \in\left\{p_{1}, \ldots, p_{m}\right\}, q \neq p, \exists i \in\{1, \ldots, n\} \& p \cdot x_{i} \geq q \cdot x_{j}\right\}\)

\section*{Brute Force Algorithm in \(\mathbf{n}\)-dimension}

MAXIMAL-POINTS (int n, Point P[1. . . m])
\(0 \quad\) A \(=\varnothing\);
\(1 \quad\) for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{m} \quad \| \mathrm{m}\) used for number of points
2 do maximal \(\leftarrow\) true
\(3 \quad\) for \(\mathrm{j} \leftarrow 1\) to \(m\)
4
5
6
7
8
9
10 if maximal
11
\(1 \quad\) then \(A=A \cup P[i]\)

\section*{Conclusion:}
- Designing Algorithms using Brute Force approach is discussed
- For Brute Force, formally, the output of any sorting algorithm must satisfy the following two conditions:
- Output is in decreasing/increasing order and
- Output is a permutation, or reordering, of input.
- Algorithms computing maximal points can be considered as generalization of sorting algorithms
- Maximal points are useful in Computer Sciences and Mathematics in which at least one component of every point is dominated over all points.
- In fact we put elements in a certain order

Lecture No. 14
Designing Algorithms using

\section*{Divide \& Conquer Approach}

\section*{Today Covered}

Divide and Conquer?
- A General Divide and Conquer Approach
- Merge Sort algorithm
- Finding Maxima in 1-D, and 2-D
- Finding Closest Pair in 2-D

\section*{A General Divide and Conquer Algorithm}

Step 1:
- If the problem size is small, solve this problem directly
- Otherwise, split the original problem into 2 or more sub-problems with almost equal sizes.
Step 2:
- Recursively solve these sub-problems by applying this algorithm.

Step 3:
- Merge the solutions of the sub- problems into a solution of the original problem.

\section*{Time Complexity of General Algorithms}
- Time complexity:
\[
T(n)=\left\{\begin{array}{cl}
2 T(n / 2)+S(n)+M(n) & n \geq c \\
b & n<c
\end{array}\right.
\]
- where \(S(n)\) is time for splitting
- \(M(n)\) is time for merging
- band c are constants

Example
- Binary search
- Quick sort
- Merge sort

\section*{Merge-sort}

Merge-sort is based on divide-and-conquer approach and can be described by the following three steps:
Divide Step:
- If given array A has zero or one element, return S .
- Otherwise, divide A into two arrays, A1 and A2,
- Each containing about half of the elements of \(A\).

Recursion Step:
- Recursively sort array A1, A2

Conquer Step:
- Combine the elements back in A by merging the sorted arrays A1 and A2 into a sorted sequence.

\section*{Visualization of Merge-sort as Binary Tree}
- We can visualize Merge-sort by means of binary tree where each node of the tree represents a recursive call
- Each external node represents individual elements of given array A.
- Such a tree is called Merge-sort tree.
- The heart of the Merge-sort algorithm is conquer step, which merge two sorted sequences into a single sorted sequence
- The merge algorithm is explained in the next

\section*{Sorting Example: Divide and Conquer Rule}
- Sort the array \([14,10,4,8,2,12,6,0]\) in the ascending order Solution:
- Divide

- Recursion and Conquer


\section*{Merge-sort Algorithm}

Merge-sort(A, f, I)
1. if \(f<1\)
2. then \(m=(f+I) / 2\)
3. \(\quad \operatorname{Merge}-\operatorname{sort}(\mathrm{A}, \mathrm{f}, \mathrm{m})\)
4. \(\quad\) Merge-sort(A, m + 1, I)
5.

Merge(A, f, m, I)

Merge(A, f, m, I)
1. \(\mathrm{T}[\mathrm{f} . \mathrm{I}] \quad\) \declare temporary array of same size
2. \(\mathrm{i} \leftarrow \mathrm{f} ; \mathrm{k} \leftarrow \mathrm{f} ; \mathrm{j} \leftarrow \mathrm{m}+1 \quad\) 【linitialize integers \(\mathrm{i}, \mathrm{j}\), and k
3. while \((\mathrm{i} \leq \mathrm{m})\) and \((\mathrm{j} \leq \mathrm{I})\)
4. do if \((A[i] \leq A[j]) \quad\) IIcomparison of elements
5. then \(T[k++] \leftarrow A[i++]\)
6. else \(T[k++] \leftarrow A[j++]\)
7. while ( \(\mathrm{i} \leq \mathrm{m}\) )
8. do \(T[k++] \leftarrow A[i++] \quad\) Ilcopy from \(A\) to \(T\)
9. while ( \(\mathrm{j} \leq \mathrm{I}\) )
10. do \(T[k++] \leftarrow A[j++] \quad\) Ilcopy from \(A\) to \(T\)
11. for \(\mathrm{i} \leftarrow \mathrm{p}\) to r
12. do \(A[i] \leftarrow T[i] \quad\) Ilcopy from \(T\) to \(A\)

\section*{Analysis of Merge-sort Algorithm}
- Let \(T(n)\) be the time taken by this algorithm to sort an array of \(n\) elements dividing \(A\) into sub-arrays \(\mathrm{A}_{1}\) and \(\mathrm{A}_{2}\).
- It is easy to see that the Merge \(\left(A_{1}, A_{2}, A\right)\) takes the linear time. Consequently,
\[
\begin{aligned}
& T(n)=T(n / 2)+T(n / 2)+\theta(n) \\
& T(n)=2 T(n / 2)+\theta(n)
\end{aligned}
\]
- The above recurrence relation is non-homogenous and can be solved by any of the methods
- Defining characteristics polynomial
- Substitution
- recursion tree or
- master method

Analysis: Substitution Method
\(T(n)=2 \cdot T\left(\frac{n}{2}\right)+n\)
\(T\left(\frac{n}{2}\right)=2 \cdot T\left(\frac{n}{2^{2}}\right)+\frac{n}{2}\)
\(T\left(\frac{n}{2^{2}}\right)=2 . T\left(\frac{n}{2^{3}}\right)+\frac{n}{2^{2}}\)
\(T\left(\frac{n}{2^{3}}\right)=2 . T\left(\frac{n}{2^{4}}\right)+\frac{n}{2^{3}} \ldots\)
\(T\left(\frac{n}{2^{k-1}}\right)=2 . T\left(\frac{n}{2^{k}}\right)+\frac{n}{2^{k-1}}\)

\section*{Analysis of Merge-sort Algorithm}
\(T(n)=2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)=2^{2} \cdot T\left(\frac{n}{2^{2}}\right)+n+n\)
\(T(n)=2^{2} \cdot T\left(\frac{n}{2^{2}}\right)+n+n\)
\(T(n)=2^{3} \cdot T\left(\frac{n}{2^{3}}\right)+n+n+n\)
\(T(n)=2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+\underbrace{n+n+\ldots+\mathrm{n}}_{k \text {-times }}\)
\(T(n)=2^{k} . T\left(\frac{n}{2^{k}}\right)+k . n\)
Let us suppose that: \(n=2^{k} \Rightarrow \log _{2} n=k\)

Hence, \(T(n)=n \cdot T(1)+n \cdot \log _{2} n=n+n \cdot \log _{2} n\)
\(T(n)=\Theta\left(n \cdot \log _{2} n\right)\)

\section*{Searching: Finding Maxima in 1-D}

A Simple Example in 1-D:
Finding the maximum of a set \(S\) of \(n\) numbers


\section*{Time Complexity}
\[
T(n)=\left\{\begin{array}{cc}
2 T(n / 2)+1 & n>2 \\
1 & n \leq 2
\end{array}\right.
\]
- Assume \(\mathrm{n}=2^{\mathrm{k}}\), then
\[
\begin{aligned}
\mathrm{T}(\mathrm{n})= & 2 \mathrm{~T}(\mathrm{n} / 2)+1=2(2 T(n / 4)+1)+1 \\
& =2^{2} T\left(n / 2^{2}\right)+2+1 \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+1\right)+2+1 \\
& =2^{3} T\left(n / 2^{3}\right)+2^{2}+2^{1}+1 \\
& \quad: \\
& =2^{k-1} T\left(n / 2^{k-1}\right)+2^{k-2}+\ldots+2^{2}+2^{1}+1 \\
& =2^{k-1} T(2)+2^{k-2}+\ldots+2^{2}+2^{1}+1 \\
& =2^{k-1}+2^{k-2}+\ldots+4+2+1=2^{k}-1=n-1=\Theta(n)
\end{aligned}
\]

Finding Maxima in 2-D using Divide and Conquer


\section*{Merging \(\mathrm{S}_{\mathrm{L}}\) and \(\mathrm{S}_{\mathrm{R}}\)}


After Merging Maximal in \(S_{\llcorner }\)and \(S_{R}\) we get \(\left\{P_{2}, P_{3}\right\}\) only maximal

Divide and Conquer for Maxima Finding Problem


The maximal points of \(S_{L}\) and \(S_{R}\)


P3 is not maximal point of \(S_{L}\)

\section*{2-D Maxima Finding Problem}


\section*{Algorithm: Maxima Finding Problem}

Input: A set S of 2-dimensional points.
Output: The maximal set of \(S\).
Maxima(P[1..n])
1. Sort the points in ascending order w. r.t. \(X\) axis
2. If \(|S|=1\), then return it, else
find a line perpendicular to \(X\)-axis which separates \(S\) into \(S_{L}\) and \(S_{R}\), each of which consisting of \(n / 2\) points.
3. Recursively find the maxima's \(S_{L}\) and \(S_{R}\)
4. Project the maxima's of \(S_{L}\) and \(S_{R}\) onto \(L\) and sort these points according to their \(y\) values.
5. Conduct a linear scan on the projections and discard each of maxima of \(S_{L}\) if its \(y\)-value is less than the \(y\)-value of some maxima's of \(S_{R}\).

Time Complexity:
\[
T(n)= \begin{cases}2 T(n / 2)+O(n)+O(n) & , n \geq 2 \\ 1 & , n<2\end{cases}
\]

Assume \(\mathrm{n}=2^{\mathrm{k}}\), then
\[
\begin{aligned}
T(n)= & 2 T(n / 2)+n+n \\
& =2(2 T(n / 4)+n / 2+n / 2)+n+n \\
& =2^{2} T\left(n / 2^{2}\right)+n+n+n+n \\
& =2^{2} T\left(n / 2^{2}\right)+4 n \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+n / 4+n / 4\right)+4 n \\
& =2^{3} T\left(n / 2^{3}\right)+n+n+6 n
\end{aligned}
\]
\(T(n)=2^{3} T\left(n / 2^{3}\right)+n+n+6 n\)
\(\mathrm{T}(\mathrm{n})=2^{\mathrm{k}} \mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+2 \mathrm{kn}\)
\[
=2^{k} T\left(2^{k} / 2^{k}\right)+2 k n \quad \text { Since } n=2^{k}
\]

Hence
\[
\begin{aligned}
& T(n)=2^{k}+2 k n \\
& T(n)=2^{k}+2 k n \quad n=2^{k} \Rightarrow k=\log (n) \\
& T(n)=n+2 n \cdot \log n=\Theta(n \cdot \log n)
\end{aligned}
\]

Necessary Dividing Problem into two Parts?
Maximal Points: Dividing Problem into four Parts

Maximal points in \(\mathrm{S}_{11}=\left\{\mathrm{P}_{1}\right\}\)
Maximal points in \(\mathrm{S}_{12}=\left\{\mathrm{P}_{3}, \mathrm{P}_{4}\right\}\)
Maximal points in \(\mathrm{S}_{21}=\left\{\mathrm{P}_{5}, \mathrm{P}_{6}\right\}\)
Maximal points in \(\mathrm{S}_{22}=\left\{\mathrm{P}_{7}, \mathrm{P}_{8}\right\}\)


Merging \(\mathrm{S}_{12}, \mathrm{~S}_{12}\)
\(\mathrm{A}_{1}=\left\{\mathrm{P}_{3}, \mathrm{P}_{4}\right\}\)
Merging \(\mathrm{S}_{21}, \mathrm{~S}_{22}\)
\(\mathrm{A}_{2}=\left\{\mathrm{P}_{7}, \mathrm{P}_{8}\right\}\)
Merging \(\mathrm{A}_{1}, \mathrm{~A}_{2}\)
\(A=\left\{P_{3}, P_{7}, P_{8}\right\}\)


A
Merging \(\mathrm{S}_{12}, \mathrm{~S}_{12}\)
\(A_{1}=\left\{P_{3}, P_{4}\right\}\)
Merging \(\mathrm{S}_{21}, \mathrm{~S}_{22}\)
\(\mathrm{A}_{2}=\left\{\mathrm{P}_{7}, \mathrm{P}_{8}\right\}\)
Merging \(\mathrm{A}_{1}, \mathrm{~A}_{2}\)
\(A=\left\{P_{3}, P_{7}, P_{8}\right\}\)


\section*{Closest Pair in 2-D using Divide and Conquer}

\section*{Problem}

The closest pair problem is defined as follows:
- Given a set of \(n\) points
- Determine the two points that are closest to each other in terms of distance.
- Furthermore, if there are more than one pair of points with the closest distances, all such pairs should be identified.
- First we sort the points on x-coordinate basis, and divide into left and right parts

\section*{\(p_{1} p_{2} \ldots p_{n / 2}\) and \(p_{n / 2+1} \ldots P_{n}\)}
- Solve recursively the left and right sub-problems
- Let \(\mathrm{d}=\min \left\{\mathrm{d}_{\mathrm{i}}, \mathrm{d}_{\mathrm{r}}\right\}\),
- How do we combine two solutions to sub-problems?

- How do we combine two solutions?
- Let \(d=\min \left\{d_{i}, d_{r}\right\}\), where \(d\) is distance of closest pair where both points are either in left or in right
- Something is missing. We have to check where one point is from left and the other from the right.
- Such closest-pair can only be in a strip of width 2d around the dividing line, otherwise the points would be more than \(d\) units apart.
- Combining solutions:
- Finding the closest pair in a strip of width 2d, knowing that no one in any two given pairs is closer than d
- Combining solutions:
- For a given point \(p\) from one partition, where can there be a point q from the other partition, that can form the closest pair with p?
- How many points can there be in this square?
- At most 4

- Algorithm for checking the strip:
- Sort all the points in the strip on the y-coordinate
- For each point \(p\) only 7 points ahead of it in the order have to be checked to see if any of them is closer to \(p\) than \(d\)
1. Partition the strip into squares of length
\(\mathrm{d} / 2\) as shown in the picture.
2. Each square contains at most 1 point by definition of \(d\).
3. If there are at least 2 squares between points then they cannot be the closest points.
4. There are at most 8 squares to check.

Closest-Pair(P, I, r)
01 if \(r-I<3\) then return ClosestPairBF(P)
02 q \(\neg\) é(l+r)/2ù
\(03 \mathrm{dl} \neg\) Closest-Pair(P, I, q-1)
\(04 \mathrm{dr} \neg\) Closest-Pair(P, q, r)
\(05 \mathrm{~d} \neg \min (\mathrm{dl}, \mathrm{dr})\)
06 for \(\mathrm{i} \neg \mathrm{I}\) to r do
07 if \(P[q] . x-d £ \quad P[i] . x £ P[q] . x+d\) then
08 append \(\mathrm{P}[\mathrm{i}]\) to S
09 Sort S on y-coordinate
10 for \(\mathrm{j} ~ ᄀ 1\) to size_of(S)-1 do
11 Check if any of \(d(S[j], S[j]+1), \ldots\), \(d(S[j], S[j]+7)\) is smaller than \(d\), if so set d to the smallest of them
12 return d


\section*{Running Time}
- Running time of a divide-and-conquer algorithm can be described by a recurrence
- \(\quad\) Divide \(=O(1)\)
- Combine \(=\mathrm{O}(\mathrm{n} \lg \mathrm{n})\)
- This gives the recurrence given below
- Total running time: \(\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})\)
\[
T(n)= \begin{cases}n & \mathrm{n} \leq 3 \\ 2 T\left(\frac{n}{2}\right)+n \log n & \text { otherwise }\end{cases}
\]

\section*{Improved Version: Divide and Conquer Approach}
- Sort all the points by \(x\) and \(y\) coordinate once
- Before recursive calls, partition the sorted lists into two sorted sublists for the left and right halves, it will take simple time \(O(n)\)
- When combining, run through the \(y\)-sorted list once and select all points that are in a 2 d strip around partition line, again time \(O(n)\)
- New recurrence:
\[
T(n)=\left\{\begin{array}{lr}
n & \mathrm{n} \leq 3 \\
2 T\left(\frac{n}{2}\right)+n & \text { otherwise }
\end{array}\right.
\]

\section*{Conclusion}
- Brute Force approach is discussed, design of some algorithms is also discussed.
- Algorithms computing maximal points is generalization of sorting algorithms
- Maximal points are useful in Computer Sciences and Mathematics in which at least one component of every point is dominated over all points.
- In fact we put elements in a certain order
- For Brute Force, formally, the output of any sorting algorithm must satisfy the following two conditions:
- Output is in decreasing/increasing order and
- Output is a permutation, or reordering, of input.

\section*{Lecture No. 15}

Dynamic Programming for Solving Optimization Problems
(Chain Matrix Multiplication Problem)

\section*{Today Covered}
- Optimizations problem?
- Steps in Development of Dynamic Algorithms
- Why dynamic in optimization problem?
- Introduction to Catalan numbers
- Chain-Matrix Multiplication
- Problem Analysis
- Brute Force approach
- Time Complexity
- Conclusion

\section*{Optimization Problems}
- If a problem has only one correct solution, then optimization is not required
- For example, there is only one sorted sequence containing a given set of numbers.
- Optimization problems have many solutions.
- We want to compute an optimal solution e. g. with minimal cost and maximal gain.
- There could be many solutions having optimal value
- Dynamic programming is very effective technique
- Development of dynamic programming algorithms can be broken into a sequence steps as in the next.

\section*{Steps in Development of Dynamic Algorithms}
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Note: Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be omitted only if the value of an optimal solution is required.

\section*{Why Dynamic Programming?}
- Dynamic programming, like divide and conquer method, solves problems by combining the solutions to sub-problems.
- Divide and conquer algorithms:
- partition the problem into independent sub-problem
- Solve the sub-problem recursively and
- Combine their solutions to solve the original problem
- In contrast, dynamic programming is applicable when the sub-problems are not independent.
- Dynamic programming is typically applied to optimization problems.

\section*{Time Complexity in Dynamic Algorithms}
- Time complexity:
- If there are polynomial number of sub-problems.
- If each sub-problem can be computed in polynomial time.
- Then the solution of whole problem can be found in polynomial time.

Remark:
Greedy also applies a top-down strategy but usually on one sub-problem so that the order of computation is clear

\section*{Catalan Numbers}

\section*{Multiplying n Numbers}

Objective:
- Find \(C(n)\), the number of ways to compute product \(x_{1} . x_{2} \ldots x_{n}\).
\begin{tabular}{|l|l|}
\hline\(n\) & multiplication order \\
\hline 2 & \(\left(x_{1} \cdot x_{2}\right)\) \\
\hline 3 & \(\left(x_{1} \cdot\left(x_{2} \cdot x_{3}\right)\right)\) \\
\hline & \(\left(\left(x_{1} \cdot x_{2}\right) \cdot x_{3}\right)\) \\
\hline 4 & \(\left(x_{1} \cdot\left(x_{2} \cdot\left(x_{3} \cdot x_{4}\right)\right)\right)\) \\
\hline & \(\left(x_{1} \cdot\left(\left(x_{2} \cdot x_{3}\right) \cdot x_{4}\right)\right)\) \\
\hline & \(\left(\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{3} \cdot x_{4}\right)\right)\) \\
\hline & \(\left(\left(x_{1} \cdot\left(x_{2} \cdot x_{3}\right)\right) \cdot x_{4}\right)\) \\
\hline & \(\left(\left(\left(x_{1} \cdot x_{2}\right) \cdot x_{3}\right) \cdot x_{4}\right)\) \\
\hline
\end{tabular}

\section*{Multiplying \(\mathbf{n}\) Numbers - small n}

Recursive equation:

Where is the last multiplication?
\(C(n)=\sum_{k=1}^{n-1} C(k) \cdot C(n-k)\)

Catalan numbers:
\(C(n)=\frac{1}{n}\binom{2 n-2}{n-1}\).

Asymptotic value:
\(C(n) \approx \frac{4^{n}}{n^{3 / 2}}\)
\(\frac{\mathrm{C}(\mathrm{n})}{\mathrm{C}(\mathrm{n}-1)} \rightarrow 4\) for \(\mathrm{n} \rightarrow \infty\)

\section*{Chain-Matrix Multiplication}

Statement: The chain-matrix multiplication problem can be stated as below:
- Given a chain of \(\left[A_{1}, A_{2}, \ldots, A_{n}\right]\) of \(n\) matrices where for \(i=1,2, \ldots, n\), matrix \(A_{i}\) has dimension \(p_{i-1} \times p_{i}\), find the order of multiplication which minimizes the number of scalar multiplications.
Note:
- Order of \(A_{1}\) is \(p_{0} \times p_{1}\),
- Order of \(A_{2}\) is \(p_{1} \times p_{2}\),
- Order of \(A_{3}\) is \(p_{2} \times p_{3}\), etc.
- Order of \(A_{1} \times A_{2} \times A_{3}\) is \(p_{0} \times p_{3}\),
- Order of \(A_{1} \times A_{2} \times \ldots \times A_{n}\) is \(p_{0} \times p_{n}\)

Objective is to find order not multiplication
- Given a sequence of matrices, we want to find a most efficient way to multiply these matrices
- It means that problem is not actually to perform the multiplications, but decide the order in which these must be multiplied to reduce the cost.
- This problem is an optimization type which can be solved using dynamic programming.
- The problem is not limited to find an efficient way of multiplication of matrices, but can be used to be applied in various purposes.
- But how to transform the original problem into chain matrix multiplication, this is another issue, which is common in systems modeling.

Why this problem is of Optimization Category?
- If these matrices are all square and of same size, the multiplication order will not affect the total cost.
- If matrices are of different sizes but compatible for multiplication, then order can make big difference.
- Brute Force approach
- The number of possible multiplication orders are exponential in n, and so trying all possible orders may take a very long time.
- Dynamic Programming
- To find an optimal solution, we will discuss it using dynamic programming to solve it efficiently.
Assumptions (Only Multiplications Considered)
- We really want is the minimum cost to multiply
- But we know that cost of an algorithm depends on how many number of operations are performed i.e.
- We must be interested to minimize number of operations, needed to multiply out the matrices.
- As in matrices multiplication, there will be addition as well multiplication operations in addition to other
- Since cost of multiplication is dominated over addition therefore we will minimize the number of multiplication operations in this problem.
- In case of two matrices, there is only one way to multiply them, so the cost fixed.

\section*{Brute Force Chain Matrix Multiplication Algorithm}
- If we wish to multiply two matrices:
\(A=a[i, j]_{p, q}\) and \(B=b[i, j]_{q, r}\)
- Now if \(C=A B\) then order of \(C\) is \(p \times r\).
- Since in each entry c[i, j], there are q number of scalar of multiplications
- Total number of scalar multiplications in computing \(C=\) Total entries in \(C \times\) Cost of computing a single entry = p.r.q
- Hence the computational cost of \(A B=p . q . r\)
\(C[i, j]=\sum_{k=1}^{a} A[i, k] B[j, k]\)

\section*{Example}
- Given a sequence \(\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right]\)
- Order of \(A_{1}=10 \times 100\)
- Order of \(A_{2}=100 \times 5\)
- Order of \(A_{3}=5 \times 50\)
- Order of \(A_{4}=50 \times 20\)

Compute the order of the product \(\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{~A}_{3} \cdot \mathrm{~A}_{4}\) in such a way that minimizes the total number of scalar multiplications.
- There are five ways to parenthesize this product
- Cost of computing the matrix product may vary, depending on order of parenthesis.
- All possible ways of parenthesizing
\[
\begin{aligned}
& \left(A_{1} \cdot\left(A_{2} \cdot\left(A_{3} \cdot A_{4}\right)\right)\right) \\
& \left(A_{1} \cdot\left(\left(A_{2} \cdot A_{3}\right) \cdot A_{4}\right)\right) \\
& \left(\left(A_{1} \cdot A_{2}\right) \cdot\left(A_{3} \cdot A_{4}\right)\right) \\
& \left(\left(A_{1} \cdot\left(A_{2} \cdot A_{3}\right)\right) \cdot A_{4}\right) \\
& \left(\left(\left(A_{1} \cdot A_{2}\right) \cdot A_{3}\right) \cdot A_{4}\right)
\end{aligned}
\]

\section*{Kinds of problems solved by algorithms}


Second Chain: (A1 • ((A2 . A3). A4))


Third Chain : ((A1 • A2). (A3 . A4))
\[
10 \times 5 \times 20=1000
\]


Total Cost \(=11000\)

Fourth Chain : ((A1 • (A2 . A3)). A4)
\(10 \times 50 \times 20=10000\)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

Fifth Chain: (((A1 • A2). A3). A4)


\section*{Chain Matrix Cost}
\begin{tabular}{|l|l|}
\hline First Chain & 35,000 \\
\hline Second Chain & 145,000 \\
\hline Third Chain & 11,000 \\
\hline Fourth Chain & 85,000 \\
\hline Fifth Chain & 17,500 \\
\hline
\end{tabular}
((A1 • A2). (A3 . A4))


\section*{Generalization of Brute Force Approach}
- If there is sequence of \(n\) matrices, \(\left[A_{1}, A_{2}, \ldots, A_{n}\right]\)
- \(A_{i}\) has dimension \(p_{i-1} \times p_{i}\), where for \(i=1,2, \ldots, n\)
- Find order of multiplication that minimizes number of scalar multiplications using brute force approach

Recurrence Relation: After \(\mathrm{k}^{\text {th }}\) matrix, create two sub-lists, one with k and other with \(\mathrm{n}-\mathrm{k}\) matrices i.e. \(\left(A_{1} A_{2} A_{3} A_{4} A_{5} \ldots A_{k}\right)\left(A_{k+1} A_{k+2} \ldots A_{n}\right)\)
- Let \(P(n)\) be the number of different ways of parenthesizing \(n\) items
\[
P(n)=\left\{\begin{array}{cc}
1 & n=1 \\
\sum_{k=1}^{n-1} P(k) P(n-k) & n \geq 2
\end{array}\right.
\]

If \(n=2\)
\[
P(2)=P(1) \cdot P(1)=1.1=1
\]

If \(\mathrm{n}=3\)
\[
P(3)=P(1) \cdot P(2)+P(2) \cdot P(1)=1 \cdot 1+1.1=2
\]
\[
\left(A_{1} A_{2} A_{3}\right)=\left(\left(A_{1} \cdot A_{2}\right) \cdot A_{3}\right) O R\left(A_{1} \cdot\left(A_{2} \cdot A_{3}\right)\right)
\]

If \(n=4\)
\[
\begin{gathered}
\mathrm{P}(4)=\mathrm{P}(1) \cdot \mathrm{P}(3)+\mathrm{P}(2) \cdot \mathrm{P}(2)+\mathrm{P}(3) \cdot \mathrm{P}(1)=1 \cdot 2+1 \cdot 1+2 \cdot 1=5 \\
P(n)=\left\{\begin{array}{cl}
1 & n=1 \\
\sum_{k=1}^{n-1} P(k) P(n-k) & n \geq 2
\end{array}\right.
\end{gathered}
\]

\section*{Why Brute Force Approach not Economical}
- This is related to a famous function in combinatorics called the Catalan numbers.
- Catalan numbers are related with the number of different binary trees on \(n\) nodes.
- \(P(n) \in\left(4^{n} / n^{3 / 2}\right)\)
- The dominating term is the exponential \(4^{n}\) thus \(P(n)\) will grow large very quickly.
- And hence this approach is not economical.

\section*{Conclusion}
- Introduction to optimization problem
- Dynamic Programming
- Comparison of Dynamic and Divide and conquer
- Chain matrix multiplication problem is introduced
- Analyzed that chain matrix is an optimization type problem
- Brute force solution is discussed
- Analysis is done and based on its analysis it was found that solution to chain matrix multiplication problem using brute force approach is not economical for large input

\section*{Lecture No. 16}

\section*{Chain Matrix Multiplication Problem using Dynamic Programming}

\section*{Today Covered}
- Chain-Matrix Multiplication
- Problem Analysis
- Notations
- Dynamic Algorithm
- Time Complexity
- Generalization and Applications
- Conclusion

\section*{Problem Statement: Chain Matrix Multiplication}

Statement: The chain-matrix multiplication problem can be stated as below:
- Given a chain of \(\left[A_{1}, A_{2}, \ldots, A_{n}\right]\) of \(n\) matrices for \(i=1,2, \ldots, n\), matrix \(A_{i}\) has dimension \(p_{i-1} \times p_{i}\), find the order of multiplication which minimizes the number of scalar multiplications.
Note:
- Order of \(A_{1}\) is \(p_{0} \times p_{1}\),
- Order of \(A_{2}\) is \(p_{1} \times p_{2}\),
- Order of \(A_{3}\) is \(p_{2} \times p_{3}\), etc.
- Order of \(A_{1} \times A_{2} \times A_{3}\) is \(p_{0} \times p_{3}\),
- Order of \(A_{1} \times A_{2} \times \ldots \times A_{n}\) is \(p_{0} \times p_{n}\)

\section*{Why Dynamic Programming in this problem?}
- Problem is of type optimization
- Sub-problems are dependant
- Optimal structure can be characterized and
- Can be defined recursively
- Solution for base cases exits
- Optimal solution can be constructed
- Hence here is dynamic programming

\section*{Dynamic Programming Formulation}
- Let \(A_{i . . j}=A_{i} . A_{i+1} \ldots A_{j}\)
- Order of \(A_{i}=p_{i-1} \times p_{i}\), and
- Order of \(A_{j}=p_{j-1} \times p_{j}\),
- Order of \(A_{i . . \mathrm{j}}=\) rows in \(A_{i} \times\) columns in \(A_{j}=p_{i-1} \times p_{j}\)
- At the highest level of parenthesisation,
\(A_{i . j}=A_{i . . k} \times A_{k+1 . . j}\)
\(\mathrm{i} \leq \mathrm{k}<\mathrm{j}\)
- Let \(m[i, j]=\) minimum number of multiplications needed to compute \(A_{i . j, j}\) for \(1 \leq i \leq j \leq n\)
- Objective function = finding minimum number of multiplications needed to compute \(A_{1 . . n}\) i.e. to compute \(m[1, n]\)

\section*{Mathematical Model}
\(A_{i . . j}=\left(A_{i} . A_{i+1}\right.\)
\(\left.A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \ldots . . A_{j}\right)=A_{i . . k} \times A_{k+1 \cdot \cdot j}\)
\(\mathrm{i} \leq \mathrm{k}<\mathrm{j}\)
- Order of \(A_{i . k}=p_{i-1} \times p_{k}\), and order of \(A_{k+1 . j}=p_{k} \times p_{j}\),
- \(m[i, k]=\) minimum number of multiplications needed to compute \(A_{i . . k}\)
- \(m[k+1, j]=\) minimum number of multiplications needed to compute \(A_{k+1 . j}\)

Mathematical Model
\[
\begin{aligned}
& m[i, i]=0 \\
& m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right)
\end{aligned}
\]

\section*{Example: Dynamic Programming}

Problem: Compute optimal multiplication order for a series of matrices given below
\(\frac{A_{1}}{10 \times 100} \cdot \frac{A_{2}}{100 \times 5} \cdot \frac{A_{3}}{5 \times 50} \cdot \frac{A_{4}}{50 \times 20}\)
\(P_{0}=10, P_{1}=100, P_{2}=5, P_{3}=50, P_{4}=20\)
\begin{tabular}{|l|l|l|l|}
\hline\(m[1,1]\) & \(m[1,2]\) & \(m[1,3]\) & \(m[1,4]\) \\
\hline & \(m[2,2]\) & \(m[2,3]\) & \(m[2,4]\) \\
\hline & & \(m[3,3]\) & \(m[3,4]\) \\
\hline & & & \(m[4,4]\) \\
\hline
\end{tabular}

\section*{Main Diagonal}
\[
\begin{aligned}
& m[i, i]=0, \forall i=1, \ldots, 4 \\
& m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right) \\
& m[1,1]=0, \mathrm{~m}[2,2]=0, \mathrm{~m}[3,3]=0, \mathrm{~m}[4,4]=0
\end{aligned}
\]

\section*{Computing \(\mathbf{m}[1,2], \mathbf{m}[2,3], \mathbf{m}[3,4]\)}
\(m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right)\)
\(m[1,2]=\min _{1 \leq k<2}\left(m[1, k]+m[k+1,2]+p_{0} \cdot p_{k} \cdot p_{2}\right)\)
\(m[1,2]=\min ^{\left(m[1,1]+m[2,2]+p_{0} \cdot p_{1} \cdot p_{2}\right)}\)
\(m[1,2]=0+0+10 \cdot 100 \cdot 5=5000\)
\(\mathrm{s}[1,2]=\mathrm{k}=1\)

\section*{Computing \(\mathbf{m}[2,3]\)}
\[
\begin{aligned}
& m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right) \\
& m[2,3]=\min _{2 \leq k<3}\left(m[2, k]+m[k+1,3]+p_{1} \cdot p_{k} \cdot p_{3}\right) \\
& m[2,3]=\min ^{\left(m[2,2]+m[3,3]+p_{1} \cdot p_{2} \cdot p 3\right)} \\
& \mathrm{m}[2,3]=0+0+100 \cdot 5 \cdot 50=25000 \\
& \mathrm{~s}[2,3]=\mathrm{k}=2
\end{aligned}
\]

\section*{Computing m[3, 4]}
\[
\begin{aligned}
& m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right) \\
& m[3,4]=\min _{3 \leq k<4}\left(m[3, k]+m[k+1,4]+p_{2} \cdot p_{k} \cdot p_{4}\right) \\
& m[3,4]=\min ^{\left(m[3,3]+m[4,4]+p_{2} \cdot p_{3} \cdot p_{4}\right)} \\
& m[3,4]=0+0+5 \cdot 50 \cdot 20=5000 \\
& \mathrm{~s}[3,4]=\mathrm{k}=3
\end{aligned}
\]

\section*{Computing \(\mathbf{m}[1,3], \mathbf{m}[2,4]\)}
\[
\begin{aligned}
& m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right) \\
& m[1,3]=\min _{1 \leq k<3}\left(m[1, k]+m[k+1,3]+p_{0} \cdot p_{k} \cdot p_{3}\right) \\
& m[1,3]=\min ^{\left(m[1,1]+m[2,3]+p_{0} \cdot p_{1} \cdot p_{3},\right.} \\
& \left.\left.m[1,2]+m[3,3]+p_{0} \cdot p_{2} \cdot p_{3}\right)\right) \\
& m[1,3]=\min (0+25000+10.100 \cdot 50,5000+0+10.5 \cdot 50)=\min (75000,2500)=2500 \\
& \mathrm{~s}[1,3]=\mathrm{k}=2
\end{aligned}
\]

\section*{Computing \(\mathbf{m}[2,4]\)}
```

$m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right)$
$m[2,4]=\min _{2 \leq k<4}\left(m[2, k]+m[k+1,4]+p_{1} \cdot p_{k} \cdot p_{4}\right)$
$m[2,4]=\min ^{\left(m[2,2]+m[3,4]+p_{1} \cdot p_{2} \cdot p_{4},\right.}$
$\left.\left.m[2,3]+m[4,4]+p_{1} \cdot p_{3} \cdot p_{4}\right)\right)$
$m[2,4]=\min (0+5000+100.5 .20,25000+0+100.50 .20)=\min (15000,35000)=15000$
$s[2,4]=k=2$

```

\section*{Computing \(\mathbf{m}[1,4]\)}
```

$m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right)$
$m[1,4]=\min _{1 \leq k<4}\left(m[1, k]+m[k+1,4]+p_{0} \cdot p_{k} \cdot p_{4}\right)$
$m[1,4]=\min ^{\left(m[1,1]+m[2,4]+p_{0} \cdot p_{1} \cdot p_{4},\right.}$
$\left.m[1,2]+m[3,4]+p_{0} \cdot p_{2} \cdot p_{4}, m[1,3]+m[4,4]+p_{0} \cdot p_{3} \cdot p_{4}\right)$

```
\(m[1,4]=\min (0+15000+10.100 .20,5000+5000+10.5 .20,2500+0+10.50 .20)\)
        \(=\min (35000,11000,35000)=11000 \quad \mathrm{~s}[1,4]=k=2\)

Final Cost Matrix and Its Order of Computation

Final Cost Matrix
\begin{tabular}{|l|l|l|l|}
\hline 0 & 5000 & 2500 & 11000 \\
\hline & 0 & 25000 & 15000 \\
\hline & & 0 & 5000 \\
\hline & & & 0 \\
\hline
\end{tabular}

Order of Computation
\begin{tabular}{|c|c|c|c|}
\hline 1 & 5 & 8 & 10 \\
\hline & 2 & 6 & 9 \\
\hline & & 3 & 7 \\
\hline & & & 4 \\
\hline
\end{tabular}

\section*{Representing Order using Binary Tree}
- The above computation shows that the minimum cost for multiplying those four matrices is 11000 .
- The optimal order for multiplication is \(\left(\left(A_{1} . A_{2}\right) .\left(A_{3} . A_{4}\right)\right)\) For, \(m(1,4), k=2\)


\section*{Chain-Matrix-Order(p)}
1. \(\mathrm{n} \leftarrow\) length \([\mathrm{p}]-1\)
2. for \(i \leftarrow 1\) to \(n\)
3. \(d o m[i, i] \leftarrow 0\)
4. forl \(\leftarrow 2\) to \(n\),
5. do for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n}-\mathrm{l}+1\)
6. \(\quad\) do \(\mathrm{j} \leftarrow \mathrm{i}+\mathrm{l}-1\)
\begin{tabular}{|l|l|l|l|}
\hline\(m[1,1]\) & \(m[1,2]\) & \(m[1,3]\) & \(m[1,4]\) \\
\hline & \(m[2,2]\) & \(m[2,3]\) & \(m[2,4]\) \\
\hline & & \(m[3,3]\) & \(m[3,4]\) \\
\hline & & & \(m[4,4]\) \\
\hline
\end{tabular}
7. \(m[i, j] \leftarrow \infty\)
8. for \(\mathrm{k} \leftarrow \mathrm{i}\) to \(\mathrm{j}-1\)
9. \(\quad\) do \(q \leftarrow m[i, k]+m[k+1, j]\)
\[
+p_{i-1} \cdot p_{k} \cdot p_{j}
\]
10.
11.
\[
\text { if } q<m[i, j]
\]
12. then \(m[i, j]=q\)
\[
s[i, j] \leftarrow k
\]
13. return \(m\) and \(s\), " 1 is chain length"

\section*{Computational Cost}
\(T(n)=n+\sum_{i=1}^{n} \sum_{j=i+1}^{n}(j-i)=\sum_{i=1}^{n} \sum_{k=1}^{n-i} k\)
\(T(n)=n+\sum_{i=1}^{n} \frac{(n-i)(n-i+1)}{2}\)
\(T(n)=n+\frac{1}{2} \sum_{i=1}^{n}\left(n^{2}-2 n i+i^{2}+n-i\right)\)
\(T(n)=n+\frac{1}{2}\left(\sum_{i=1}^{n} n^{2}-\sum_{i=1}^{n} 2 n i+\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right)\)
\(T(n)=n+\frac{1}{2}\left(\sum_{i=1}^{n} n^{2}-\sum_{i=1}^{n} 2 n i+\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right)\)
\(T(n)=n+\frac{1}{2}\left(n^{2} \sum_{i=1}^{n} 1-2 n \sum_{i=1}^{n} i+\sum_{i=1}^{n} i^{2}+n \sum_{i=1}^{n} 1-\sum_{i=1}^{n} i\right)\)
\(T(n)=n+\frac{1}{2}\left(n^{2} \cdot n-2 n \cdot \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}+n \cdot n-\frac{n(n+1)}{2}\right)\)
\(T(n)=n+\frac{1}{2}\left(n^{2} \cdot n-2 n \cdot \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}+n \cdot n-\frac{n(n+1)}{2}\right)\)
\(T(n)=n+\frac{1}{2}\left(n^{3}-n^{2}(n+1)+\frac{n(n+1)(2 n+1)}{6}+n^{2}-\frac{n(n+1)}{2}\right)\)
\(T(n)=n+\frac{1}{12}\left(6 n^{3}-6 n^{3}-6 n^{2}+2 n^{3}+3 n^{2}+n+6 n^{2}-3 n^{2}-3 n\right)\)
\(T(n)=\frac{1}{12}\left(12 n+2 n^{3}-2 n\right)=\frac{1}{12}\left(10 n+2 n^{3}\right)=\frac{1}{6}\left(5 n+n^{3}\right)\)

\section*{Cost Comparison Brute Force Dynamic Programming}

Dynamic Programming
There are three loop
- The most two loop for \(\mathrm{i}, \mathrm{j}\), satisfy the condition: \(1 \square \mathrm{i} \square \mathrm{j} \square \mathrm{n}\)
- Cost \(={ }^{\mathrm{n}} \mathrm{C}_{2}+\mathrm{n}=\mathrm{n}(\mathrm{n}-1) / 2+\mathrm{n}=\Theta\left(\mathrm{n}^{2}\right)\)
- The third one most inner loop for \(k\) satisfies the condition, \(i \square k<j\), in worst case, it cost n and
- Hence total cost \(=\Theta\left(n^{2} . n\right)=\Theta\left(n^{3}\right)\)

Brute Force Approach
- \(P(n)=C(n-1) C(n) \in\left(4^{n} / n^{3 / 2}\right)\)

\section*{Generalization: Sequence of Objects}
- Although this algorithm applies well to the problem of matrix chain multiplication
- Many researchers have noted that it generalizes well to solving a more abstract problem
- given a linear sequence of objects
- an associative binary operation on those objects hold
- the objective to find a way to compute the cost of performing that operation on any two given objects
- and finally computing the minimum cost for grouping these objects to apply the operation over the entire sequence.
- It is obvious that this problem can be solved using chain matrix multiplication, because there is a one to one correspondence between both problem

\section*{Generalization: String Concatenation}
- One common special case of chain matrix multiplication problem is string concatenation.
- For example, we are give a list of strings.
- The cost of concatenating two strings of length \(m\) and \(n\) is for example \(O(m+n)\)
- Since we need \(O(m)\) time to find the end of the first string and \(O(n)\) time to copy the second string onto the end of it.
- Using this cost function, we can write a dynamic programming algorithm to find the fastest way to concatenate a sequence of strings
- It is possible to concatenate all in time proportional to sum of their lengths, but here we are interested to link this problem with chain matrix multiplication

\section*{Generalization: Parallel Processors}
- Another generalization is to solve the problem when many parallel processors are available.
- In this case, instead of adding the costs of computing each subsequence, we just take the maximum, because we can do them both simultaneously.
- This can drastically affect both the minimum cost and the final optimal grouping
- But of course more balanced groupings that keep all the processors busy is more favorable solution
- There exists some more sophisticated approaches to solve this problem

\section*{Conclusion}
- Created some notations to describe mathematical model of the chain matrix multiplication problem
- A recursive model was described
- Based on this model dynamic programming algorithm was designed
- An example was taken for applying model to solve dynamically, constructing optimal solution based on the given information
- Time complexity was computed for the Algorithm
- Applications of chain matrix problem are discussed

\section*{Lecture No. 17}

\section*{Assembly-Line Scheduling Problem}

\section*{Today Covered}
- Assembly Line Scheduling Problem
- Problem Analysis
- Defining Notations
- Brute Force approach
- Dynamic Solution
- Algorithm using Dynamic Programming
- Time Complexity
- Generalization and Applications
- Conclusion

\section*{Assembly-Line Scheduling Problem}
- There are two assembly lines each with \(n\) stations
- The jth station on line \(i\) is denoted by \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line i taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the \((\mathrm{j}+1)\) st station on either line
- There is no transfer cost if it stays on the same line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer to other line after station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- After exiting the nth station on a line, it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 and 2 to minimize total time through the factory.

\section*{Notations: Assembly-Line Scheduling Problem}


Stations \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\);
2 assembly lines, \(i=1,2\);
n stations, \(j=1, \ldots, n\).
\(\mathrm{a}_{\mathrm{i}, \mathrm{j}}=\) assembly time at \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\);
\(\mathrm{t}_{\mathrm{i}, \mathrm{j}}=\) transfer time from \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\) (to \(\mathrm{S}_{\mathrm{i}-1, \mathrm{j}+1}\) OR \(\mathrm{S}_{\mathrm{i}+1, \mathrm{j}+1}\) );
\(e_{i}=\) entry time from line \(i\);
\(x_{i}=\) exit time from line \(i\).


Total Computational Time = possible ways to enter in stations at level \(\mathrm{n} x\) one way Cost Possible ways to enter in stations at level \(1=2^{1}\)
Possible ways to enter in stations at level \(2=2^{2}\)
Possible ways to enter in stations at level \(2=2^{n}\)
Total Computational Time \(=\mathrm{n} .2^{\mathrm{n}}\)

\section*{Dynamic Programming Solution}

\section*{Notations: Finding Objective Function}
- Let \(\mathrm{f}_{\mathrm{i}}[\mathrm{j}]=\) fastest time from starting point station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(f_{1}[n]=\) fastest time from starting point station \(S_{1 n}\)
- \(f_{2}[n]=\) fastest time from starting point station \(S_{2 n}\)
- \(l_{i j}[j=\) The line number, 1 or 2 , whose station \(j-1\) is used in a fastest way through station \(S_{i, j}\).
- It is to be noted that \(\mathrm{l}_{\mathrm{i}}[1]\) is not required to be defined because there is no station before 1
- \(\mathrm{t}_{\mathrm{i}[\mathrm{j}-1]}=\) transfer time from line i to station \(\mathrm{S}_{\mathrm{i}-1, \mathrm{j}}\) or \(\mathrm{S}_{\mathrm{i}+1, \mathrm{j}}\)
- Objective function \(=f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)\)
- \(I^{\star}=\) to be the line no. whose \(\mathrm{n}^{\text {th }}\) station is used in a fastest way.


\section*{Mathematical Model: Finding Objective Function}

\(\mathrm{f}_{1}[1]=\mathrm{e}_{1}+\mathrm{a}_{1,1}\);
\(\mathrm{f}_{2}[1]=\mathrm{e}_{2}+\mathrm{a}_{2,1}\).
\(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\) for \(j \geq 2\);
\(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\) for \(j \geq 2\);

\section*{Complete Model: Finding Objective Function}

\section*{Base Cases}
- \(f_{1}[1]=e_{1}+a_{1,1}\)
- \(\mathrm{f}_{2}[1]=\mathrm{e}_{2}+\mathrm{a}_{2,1}\)

Two possible ways of computing \(\mathrm{f}_{1}[\mathrm{j}]\)
- \(f_{1}[j]=f_{2}[j-1]+t_{2, j-1}+a_{1, j}\) OR \(f_{1}[j]=f_{1}[j-1]+a_{1, j}\)

For \(\mathrm{j}=2,3, \ldots, \mathrm{n}\)
\[
f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)
\]

Symmetrically
For \(\mathrm{j}=2,3, \ldots, \mathrm{n}\)
\[
f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)
\]

Objective function \(=f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)\)

\section*{Example: Computation of f1[2]}

- \(\mathrm{f}_{1}[1]=\mathrm{e}_{1}+\mathrm{a}_{1,1}=2+7=9\)
- \(\mathrm{f}_{2}[1]=\mathrm{e}_{2}+\mathrm{a}_{2,1}=4+8=12\)
- \(\quad f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(j=2\)
- \(f_{1}[2]=\min \left(f_{1}[1]+a_{1,2}, f_{2}[1]+t_{2,1}+a_{1,2}\right)=\min (9+9,12+2+9)=\min (18,23)=18\), \(\mathrm{l}_{1}[2]=1\)

\section*{Computation of f2[2]}

- \(\mathrm{f}_{1}[1]=\mathrm{e}_{1}+\mathrm{a}_{1,1}=2+7=9\)
- \(\mathrm{f}_{2}[1]=\mathrm{e}_{2}+\mathrm{a}_{2,1}=4+8=12\)
- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=2\)
- \(f_{2}[2]=\min \left(f_{2}[1]+a_{2,2}, f_{1}[1]+t_{1,1}+a_{2,2}\right)=\min (12+5,9+2+5)=\min (17,16)=16\), \(\mathrm{l}_{2}[2]=1\)

\section*{Computation of f1[3]}

- \(\mathrm{f}_{1}[\mathrm{j}]=\min \left(\mathrm{f}_{1}[j-1]+\mathrm{a}_{1, \mathrm{j}}, \mathrm{f}_{2}[\mathrm{j}-1]+\mathrm{t}_{2, \mathrm{j}-1}+\mathrm{a}_{1, \mathrm{j}}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(j=3\)
- \(\mathrm{f}_{1}[3]=\min \left(\mathrm{f}_{1}[2]+\mathrm{a}_{1,3}, \mathrm{f}_{2}[2]+\mathrm{t}_{2,2}+\mathrm{a}_{1,3}\right)=\min (18+3,16+1+3)=\min (21,20)=20\)
- \(\mathrm{I}_{1}[3]=2\)

\section*{Computation of f2[3]}

- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=3\)
- \(\mathrm{f}_{2}[3]=\min \left(\mathrm{f}_{2}[2]+\mathrm{a}_{2,3}, \mathrm{f}_{1}[2]+\mathrm{t}_{1,2}+\mathrm{a}_{2,3}\right)=\min (16+6,18+3+6)=\min (22,27)=22\),
- \(\mathrm{I}_{2}[3]=2\)

\section*{Computation of f1[4]}

- \(\quad f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=4\)
- \(\mathrm{f}_{1}[4]=\min \left(\mathrm{f}_{1}[3]+\mathrm{a}_{1,4}, \mathrm{f}_{2}[3]+\mathrm{t}_{2,3}+\mathrm{a}_{1,4}\right)=\min (20+4,22+1+4)=\min (24,27)=24\),
- \(\mathrm{l}_{1}[4]=1\)

\section*{Computation of f2[4]}

- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=4\)
- \(f_{2}[4]=\min \left(f_{2}[3]+a_{2,4}, f_{1}[3]+t_{1,3}+a_{2,4}\right)=\min (22+4,20+1+4)=\min (26,25)=25\),
- \(\mathrm{I}_{2}[4]=1\)

\section*{Computation of f1[5]}

- \(\quad f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(j=5\)
- \(f_{1}[5]=\min \left(f_{1}[4]+a_{1,5}, f_{2}[4]+t_{2,4}+a_{1,5}\right)=\min (24+8,25+2+8)=\min (32,35)=32\),
- \(\mathrm{l}_{1}[5]=1\)

\section*{Computation of \(\mathbf{f 2}\) [5]}

- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=5\)
- \(\mathrm{f}_{2}[5]=\min \left(\mathrm{f}_{2}[4]+\mathrm{a}_{2,5}, \mathrm{f}_{1}[4]+\mathrm{t}_{1,4}+\mathrm{a}_{2,5}\right)=\min (25+5,24+3+5)=\min (30,32)=30\),
- \(\mathrm{I}_{2}[5]=2\)

\section*{Computation of f1[6]}

- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=6\)
- \(\mathrm{f}_{1}[6]=\min \left(\mathrm{f}_{1}[5]+\mathrm{a}_{1,6}, \mathrm{f}_{2}[5]+\mathrm{t}_{2,5}+\mathrm{a}_{1,6}\right)=\min (32+4,30+1+4)=\min (36,35)=35\),
- \(\mathrm{l}_{1}[6]=2\)

\section*{Computation of f2[6]}

- \(f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)\)
- \(f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)\)
- \(\mathrm{j}=6\)
- \(\mathrm{f}_{2}[6]=\min \left(\mathrm{f}_{2}[5]+\mathrm{a}_{2,6}, \mathrm{f}_{1}[5]+\mathrm{t}_{1,5}+\mathrm{a}_{2,6}\right)=\min (30+7,32+4+7)=\min (37,43)=37\),
- \(\mathrm{I}_{2}[6]=2\)

\section*{Keeping Track Constructing Optimal Solution}
\(f^{*}=\min \left(f_{1}[6]+x_{1}, f_{2}[6]+x_{2}\right)=\min (35+3,37+2)=\min (38,39)=38\)
\(\mathrm{I}^{*}=1\)
\(I^{*}=1=>\) Station \(S_{1,6}\)
\(\mathrm{l}_{1}[6]=2\) => Station \(\mathrm{S}_{2,5}\)
\(\mathrm{I}_{2}[5]=2 \Rightarrow\) Station \(\mathrm{S}_{2,4}\)
\(\mathrm{l}_{2}[4]=1=>\) Station \(\mathrm{S}_{1,3}\)
\(\mathrm{l}_{1}[3]=2=>\) Station \(\mathrm{S}_{2,2}\)
\(\mathrm{I}_{2}[2]=1 \Rightarrow\) Station \(\mathrm{S}_{1,1}\)

\section*{Entire Solution Set: Assembly-Line Scheduling}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{f}_{\mathrm{i}}(\mathrm{j})\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1 & 9 & 18 & 20 & 24 & 32 & 35 \\
\hline 2 & 12 & 16 & 22 & 25 & 30 & 37 \\
\hline
\end{tabular}
\(\mathrm{f}^{*}=38\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline j & 2 & 3 & 4 & 5 & 6 \\
\hline \(\mathrm{i}_{\mathrm{i}}(\mathrm{j})\) & & \\
\hline 1 & 1 & 2 & 1 & 1 & 2 \\
\hline 2 & 1 & 2 & 1 & 2 & 2 \\
\hline
\end{tabular}
\(I^{*}=1\)

Fastest Way: Assembly-Line Scheduling

\(l^{*}=1=>\) Station \(\mathrm{S}_{1,6}\)
\(\mathrm{l}_{1}[6]=2=>\) Station \(\mathrm{S}_{2,5}\)
\(\mathrm{I}_{2}[5]=2 \Rightarrow\) Station \(\mathrm{S}_{2,4}\)
\(\mathrm{I}_{2}[4]=1 \Rightarrow\) Station \(\mathrm{S}_{1,3}\)
\(\mathrm{l}_{1}[3]=2=>\) Station \(\mathrm{S}_{2,2}\)
\(\mathrm{I}_{2}[2]=1=>\) Station \(\mathrm{S}_{1,1}\)

\section*{Lecture No. 18}

\section*{2-Line Assembly Scheduling Problem}

\section*{Today Covered}
- 2-Line Assembly Scheduling Algorithm using Dynamic Programming
- Time Complexity
- n -Line Assembly Problem
- Brute Force Analysis
- n -Line Assembly Scheduling Algorithm using Dynamic Programming
- Time Complexity
- Generalization and Applications
- Conclusion

\section*{Assembly-Line Scheduling Problem}
- There are two assembly lines each with \(n\) stations
- The jth station on line \(i\) is denoted by \(S_{i, j}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line \(i\) taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the \((\mathrm{j}+1)\) st station on either line
- There is no transfer cost if it stays on the same line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer to other line after station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- After exiting the nth station on a line, it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 and 2 to minimize total time through the factory.

\section*{Mathematical Model Defining Objective Function}

Base Cases
- \(f_{1}[1]=e_{1}+a_{1,1}\)
- \(\mathrm{f}_{2}[1]=\mathrm{e}_{2}+\mathrm{a}_{2,1}\)

Two possible ways of computing \(f_{1}[j]\)
- \(f_{1}[j]=f_{2}[j-1]+t_{2, j-1}+a_{1, j}\) OR \(f_{1}[j]=f_{1}[j-1]+a_{1, j}\)

For \(\mathrm{j}=2,3, \ldots, \mathrm{n}\)
\[
f_{1}[j]=\min \left(f_{1}[j-1]+a_{1, j}, f_{2}[j-1]+t_{2, j-1}+a_{1, j}\right)
\]

Symmetrically
\[
\begin{aligned}
\text { For } j= & 2,3, \ldots, n \\
& f_{2}[j]=\min \left(f_{2}[j-1]+a_{2, j}, f_{1}[j-1]+t_{1, j-1}+a_{2, j}\right)
\end{aligned}
\]

Objective function \(=f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)\)

\section*{Dynamic Algorithm}

FASTEST-WAY( \(\mathrm{a}, \mathrm{t}, \mathrm{e}, \mathrm{x}, \mathrm{n}\) )
```

$f_{1}[1] \equiv e_{1}+a_{1,1}$
$f_{2}[1] \equiv e_{2}+a_{2,1}$
for $\mathrm{j} \equiv 2$ to n
do if $f_{1}[\mathrm{j}-1]+\mathrm{a}_{1, \mathrm{j}} \leq f_{2}[\mathrm{j}-1]+\mathrm{t}_{2, \mathrm{j}-1}+\mathrm{a}_{1, \mathrm{j}}$
then $f_{1}[j] \equiv f_{1}[j-1]+a_{1, j}$
$\mathrm{I}_{1}[\mathrm{j}] \equiv 1$
else $f_{1}[j] \equiv f_{2}[j-1]+t_{2, j-1}+a_{1, j}$
$\mathrm{l}_{1}[\mathrm{j}] \equiv 2$
if $f_{2}[\mathrm{j}-1]+\mathrm{a}_{2, \mathrm{j}} \leq f_{1}[\mathrm{j}-1]+\mathrm{t}_{1, \mathrm{j}-1}+\mathrm{a}_{2, \mathrm{j}}$
then $f_{2}[j] \equiv f_{2}[j-1]+a_{2, j}$
$\mathrm{I}_{2}[\mathrm{j}] \equiv 2$
else $f_{2}[j] \equiv f_{1}[\mathrm{j}-1]+\mathrm{t}_{1, \mathrm{j}-1}+\mathrm{a}_{2, \mathrm{j}}$
$\mathrm{I}_{2}[\mathrm{j}] \equiv 1$
if $f_{1}[\mathrm{n}]+\mathrm{x}_{1} \leq \mathrm{f}_{2}[\mathrm{n}]+\mathrm{x}_{2}$
then $f^{*}=f_{1}[\mathrm{n}]+\mathrm{x}_{1}$
$I^{*}=1$
else $f^{*}=f_{2}[\mathrm{n}]+\mathrm{x}_{2}$
$I^{*}=2$

```

\section*{Optimal Solution: Constructing The Fastest Way}
1. Print-Stations (I, n)
2. \(\quad \mathrm{i} \equiv \mathrm{I}^{*}\)
3. print "line" i ", station" n
4. \(\quad\) for \(\mathrm{j} \equiv \mathrm{n}\) downto 2
5. do \(\mathrm{i} \equiv \mathrm{l}_{\mathrm{i}[\mathrm{j}]}\)
6. print "line" i ", station" j - 1

\section*{n-Assembly Line Scheduling Problem}
- There are \(n\) assembly lines each with \(m\) stations
- The jth station on line \(i\) is denoted by \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line i taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the \((\mathrm{j}+1)\) st station on either line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer from line i , station j to line i and station \(\mathrm{j}+1\)
- After exiting the nth station on a line \(i\), it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 to n to minimize total time through the factory.

\section*{n-Line: Brute Force Solution}


Total Computational Time = possible ways to enter in stations at level \(\mathrm{n} x\) one way Cost
Possible ways to enter in stations at level \(1=n^{1}\)
Possible ways to enter in stations at level \(2=\mathrm{n}^{2}\).
Possible ways to enter in stations at level \(m=n^{m}\)
Total Computational Time \(=\Theta\left(\mathrm{m} . \mathrm{m}^{\mathrm{n}}\right)\)

\section*{Dynamic Solution}

\section*{Notations : n-Line Assembly}

- Let \(\mathrm{f}_{\mathrm{i}}[\mathrm{j}]=\) fastest time from starting point to station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(\mathrm{f}_{1}[\mathrm{~m}]=\) fastest time from starting point to station \(\mathrm{S}_{1 \mathrm{~m}}\)
- \(\mathrm{f}_{2}[\mathrm{~m}]=\) fastest time from starting point to station \(\mathrm{S}_{2, \mathrm{~m}}\)
- \(\mathrm{f}_{\mathrm{n}}[\mathrm{m}]=\) fastest time from starting point to station \(\mathrm{S}_{\mathrm{n}, \mathrm{m}}\)
- \(\left.\mathrm{I}_{[\mathrm{j}}\right]=\) The line number, 1 to n , whose station \(\mathrm{j}-1\) is used in a fastest way through station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)

- \(\mathrm{t}_{\mathrm{i}[\mathrm{j}-1]} \mathrm{l}=\) transfer time from station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}-1}\) to station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(a[i, j]=\) time of assembling at station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(f^{*}=\) is minimum time through any way
- \(I^{*}=\) the line no. whose \(\mathrm{m}^{\text {th }}\) station is used in a fastest way

\section*{Possible Lines to reach Station S(i, j)}


Time from Line 1, \(f[1, j-1]+t[1, j-1]+a[i, j]\)
Time from Line 2, f[2, j-1] + t[2, j-1] + a[i, j]
Time from Line 3, f[3, j-1] + t[3, j-1] +a[i, j]
Time from Line \(n, f[n, j-1]+t[n, j-1]+a[i, j]\)

\section*{Values of \(\mathbf{f}(\mathbf{i}, \mathbf{j})\) and \(\mathrm{I}^{*}\) at Station \(\mathbf{S}(\mathbf{i}, \mathbf{j})\)}

\(f[i, j]=\min \{f[1, j-1]+t[1, j-1]+a[i, j], f[2, j-1]+t[2, j-1]+a[i, j], \ldots, f[n, j-1]+t[n, j-1]+a[i, j]\}\)
\(f[1,1]=e_{1}+a[1,1] ; f[2,1]=e_{2}+a[2,1], \ldots, f[n, 1]=e_{n}+a[n, 1]\)
\(\mathrm{f}^{*}=\min \left\{f[1, n]+\mathrm{x}_{1}, \mathrm{f}[2, \mathrm{n}]+\mathrm{x}_{2}, \ldots, \mathrm{f}[\mathrm{n}, \mathrm{m}]+\mathrm{x}_{\mathrm{n}}\right\}\)
\(I^{*}=\) line number of \(\mathrm{m}^{\text {th }}\) station used

\section*{n-Line Assembly: Dynamic Algorithm}

FASTEST-WAY(a, t, e, x, n, m)
1 for \(\mathrm{i} \equiv 1\) to \(n\)
\(2 \quad f[i, 1] \equiv \mathrm{e}[\mathrm{i}]+\mathrm{a}[\mathrm{i}, 1]\)

3 for \(\mathrm{j} \equiv 2\) to m
\(4 \quad\) for \(\mathrm{i} \equiv 1\) to n
\(f[i, j] \leftarrow f[1, j-1]+t[1, j-1]+a[i, j]\)
\(L[1, j]=1\)
for \(\mathrm{k} \leftarrow 2\) to n
if \(f[i, j]>f[k, j-1]+t[2, j-1]+a[i, j]\)
then \(f[i, j] \leftarrow f[k, j-1]+t[2, j-1]+a[i, j]\)
\(L[i, j]=k\)
end if
\(f^{*} \leftarrow f[1, \mathrm{~m}]+\mathrm{x}[1]\)
\(l^{*}=1\)
for \(\mathrm{k} \leftarrow 2\) to n
if \(f^{*}>f[k, m]+x[k]\)
then \(f^{*} \leftarrow f[k, m]+x[k]\)
\(\mathrm{I}^{*}=\mathrm{k}\)

\section*{Constructing the Fastest Way: n-Line}
1. Print-Stations \(\left(I^{*}, m\right)\)
2. \(i \equiv I^{*}\)
3. print "line" i ", station" m
4. for \(\mathrm{j} \equiv \mathrm{m}\) downto 2
5. do \(\mathrm{i} \equiv \mathrm{l}_{\mathrm{i}[\mathrm{j}]}\)
6. print "line" i ", station" j - 1

\section*{Generalization: Cyclic Assembly Line Scheduling}

Title: Moving policies in cyclic assembly line scheduling Source: Theoretical Computer Science, Volume 351, Issue (February 2006)

Summary: Assembly line problem occurs in various kinds of production automation. In this paper, originality lies in the automated manufacturing of PC boards.
- In this case, the assembly line has to process number of identical work pieces in a cyclic fashion. In contrast to common variant of assembly line scheduling.
- Each station may process parts of several work-pieces at the same time, and parts of a work-piece may be processed by several stations at the same time.

\section*{Application: Multiprocessor Scheduling}
- The assembly line problem is well known in the area of multiprocessor scheduling.
- In this problem, we are given a set of tasks to be executed by a system with n identical processors.
- Each task, Ti, requires a fixed, known time pi to execute.
- Tasks are indivisible, so that at most one processor may be executing a given task at any time
- They are un-interruptible, i.e., once assigned a task, may not leave it until task is complete.
- The precedence ordering restrictions between tasks may be represented by a tree or forest of trees

\section*{Generalization: Cyclic Assembly Line Scheduling}

Title: Moving policies in cyclic assembly line scheduling
Source: Theoretical Computer Science, Volume 351, Issue (February 2006)
Summary: Assembly line problem occurs in various kinds of production automation. In this paper, originality lies in the automated manufacturing of PC boards.
- In this case, the assembly line has to process number of identical work pieces in a cyclic fashion. In contrast to common variant of assembly line scheduling.
- Each station may process parts of several work-pieces at the same time, and parts of a work-piece may be processed by several stations at the same time.

\section*{Application: Multiprocessor Scheduling}
- The assembly line problem is well known in the area of multiprocessor scheduling.
- In this problem, we are given a set of tasks to be executed by a system with n identical processors.
- Each task, Ti, requires a fixed, known time pi to execute.
- Tasks are indivisible, so that at most one processor may be executing a given task at any time
- They are un-interruptible, i.e., once assigned a task, may not leave it until task is complete.
- The precedence ordering restrictions between tasks may be represented by a tree or forest of trees

\section*{Conclusion}
- Assembly line problem is discussed
- Generalization is made
- Mathematical Model of generalized problem is discribed
- Algorithm is proposed
- Applications are observed in various domains
- Some research issues are identified

\title{
Lecture No. 19 \\ 0-1 Knapsack Problem using \\ Dynamic Programming
}

\section*{Today Covered}
- 0-1 Knapsack Problem
- Problem Analysis
- Divide and Conquer
- Dynamic Solution
- Algorithm using Dynamic Programming
- Time Complexity
- Generalization, Variations and Applications
- Conclusion

\section*{General Knapsack Problem}
- Given a set of items, each with a cost and a value, then determine the items to include in a collection so that the total cost is less than some given cost and the total value is as large as possible.
- Knapsack problem is of combinatorial optimization
- It derives its name from the maximization problem of choosing possible essentials that can fit into one bag, of maximum weight, to be carried on a trip.
- A similar problem very often appears in business, complexity theory, cryptography and applied mathematics.

\section*{0-1 Knapsack Problem Statement}

The knapsack problem arises whenever there is resource allocation with no financial constraints Problem Statement
- A thief robbing a store and can carry a maximal weight of W into his knapsack. There are n items and ith item weight is \(\mathrm{w}_{\mathrm{i}}\) and worth is \(\mathrm{v}_{\mathrm{i}}\) dollars. What items should thief take, not exceeding the bag capacity, to maximize value?
Assumption:
- the items may not be broken into smaller pieces, so thief may decide either to take an item or to leave it, but may not take a fraction of an item.

\section*{0-1 Knapsack Problem Another Statement}

Problem Statement
- You are in Japan on an official visit and want to make shopping from a store (Best Denki)
- A list of required items is available at the store
- You are given a bag (knapsack), of fixed capacity, and only you can fill this bag with the selected items from the list.
- Every item has a value (cost) and weight,
- And your objective is to seek most valuable set of items which you can buy not exceeding bag limit.

\section*{0-1 Knapsack Problem: Remarks}

Assumption
- Each item must be put entirely in the knapsack or not included at all that is why the problem is called 0-1 knapsack problem
Remarks
- Because an item cannot be broken up arbitrarily, so it is its 0-1 property that makes the knapsack problem hard.
- If an item can be broken and allowed to take part of it then algorithm can be solved using greedy approach optimally

\section*{Notations: 0-1 Knapsack Problem Construction}

Problem Construction
- You have prepared a list of \(n\) objects for which you are interested to buy, The items are numbered as \(i_{1}, i_{2}, \ldots, i_{n}\)
- Capacity of bag is W
- Each item \(i\) has value \(v_{i}\), and weigh \(w_{i}\)
- We want to select a set of items among \(\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots\), \(\mathrm{i}_{n}\) which do not exceed (in total weight) capacity W of the bag
- Total value of selected items must be maximum
- How should we select the items?

\section*{Model: 0-1 Knapsack Problem Construction}

Formal Construction of Problem
- Given a list: \(i_{1}, i_{2}, \ldots, i_{n}\), values: \(v_{1}, v_{2}, \ldots, v_{n}\) and weights: \(w_{1}, w_{2}, \ldots, w_{n}\) respectively
- Of course \(W \geq 0\), and we wish to find a set \(S\) of items such that \(S \subseteq\left\{i_{1}, i_{2}, \ldots\right.\), \(\left.i_{n}\right\}\) that
- Maximizes \(\sum_{i \in S} v_{i}\)
- subject to \(\sum_{i \in S} w_{i} \leq W\)

\section*{Brute Force Solution}
- Compute all the subsets of \(\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}\), there will be \(2^{n}\) number of subsets.
- Find sum of the weights of total items in each set and list only those sets whose sum does not increase by W (capacity of knapsack)
- Compute sum of values of items in each selected list and find the highest one
- This highest value is the required solution
- The computational cost of Brute Force Approach is exponential and not economical
- Find some other way!

\section*{Divide and Conquer Approach}

Approach
- Partition the knapsack problem into sub-problems
- Find the solutions of the sub-problems
- Combine these solutions to solve original problem

\section*{Comments}
- In this case the sub-problems are not independent
- And the sub-problems share sub-sub-problems
- Algorithm repeatedly solves common sub-sub-problems and takes more effort than required
- Because this is an optimization problem and hence dynamic approach is another solution if we are able to construct problem dynamically

\section*{Steps in Dynamic Programming}

Step1 (Structure):
- Characterize the structure of an optimal solution
- Next decompose the problem into sub-problems
- Relate structure of the optimal solution of original problem and solutions of sub-problems

\section*{Step 2 (Principal of Optimality)}
- Define value of an optimal solution recursively
- Then express solution of the main problem in terms of optimal solutions of subproblems.

Step3 (Bottom-up Computation):
- In this step, compute the value of an optimal solution in a bottom-up fashion by using structure of the table already constructed.

Step 4 (Construction of an Optimal Solution)
- Construct an optimal solution from the computed information based on Steps 1-3.

Note:
- Some time people, combine the steps 3 and 4
- Step 1-3 form basis of dynamic problem
- Step 4 may be omitted if only optimal solution of the problem is required

\section*{Mathematical Model: Dynamic Programming}

Step1 (Structure):
- Decompose problem into smaller problems
- Construct an array V[0..n, 0..W]
- \(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\) maximum value of items selected from \(\{1,2, \ldots\), , \(\}\), that can fit into a bag with capacity w , where \(1 \Downarrow_{i} \unlhd_{\mathrm{n}, 1} \S_{\mathrm{w}} \S \mathrm{W}\)
- \(V[n, W]=\) contains maximum value of the items selected from \(\{1,2, \ldots, n\}\) that can fit into the bag with capacity W storage
- Hence \(\mathrm{V}[\mathrm{n}, \mathrm{W}]\) is the required solution for our knapsack problem

Step 2 (Principal of Optimality)
- Recursively define value of an optimal solution in terms of solutions to sub-problems Base Case: Since
- \(\mathrm{V}[0, \mathrm{w}]=0,0 \S \mathrm{w} \S \mathrm{W}\), no items are available
- \(\mathrm{V}[0, \mathrm{w}]=-\infty, \mathrm{w}<0\), invalid
- \(V[i, 0]=0,0\) § \(\S n\), no capacity available

Recursion:
\(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\max \left(\mathrm{V}[\mathrm{i}-1, \mathrm{w}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right)\)
for \(1 \Downarrow i \triangleq n, 0 \S w \triangleq W\)

\section*{Proof of Correctness}

Correctness of Model
Prove that: \(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\max \left(\mathrm{V}[i-1, \mathrm{w}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right)\)
\[
\text { for } 1 \triangleq i \unlhd n, 0 \triangleq w \boxtimes w
\]

Proof:
To compute \(\mathrm{V}[\mathrm{i}, \mathrm{w}]\), we have only two choices for i
1. Do not Select Item i

Items left \(=\{1,2, \ldots, i-1\}\) and
storage limit \(=\mathrm{w}\), hence
Max. value, selected from \(\{1,2, \ldots, i\}=V[i-1, w]\), (1)
2. Select Item \(i\) (possible if \(\left.w_{i} \triangleq w\right)\)
- In this way, we gain value \(v_{i}\) but use capacity \(w_{i}\)
- Items left \(=\{1,2, \ldots, i-1\}\), storage limit \(=w-w_{i}\),
- Max. value, from items \(\{1,2, \ldots, i-1\}=\mathrm{V}\left[i-1, w-w_{i}\right]\)
- Total value if we select item \(\mathrm{i}=\mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\)
- Finally, the solution will be optimal if we take the maximum of \(\mathrm{V}[\mathrm{i}-1, \mathrm{w}]\) and
\(v_{i}+V\left[i-1, w-w_{i}\right]\)
- Hence \(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\max \left(\mathrm{V}[i-1, w], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[i-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right.\)

\section*{Problem: Developing Algorithm for Knapsack}
- \(\mathrm{V}[1,1]=0\),
- \(\mathrm{V}[1,2]=0\)
- \(\mathrm{V}[1,3]=0\),
- \(\mathrm{V}[1,4]=0\)
- \(V[i, j]=\max \left(V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right)\);
- \(\mathrm{V}[1,5]=\max \left(\mathrm{V}[0,5], \mathrm{v}_{1}+\mathrm{V}\left[0,5-\mathrm{w}_{1}\right]\right)\);
\(=\max (\mathrm{V}[0,5], 10+\mathrm{V}[0,5-5])\)
\(=\max (\mathrm{V}[0,5], 10+\mathrm{V}[0,0])\)
\(=\max (0,10+0)=\max (0,10)\)
\(=10\)
\begin{tabular}{|l|l|l|l|l|}
\hline l & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{~W}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
- \(\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[i-1, \mathrm{j}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right]\right)\);
- \(\mathrm{V}[1,6]=\max \left(\mathrm{V}[0,6], \mathrm{v}_{1}+\mathrm{V}\left[0,6-\mathrm{w}_{1}\right]\right)\);
\[
\begin{aligned}
& =\max (V[0,6], 10+V[0,6-5]) \\
& =\max (V[0,6], 10+V[0,1]) \\
& =\max (0,10+0)=\max (0,10)=10,
\end{aligned}
\]
\(\operatorname{Keep}(1,6)=1\)
- \(\mathrm{V}[1,7]=\max \left(\mathrm{V}[0,7], \mathrm{v}_{1}+\mathrm{V}\left[0,7-\mathrm{w}_{1}\right]\right)\);
\[
=\max (\mathrm{V}[0,7], 10+\mathrm{V}[0,7-5])
\]
\[
=\max (\mathrm{V}[0,7], 10+\mathrm{V}[0,2])
\]
\[
=\max (0,10+0)=\max (0,10)=10
\]
\(\operatorname{Keep}(1,7)=1\)
- \(\mathrm{V}[1,8]=\max \left(\mathrm{V}[0,8], \mathrm{v}_{1}+\mathrm{V}\left[0,8-\mathrm{w}_{1}\right]\right)\);
\[
=\max (\mathrm{V}[0,8], 10+\mathrm{V}[0,8-5])
\]
\[
=\max (\mathrm{V}[0,8], 10+\mathrm{V}[0,3])
\]
\[
=\max (0,10+0)=\max (0,10)=10
\]
\(\operatorname{Keep}(1,8)=1\)
- \(\mathrm{V}[1,9]=\max \left(\mathrm{V}[0,9], \mathrm{v}_{1}+\mathrm{V}\left[0,9-\mathrm{w}_{1}\right]\right)\);
\[
=\max (\mathrm{V}[0,9], 10+\mathrm{V}[0,9-5])
\]
\[
=\max (\mathrm{V}[0,7], 10+\mathrm{V}[0,4])
\]
\[
=\max (0,10+0)=\max (0,10)=10
\]
\(\operatorname{Keep}(1,9)=1\)
- \(\mathrm{V}[1,10]=\max \left(\mathrm{V}[0,10], \mathrm{v}_{1}+\mathrm{V}\left[0,10-\mathrm{w}_{1}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[0,10], 10+\mathrm{V}[0,10-5]) \\
& =\max (\mathrm{V}[0,10], 10+\mathrm{V}[0,5]) \\
& =\max (0,10+0)=\max (0,10)=10
\end{aligned}
\]
\(\operatorname{Keep}(1,10)=1 ;\)
- \(\mathrm{V}[2,1]=0\);
- \(\mathrm{V}[2,2]=0\);
- \(\mathrm{V}[2,3]=0\);
- \(\mathrm{V}[2,4]=\max \left(\mathrm{V}[1,4], \mathrm{v}_{2}+\mathrm{V}\left[1,4-\mathrm{w}_{2}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[1,4], 40+\mathrm{V}[1,4-4]) \\
& =\max (\mathrm{V}[1,4], 40+\mathrm{V}[1,0]) \\
& =\max (0,40+0)=\max (0,40)=40
\end{aligned}
\]
\(\operatorname{Keep}(2,4)=1\)
\begin{tabular}{|l|l|l|l|l|}
\hline l & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{~W}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
- \(\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[i-1, \mathrm{j}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right)\right.\) );
- \(\mathrm{V}[2,5]=\max \left(\mathrm{V}[1,5], \mathrm{v}_{2}+\mathrm{V}\left[1,5-\mathrm{w}_{2}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[1,5], 40+\mathrm{V}[1,5-4]) \\
& =\max (\mathrm{V}[1,5], 40+\mathrm{V}[1,1]) \\
& =\max (10,40+0)=\max (0,40)=40
\end{aligned}
\]
\(\operatorname{Keep}(2,5)=1\)
- \(\mathrm{V}[2,6]=\max \left(\mathrm{V}[1,6], \mathrm{v}_{2}+\mathrm{V}\left[1,6-\mathrm{w}_{2}\right]\right)\);
\(=\max (\mathrm{V}[1,6], 40+\mathrm{V}[1,6-4])\)
\(=\max (\mathrm{V}[1,6], 40+\mathrm{V}[1,2])\)
\(=\max (10,40+0)=\max (10,40)=40\)
- \(\mathrm{V}[2,7]=\max \left(\mathrm{V}[1,7], \mathrm{V}_{2}+\mathrm{V}\left[1,7-\mathrm{w}_{2}\right]\right)\);
\(=\max (\mathrm{V}[1,7], 40+\mathrm{V}[1,7-4])\)
\(=\max (\mathrm{V}[1,7], 40+\mathrm{V}[1,2])\)
\(=\max (10,40+0)=\max (10,40)=40\)
- \(\mathrm{V}[2,8]=\max \left(\mathrm{V}[1,8], \mathrm{v}_{2}+\mathrm{V}\left[1,8-\mathrm{w}_{2}\right]\right)\);
\(=\max (\mathrm{V}[1,8], 40+\mathrm{V}[1,8-4])\)
\(=\max (\mathrm{V}[1,8], 40+\mathrm{V}[1,4])\)
\(=\max (10,40+0)=\max (10,40)=40\)
- \(\mathrm{V}[2,9]=\max \left(\mathrm{V}[1,9], \mathrm{v}_{2}+\mathrm{V}\left[1,9-\mathrm{w}_{2}\right]\right)\);
\(=\max (\mathrm{V}[1,9], 40+\mathrm{V}[1,9-4])\)
\(=\max (\mathrm{V}[1,9], 40+\mathrm{V}[1,5])\)
\(=\max (10,40+10)=\max (10,50)=50\)
- \(\mathrm{V}[2,10]=\max \left(\mathrm{V}[1,10], \mathrm{V}_{2}+\mathrm{V}\left[1,10-\mathrm{w}_{2}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[1,10], 40+\mathrm{V}[1,10-4]) \\
& =\max (\mathrm{V}[1,10], 40+\mathrm{V}[1,6]) \\
& =\max (10,40+10)=\max (10,50)=50
\end{aligned}
\]
- \(\mathrm{V}[3,1]=0\);
- \(\mathrm{V}[3,2]=0\);
- \(\mathrm{V}[3,3]=0\);
- \(\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[i-1, j], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right]\right)\);
- \(\mathrm{V}[3,4]=\max \left(\mathrm{V}[2,4], \mathrm{v}_{3}+\mathrm{V}\left[2,4-\mathrm{w}_{3}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[2,4], 30+\mathrm{V}[2,4-6]) \\
& =\max (\mathrm{V}[2,4], 30+\mathrm{V}[2,-2])=\mathrm{V}[2,4]=40
\end{aligned}
\]
\begin{tabular}{|l|l|l|l|l|}
\hline l & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{~W}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
- \(\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[i-1, \mathrm{j}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right)\right.\) );
- \(\mathrm{V}[3,5]=\max \left(\mathrm{V}[2,5], \mathrm{v}_{3}+\mathrm{V}\left[2,5-\mathrm{w}_{2}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[2,5], 30+\mathrm{V}[2,5-6]) \\
& =\max (\mathrm{V}[2,5], 30+\mathrm{V}[2,-1]) \\
& =\mathrm{V}[2,5]=40
\end{aligned}
\]
- \(\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[i-1, \mathrm{j}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right)\right.\) );
- \(\mathrm{V}[3,6]=\max \left(\mathrm{V}[2,6], \mathrm{v}_{3}+\mathrm{V}\left[2,6-\mathrm{w}_{3}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[2,6], 30+\mathrm{V}[2,6-6]) \\
& =\max (\mathrm{V}[2,6], 30+\mathrm{V}[2,0]) \\
& =\max (\mathrm{V}[2,6], 30+\mathrm{V}[2,0]) \\
& =\max (40,30)=40
\end{aligned}
\]
- \(\mathrm{V}[3,7]=\max \left(\mathrm{V}[2,7], \mathrm{v}_{3}+\mathrm{V}\left[2,7-\mathrm{w}_{3}\right]\right)\);
\[
=\max (\mathrm{V}[2,7], 30+\mathrm{V}[2,7-6])
\]
\[
=\max (\mathrm{V}[2,7], 30+\mathrm{V}[2,1])
\]
\[
=\max (\mathrm{V}[2,7], 30+\mathrm{V}[2,1])
\]
\[
=\max (40,30)=40
\]
- \(\mathrm{V}[3,8]=\max \left(\mathrm{V}[2,8], \mathrm{v}_{3}+\mathrm{V}\left[2,8-\mathrm{w}_{3}\right]\right)\);
\(=\max (\mathrm{V}[2,8], 30+\mathrm{V}[2,8-6])\)
\(=\max (\mathrm{V}[2,8], 30+\mathrm{V}[2,2])\)
\(=\max (\mathrm{V}[2,8], 30+\mathrm{V}[2,2])\)
\(=\max (40,30+0)=40\)
- \(\mathrm{V}[3,9]=\max \left(\mathrm{V}[2,9], \mathrm{v}_{3}+\mathrm{V}\left[2,9-\mathrm{w}_{3}\right]\right)\);
\(=\max (\mathrm{V}[2,9], 30+\mathrm{V}[2,9-6])\)
\(=\max (\mathrm{V}[2,9], 30+\mathrm{V}[2,3])\)
\(=\max (\mathrm{V}[2,9], 30+\mathrm{V}[2,3])\)
\(=\max (50,30+0)=50\)
- \(\mathrm{V}[3,10]=\max \left(\mathrm{V}[2,10], \mathrm{v}_{3}+\mathrm{V}\left[2,10-\mathrm{w}_{3}\right]\right)\);
\(=\max (\mathrm{V}[2,10], 30+\mathrm{V}[2,10-6])\)
\(=\max (\mathrm{V}[2,10], 30+\mathrm{V}[2,4])\)
\(=\max (\mathrm{V}[2,10], 30+\mathrm{V}[2,4])\)
\(=\max (50,30+40)=70\)
\begin{tabular}{|l|l|l|l|l|}
\hline I & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{~W}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
- \(\mathrm{V}[4,1]=0\);
- \(\mathrm{V}[4,2]=0\);
- \(V[i, j]=\max \left(V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right)\);
- \(\mathrm{V}[4,3]=\max \left(\mathrm{V}[3,3], \mathrm{v}_{4}+\mathrm{V}\left[3,3-\mathrm{w}_{4}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[3,3], 50+\mathrm{V}[3,3-3]) \\
& =\max (\mathrm{V}[3,3], 50+\mathrm{V}[3,3-3]) \\
& =\max (\mathrm{V}[3,3], 50+\mathrm{V}[3,0])=\max (0,50)=50
\end{aligned}
\]
- \(\mathrm{V}[4,4]=\max \left(\mathrm{V}[3,4], \mathrm{v}_{4}+\mathrm{V}\left[3,4-\mathrm{w}_{4}\right]\right)\);
\[
=\max (\mathrm{V}[3,4], 50+\mathrm{V}[3,4-3])
\]
\[
=\max (\mathrm{V}[3,4], 50+\mathrm{V}[3,4-3])
\]
\[
=\max (\mathrm{V}[3,4], 50+\mathrm{V}[3,1])
\]
\[
=\max (40,50)=50
\]
- \(\mathrm{V}[4,5]=\max \left(\mathrm{V}[3,5], \mathrm{V}_{4}+\mathrm{V}\left[3,5-\mathrm{w}_{4}\right]\right)\);
\[
=\max (\mathrm{V}[3,5], 50+\mathrm{V}[3,5-3])
\]
\[
=\max (\mathrm{V}[3,5], 50+\mathrm{V}[3,5-3])
\]
\[
=\max (\mathrm{V}[3,5], 50+\mathrm{V}[3,2])
\]
\[
=\max (40,50)=50
\]
- \(\mathrm{V}[4,6]=\max \left(\mathrm{V}[3,6], \mathrm{V}_{4}+\mathrm{V}\left[3,6-\mathrm{W}_{4}\right]\right)\);
\[
=\max (\mathrm{V}[3,6], 50+\mathrm{V}[3,6-3])
\]
\[
=\max (\mathrm{V}[3,6], 50+\mathrm{V}[3,6-3])
\]
\[
=\max (\mathrm{V}[3,6], 50+\mathrm{V}[3,3])
\]
\[
=\max (40,50)=50
\]
- \(\mathrm{V}[4,7]=\max \left(\mathrm{V}[3,7], \mathrm{V}_{4}+\mathrm{V}\left[3,7-\mathrm{W}_{4}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[3,7], 50+\mathrm{V}[3,7-3]) \\
& =\max (\mathrm{V}[3,7], 50+\mathrm{V}[3,7-3]) \\
& =\max (\mathrm{V}[3,7], 50+\mathrm{V}[3,4]) \\
& =\max (40,50+40)=90
\end{aligned}
\]
- \(\mathrm{V}[4,8]=\max \left(\mathrm{V}[3,8], \mathrm{V}_{4}+\mathrm{V}\left[3,8-\mathrm{w}_{4}\right]\right)\);
\(=\max (\mathrm{V}[3,8], 50+\mathrm{V}[3,8-3])\)
\(=\max (\mathrm{V}[3,8], 50+\mathrm{V}[3,8-3])\)
\(=\max (\mathrm{V}[3,8], 50+\mathrm{V}[3,5])\)
\(=\max (40,50+40)=90\)
\begin{tabular}{|l|l|l|l|l|}
\hline i & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{w}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
- \(V[i, j]=\max \left(V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right)\);
- \(\mathrm{V}[4,9]=\max \left(\mathrm{V}[3,9], \mathrm{v}_{4}+\mathrm{V}\left[3,9-\mathrm{w}_{4}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[3,9], 50+\mathrm{V}[3,9-3]) \\
& =\max (\mathrm{V}[3,9], 50+\mathrm{V}[3,9-3]) \\
& =\max (\mathrm{V}[3,9], 50+\mathrm{V}[3,6]) \\
& =\max (50,50+40)=90
\end{aligned}
\]
- \(\mathrm{V}[4,10]=\max \left(\mathrm{V}[3,10], \mathrm{V}_{4}+\mathrm{V}\left[3,10-\mathrm{w}_{4}\right]\right)\);
\[
\begin{aligned}
& =\max (\mathrm{V}[3,10], 50+\mathrm{V}[3,10-3]) \\
& =\max (\mathrm{V}[3,10], 50+\mathrm{V}[3,10-3]) \\
& =\max (\mathrm{V}[3,10], 50+\mathrm{V}[3,7]) \\
& =\max (70,50+40)=90 ; \text { Keep }(4,10)=1
\end{aligned}
\]

Lecture No. 20

\section*{0-1 Knapsack Problem's Algorithm (using Dynamic Programming) \& Optimal Weight Triangulation}

\section*{Today Covered}
- 0-1 knapsack problem
- Algorithm
- Generalizations and variations of the Problem
- Optimal Weight Triangulation
- Definitions
- Problem Analysis
- Dynamic Solution
- Algorithm using Dynamic Programming
- Time Complexity
- Conclusion

\section*{Optimal Value: Entire Solution}

Let \(\mathrm{W}=10\)
Final Solution: V[4, 10] = 90
Items selected \(=\{2,4)\)
\begin{tabular}{|l|l|l|l|l|}
\hline I & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{~V}_{\mathrm{i}}\) & 10 & 40 & 30 & 50 \\
\hline \(\mathrm{~W}_{\mathrm{j}}\) & 5 & 4 & 6 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{V}[\mathrm{i}, \mathrm{w}]\) & \(\mathrm{W}=0\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \(\mathrm{i}=0\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{i}=1\) & 0 & 0 & 0 & 0 & 0 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline \(\mathrm{i}=2\) & 0 & 0 & 0 & 0 & 40 & 40 & 40 & 40 & 40 & 50 & 50 \\
\hline \(\mathrm{i}=3\) & 0 & 0 & 0 & 0 & 40 & 40 & 40 & 40 & 40 & 50 & 70 \\
\hline \(\mathrm{i}=4\) & 0 & 0 & 0 & 50 & 50 & 50 & 50 & 90 & 90 & 90 & 90 \\
\hline
\end{tabular}

\section*{Constructing Optimal Solution}
- \(V[i, j]=\max \left(V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right)\);
- \(\mathrm{i}=4 \quad \mathrm{~V}[4,10]=\max (70,50+40)=90\);
- \(\mathrm{i}=3 \quad \mathrm{~V}[3,10-3]=\mathrm{V}[3,7]=\max (40,30)=40\)
- \(i=2 \quad V[2,7]=\max (10,40)=40\)
\(\operatorname{Keep}(4,10)=1\)
- \(\mathrm{i}=1 \quad \mathrm{~V}[1,7-4]=\mathrm{V}[1,3]=0\)
\(\operatorname{Keep}(3,7)=0\)
\(\operatorname{Keep}(2,7)=1\)
\(\operatorname{Keep}(1,3)=0\)

\section*{Algorithm: Dynamic Programming}
```

KnapSack (v, w, n, W)
for ($\mathrm{i}=1$ to n), $\mathrm{V}[\mathrm{i}, 0]=0$;
for ($\mathrm{j}=0$ to W), $\mathrm{V}[0, \mathrm{j}]=0$;
for ($\mathrm{i}=1$ to n)
for $(\mathrm{j}=1$ to W$)$
if (w(i) § j)
$\mathrm{V}[\mathrm{i}, \mathrm{j}]=\max \left(\mathrm{V}[\mathrm{i}-1, \mathrm{j}], \mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{j}-\mathrm{w}_{\mathrm{i}}\right]\right)$;
else
$\mathrm{V}[\mathrm{i}, \mathrm{j}]=\mathrm{V}[\mathrm{i}-1, \mathrm{j}]$;
Return V[n, W]
Time Complexity O(n.W)

```

\section*{Output Elements: Knapsack Algorithm}

How do we use all values keep[i, w], to determine a subset \(S\) of items having the maximum value?
- If keep[n, w] is 1 , then \(n \in S\), and we can repeat for \(\quad\) keep \(\left[n-1, W-w_{n}\right]\)
- If keep[n, w] is 0 , then \(n \pi S\) and we can repeat for keep[n-1, W]
- Following is a partial program for this output elements
\[
\begin{aligned}
& \mathrm{K}=\mathrm{W} ; \\
& \text { for }(\mathrm{i}=\mathrm{n} \text { down to } 1) \\
& \text { if keep }[\mathrm{i}, \mathrm{~K}]==1 \\
& \qquad \begin{array}{l}
\text { output } \mathrm{i} \\
\mathrm{~K}=\mathrm{K}-\mathrm{w}_{\mathrm{i}}
\end{array}
\end{aligned}
\]

\section*{Complete: Dynamic Programming Algorithm}

KnapSack(v, w, n, W)
for \((w=0\) to \(W), V[0, w]=0\); for \((i=1\) to \(n), V[i, 0]=0\);
for ( \(\mathrm{i}=1\) to n )
\[
\text { for }(w=1 \text { to } W)
\]
\[
\text { if }\left((w(i) \leqq w) \text { and }\left(v_{i}+V\left[i-1, w-w_{i}\right]>V[i-1, w]\right)\right)
\]
\(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\left(\mathrm{v}_{\mathrm{i}}+\mathrm{V}\left[\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}}\right]\right.\);
keep[i, w] = 1;
else
\(\mathrm{V}[\mathrm{i}, \mathrm{w}]=\mathrm{V}[\mathrm{i}-1, \mathrm{w}]\);
keep[i, w] = 0;
\(\mathrm{K}=\mathrm{W}\);
\[
\begin{aligned}
& \text { for }(\mathrm{i}=\mathrm{n} \text { down to } 1) \\
& \text { if keep }[\mathrm{i}, \mathrm{~K}]==1 \\
& \text { output } \mathrm{i} \\
& \mathrm{~K}=\mathrm{K}-\mathrm{w}_{\mathrm{i}}
\end{aligned}
\]

Return V[n, W]
1. Generalizations ( \(x_{i} \in\{0,1\}\) )
- Common to all versions are a set of \(n\) items, with each item \(1 \leq j \leq n\) having an associated profit \(p_{j}\) and weight \(w_{j}\).
- The objective is to pick some of the items, with maximal total profit, obeying that maximum total weight limit W .
- Generally, coefficients are scaled to become integers, and they are almost always assumed to be positive.
- The knapsack problem in its most basic form:
- Maximize \(\sum_{i=1}^{n} p_{i} x_{i} \quad\) subject to \(\sum_{i=1}^{n} w_{i} x_{i} \leq W\)
- \(x_{i} \in\{0,1\}, \forall 1 \leq i \leq n\)

\section*{2. Specialization (weight = profit)}
- If for each item the profit and weight are identical, we get the subset sum problem
- Often called the decision problem
- Maximize \(\sum_{i=1}^{n} p_{i} x_{i} \quad\) subject to \(\sum_{i=1}^{n} p_{i} x_{i} \leq W\)
- \(\mathrm{x}_{\mathrm{i}} \in\{0,1\}, \forall 1 \leq \mathrm{i} \leq \mathrm{n}\)

\section*{3. Generalizations (more than one objects)}
- If each item can be chosen multiple times, we get the bounded knapsack problem.
- Suppose, weight of each item is at least 1 unit, then we can never choose an item more than W times.
- This is another variation in the basic form
- Now the problem will become
- Maximize \(\sum_{i=1}^{n} p_{i} x_{i} \quad\) subject to \(\sum_{i=1}^{n} w_{i} x_{i} \leq W\)
- \(\mathrm{x}_{\mathrm{i}} \in\{0,1, \ldots, \mathrm{~W}\}, \forall 1 \leq \mathrm{i} \leq \mathrm{n}\)

\section*{4. Generalizations (K Classes)}
- If the items are subdivided into \(k\) classes denoted \(\mathrm{N}_{\mathrm{i}}\)
- And exactly one item must be taken from each class
- We get the multiple choice knapsack problem
- In this case our optimized mathematical model is
- Maximize \(\sum_{i=1}^{k} \sum_{j \in N_{i}} p_{i j} x_{i j}\)
- subject to \(\sum_{i=1}^{n} \sum_{j \in N_{i}} w_{i j} x_{i j} \leq W \quad\) where \(\sum_{j \in N_{\mathrm{i}}} \mathrm{x}_{\mathrm{ij}}=1\)
- \(\forall 1 \leq i \leq k\)
- \(\mathrm{x}_{\mathrm{ij}} \in\{0,1\}, \forall 1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{j} \in \mathrm{N}_{\mathrm{i}}\)

\section*{5. Generalizations (more than one knapsacks)}
- If there are n items, m knapsacks with capacities \(\mathrm{W}_{\mathrm{i}}\)
- We get the multiple knapsack problem
- Maximize \(\sum_{i=1}^{m} \sum_{j=1}^{n} p_{j} x_{i j}\)
- subject to \(\sum_{j=1}^{n} w_{j} x_{i j} \leq W_{i} \quad 1 \leq \mathrm{i} \leq \mathrm{m}\)
- \(\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{ij}}=1 \quad 1 \leq \mathrm{i} \leq \mathrm{n} \quad 1 \leq \mathrm{j} \leq \mathrm{n}\)
- \(\mathrm{x}_{\mathrm{ij}} \in\{0,1\}, 1 \leq \mathrm{i} \leq \mathrm{m}\) and \(1 \leq \mathrm{j} \leq \mathrm{n}\)

\section*{6. Item's Different Weight in Different Knapsack}
- If in the multiple knapsack problem, the weights are not the same in every container
- We are allowed to choose each item multiple times, we get multiple constrained knapsack problem
- Maximize \(\sum_{j=1}^{n} p_{j} x_{j}\)
- subject to \(\sum_{j=1}^{n} w_{i j} x_{j} \leq W_{i} \quad 1 \leq \mathrm{i} \leq \mathrm{m}\)
- \(\mathrm{x}_{\mathrm{j}} \geq 0, x_{\mathrm{j}} \in Z\)

\section*{Optimal Weight Triangulation}

Why Polygon Triangulation?
- Finite element method is a technique for solving numerical problems e.g. stress or heat flow simulations of any kind of systems
- It involves dividing a shape into simple elements for example triangles
- Then formulating a set of linear equations describing relations between simulated quantities in each element, and solving these equations.
- The time and accuracy both, in solution, depend on the quality of dividing into triangles
- Generally, it is desired that triangles must be as close to equilateral as possible

Similarity: Optimal Polygon Triangulation, other Problem
- Optimal triangulation problem is very similar to matrix chain multiplication
- It is an excellent approach to make one to one corresponding between two problems and
- Then solving one problem based on the approach already used in the solution of the other problem
- This is what we are going to do in solving an optimal solution of the triangulation problem which is very popular in computational geometry
- Applications of this problem can be observed in many other areas where division of structures is required before performing computation over it.

\section*{Basic Concepts}
- Polygon: A set of finite piecewise-linear, closed curve in a plane is called a polygon
- Sides: The pieces of the polygon are called its sides
- Vertex: A point joining two consecutive sides is called a vertex
- Interior: Set of points in plane enclosed by a simple polygon forms interior of the polygon
- Boundary: The set of point on the polygon forms its boundary
- Exterior: The set of points surrounding the polygon form its exterior
- Simple Polygon: A polygon is simple if it does not cross itself, i.e., if its sides do not intersect one another except for two consecutive sides sharing a common vertex.
- Subdivision of Polygon: A simple polygon subdivides the plane into its interior, its boundary and it's exterior.
- Convex Polygon: A simple polygon is convex if given any two points on its boundary or in its interior all points on the line segment drawn between them are contained in the polygon's boundary or interior.

\section*{Polygons}


Polygon


Simple Polygon


Simple Polygon


Convex Polygons

\section*{Labeling Convex Polygons}
- For a convex polygon, it is assumed that its vertices are labeled in counterclockwise order
\(P=\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\rangle\).
- We assume that indexing is done modulo n , so \(\quad v_{0}=v_{n}\) and the above polygon P has n number of vertices


\section*{Chords in Polygons}
- Given two non-adjacent vertices \(v_{i}, v_{j}\) of a convex polygon ( \(i<j\) ), the line segment \(v_{i} v_{j}\) is called a chord
- For two non-adjacent vertices \(v_{i}\) and \(v_{j}\) of a simple polygon ( \(i<j\) ), line segment \(v_{i} v_{j}\) is a chord if interior of the segment lies entirely in the interior of polygon
- Any chord subdivides a polygon into two polygons


\section*{Optimal Weight Triangulation Problem}
- A triangulation of a convex polygon is a maximal set T of pair-wise non-crossing chords, i.e., every chord not in T intersects the interior of some chord in T
- It is easy to see that such a set subdivides interior of polygon into a collection of triangles, pair-wise disjoint

Problem Statement: Given a convex polygon, determine a triangulation that minimizes sum of the perimeters of its triangles

\section*{Analysis}
- Given three distinct vertices, \(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\) and \(\mathrm{v}_{\mathrm{k}}\).
- Define a weight of associated triangle by a function \(w\left(v_{i}, v_{j}, v_{k}\right)=\left|v_{i} v_{j}\right|+\left|v_{j} v_{k}\right|+\left|v_{k} v_{i}\right|\),
- where \(\left|\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right|\) denotes length of line segment \(\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)\).

\section*{Brute Force Triangulation: Triangulation}
- In general, given a convex polygon, there are exponential number of possible triangulations.
- There are many criteria that are used depending on application. For example, you have to minimize the value of cable in designing such triangulation
- This suggests the optimal solution to this problem


\section*{Triangulation}


\section*{Dual Graphs}
- Dual graph of a triangulation is a graph whose vertices are the triangles, and in which two vertices are adjacent if the corresponding both triangles share a common chord
- It is to be noted that dual graph is a tree. And hence algorithms for traversing trees can be used for traversing the triangles of that triangulation


Dual Graph


\section*{Observations in Dual Graph}
- Each internal node corresponds to one triangle
- Each edge between internal nodes corresponds to one chord of triangulation.
- Now for given n-vertex polygon
- n -2 internal nodes which are in fact triangles and

- n-3 edges which are chords

\section*{Lemma 1}
- A triangulation of a simple polygon, with \(n\) vertices, has \(n-2\) number of triangles.

Proof:
Proof is done using mathematical induction

\section*{Basis Step}
- Suppose that there three vertices, polygon will be a triangle, i.e. there are 3-2=1 number of triangles
- Hence statement is true for \(\mathrm{n}=3\)
- If there are 4 vertices, polygon will be in fact a rectangle, divide it into two triangles. The result is true. Hence statement is true for \(n=4\)

\section*{Inductive Hypothesis}
- Let us suppose that statement is true for \(\mathrm{n}=\mathrm{k}\), i.e., if there are k vertices then there are \(\mathrm{k}-2\) number of triangles

Claim
- Now we have to prove that if there are \(k+1\) vertices there must be \(k+1-2=k-1\), number of triangles.
- Since for \(k\) vertices there are k-2 triangles. Insert one more point at boundary of polygon
- In fact point will be inserted at boundary of one of the triangles. So the triangle will become rectangle. Divide it into two triangles. It will increase one more triangle in the division. Hence it becomes; \(k-2+1=k-1\), number of triangles.
- It proves the claim. Hence by mathematical induction it proves that for \(n\) number of vertices there are \(\mathrm{n}-2\) number of triangles.

\section*{Lemma 2}
- A triangulation of a simple polygon, with n vertices, has \(\mathrm{n}-3\) chords.

Proof
- Proof not difficult, and it can be proved following the steps of proof in lemma 1.
- If there are three points, it will be triangle. To make a chord in a polygon, it requires at least four points.
- So you have to give proof for \(\mathrm{n} \geq 4\).

\section*{Basis Step}
- Suppose that there are four number of vertices, in this case polygon will be a rectangle, there must be 4-3=1 number of chords
- Hence statement is true for \(\mathrm{n}=4\)

\section*{Inductive Hypothesis}
- Let us suppose that the statement is true for \(n=k\), i.e., if there are \(k\) vertices then there are k - 3 number of chords of the polygon

Claim
- Now we have to prove that if there are \(k+1\) vertices there must be \(k+1-3=k-2\), number of chords.
- Since for \(k\) vertices there are k-3 chords. Insert one more point at boundary of polygon
- In fact point will be inserted at boundary of one of the triangles. So the triangle will become rectangle. Divide it into two triangles. It will increase one more chord in the division. Hence it becomes;
\(k-3+1=k-2\), number of chords. Proved.

\section*{Correspondence to Binary Trees}
- Relationship between optimal triangulation and chain matrix multiplication problem

- In chain matrix multiplication, associated binary tree is the evaluation tree for the multiplication, where the leaves of the tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or more matrices.
- Now let us consider an ( \(n+1\) ) sided convex polygon, \(P=\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle\) and fix one side of it as ( \(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}\) )
- Consider a rooted binary tree whose:
- root node \(=\) is the triangle containing side \(\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}\right)\),
- internal nodes = are nodes of the dual tree, and
- leaves = are remaining sides of the tree.
- This partitioning of polygon is equivalent to a binary tree with \(\mathrm{n}-1\) leaves, and vice versa.

\section*{Dynamic Programming Solution}
- Let \(t[i, j]=\) minimum weight triangulation for the sub-polygon \(\left\langle v_{i-1}, v_{i}, \ldots, v_{j}\right\rangle\), for \(1 \leq i \leq j \leq n\)
- We have start with \(v_{i-1}\) rather than \(v_{i}\), to keep the structure as similar as matrix chain multiplication
- It is to be noted that if we can compute \(t[i, j]\) for all \(i\) and \(j(1 \leq i \leq j \leq n)\), then the weight of minimum weight triangulation of the entire polygon will be \(t[1, n]\). Hence it is our objective function.
- For the base case \(t[i, i]=0\), for line \(\left(v_{i-1}, v_{i}\right)\).

\section*{Optimal Substructure}
- t[i, j] = weight of an optimal triangulation of polygon \(<v_{i}\).
\({ }_{1}, \mathrm{~V}_{\mathrm{i}}, \ldots, \mathrm{V}_{\mathrm{j}}>\).
- \(t[i, j]=\min _{k}\left\{t[i, k]+t[k+1, j]+w\left(\Delta v_{i-1}\right.\right.\)
\(\left.\left.\mathrm{v}_{\mathrm{k}} \mathrm{v}_{\mathrm{j}}\right)\right\}, \mathrm{i}<\mathrm{j}\)
- \(t[i, i]=0\)
- \(\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}-1\)
- In general, to compute t[i, j], consider the sub-polygon \(<\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}, \ldots\), \(v_{j}>\), where \(\mathrm{i} \leq \mathrm{j}\).

- One of the chords of this polygon is the side \(\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{j}}\right)\).
- We may split this sub-polygon by introducing a triangle whose base is this chord, and whose third vertex is any vertex \(v_{k}\), where \(\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}-1\).
- This subdivides the polygon into 2 sub-polygons \(\left\langle v_{i-1}, \ldots v_{k}\right\rangle\) and \(\left\langle v_{k+1}, \ldots v_{j}\right\rangle\), whose minimum weights are \(t[i, k]\) and \(t[k+1, j]\).
- It leads to following recursive rule computing t[i, j]
\(-\quad t[i, i]=0\)
\(-t[i, j]=\min _{i \leq k \leq j-1}\left(t[i, k]+t[k+1, j]+w\left(v_{i-1} v_{k} v_{j}\right)\right)\) for \(i<j\)

\section*{Algorithm}
\(t[i, j]=\min _{i<k<j}\left(t[i, k]+t[k, j]+w\left(v_{i} v_{j} v_{k}\right)\right) \quad\) if \(i<j ;\)
\(t[i, j]=0\) if \(i=j\).
function min_weight_tri( \(\mathrm{p}[\mathrm{]}, \mathrm{n}\) )
1. for \(\mathrm{i} \equiv 1\) to n do
2. \(t[i, i] \equiv 0\);
3. for I \(\equiv 2\) to n do
4. for \(\mathrm{i} \equiv 1\) to \(\mathrm{n}-\mathrm{l}+1\) do
5. \(\quad j \equiv i+l-1\);
6. \(t[i, j] \equiv \infty\);
7. for \(\mathrm{k} \equiv \mathrm{i}\) to \(\mathrm{j}-1\) do
8. \(q \equiv t[i, k]+t[k+1, j]+w\left(v_{i} v_{j} v_{k}\right)\);
9. if \((q<t[i, j])\) then
10. \(t[i, j] \equiv \min (t[i, j], q)\);
11. \(v[i, j] \equiv k\);
12. return( \(\mathrm{t}(1, \mathrm{n})\) );
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{T}[1,1]\) & \(\mathrm{T}[1,2]\) & \(\ldots \ldots \ldots\) & \(\mathrm{T}[1, \mathrm{n}]\) \\
& \(\mathrm{T}[2,2]\) & \(\ldots \ldots \ldots\) & \(\mathrm{T}[2, \mathrm{n}]\) \\
\hline & & \(\ldots \ldots \ldots\) & \(\ldots \ldots \ldots\) \\
\hline & & & \(\mathrm{T}[\mathrm{n}, \mathrm{n}]\) \\
\hline
\end{tabular}

\section*{Computational Cost}
\[
\begin{aligned}
& T(n)=n+\sum_{i=1}^{n} \sum_{j=1+1}^{n}(j-i)=\sum_{i=1}^{n} \sum_{k=1}^{n-i} k \\
& T(n)=n+\sum_{i=1}^{n} \frac{(n-i)(n-i+1)}{2} \\
& T(n)=n+\frac{1}{2} \sum_{i=1}^{n}\left(n^{2}+n+1\right)-\frac{1}{2} \sum_{i=1}^{n}\left((1+2 n) i-i^{2}\right) \\
& =n+\frac{1}{2}\left(n^{2}+n+1\right) \sum_{i=1}^{n} 1-\frac{1}{2}(1+2 n) \sum_{i=1}^{n} i+\frac{1}{2} \sum_{i=1}^{n} i^{2} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
\]

\section*{Lecture No. 21}

\section*{Optimal Weight Triangulation}

\section*{Observations in Dual Graph}
- Each internal node corresponds to one triangle
- Each edge between internal nodes corresponds to one chord of triangulation.
- Now for given n-vertex polygon
- n -2 internal nodes which are in fact triangles and

- n-3 edges which are chords

\section*{Proof of Lemmas:}

\section*{Lemma 1:}
- A triangulation of a simple polygon, with \(n\) vertices, has \(n-2\) number of triangles.

Proof
- Proof is done using mathematical induction

\section*{Basis Step}
- Suppose that there three vertices, polygon will be a triangle, i.e. there are \(3-2=1\) number of triangles
- Hence statement is true for \(\mathrm{n}=3\)
- If there are 4 vertices, polygon will be in fact a rectangle, divide it into two triangles. The result is true. Hence statement is true for \(n=4\)

\section*{Inductive Hypothesis}
- Let us suppose that statement is true for \(\mathrm{n}=\mathrm{k}\), i.e., if there are k vertices then there are k -2 number of triangles

\section*{Claim}
- Now we have to prove that if there are \(k+1\) vertices there must be \(k+1-2=k-1\), number of triangles.
- Since for \(k\) vertices there are \(k-2\) triangles. Insert one more point at boundary of polygon
- In fact point will be inserted at boundary of one of the triangles. So the triangle will become rectangle. Divide it into two triangles. It will increase one more triangle in the division. Hence it becomes; \(\quad k-2+1=k-1\), number of triangles.
- It proves the claim. Hence by mathematical induction it proves that for \(n\) number of vertices there are \(\mathrm{n}-2\) number of triangles.

\section*{Lemma 2}
- A triangulation of a simple polygon, with n vertices, has \(\mathrm{n}-3\) chords.

Proof
- Proof not difficult and it can be proved following the steps of proof in lemma 1.
- If there are three points, it will be triangle. To make a chord in a polygon, it requires at least four points.
- So you have to give proof for \(\mathrm{n} \geq 4\).

\section*{Basis Step}
- Suppose that there are four number of vertices, in this case polygon will be a rectangle, there must be 4-3=1 number of chords
- Hence statement is true for \(\mathrm{n}=4\)

\section*{Inductive Hypothesis}
- Let us suppose that the statement is true for \(\mathrm{n}=\mathrm{k}\), i.e., if there are k vertices then there are k - 3 number of chords of the polygon
Claim
- Now we have to prove that if there are \(k+1\) vertices there must be \(k+1-3=k-2\), number of chords.
- Since for \(k\) vertices there are k-3 chords. Insert one more point at boundary of polygon
- In fact point will be inserted at boundary of one of the triangles. So the triangle will become rectangle. Divide it into two triangles. It will increase one more chord in the division. Hence it becomes; \(\quad k-3+1=k-2\), number of chords. Proved.

\section*{Correspondence to Binary Trees}

Relationship between optimal triangulation and chain matrix multiplication problem

- In chain matrix multiplication, associated binary tree is the evaluation tree for the multiplication, where the leaves of the tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or more matrices.
- Now let us consider an ( \(\mathrm{n}+1\) ) sided convex polygon, \(\mathrm{P}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\rangle\) and fix one side of it as ( \(\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{n}}\) )
- Consider a rooted binary tree whose:
- root node \(=\) is the triangle containing side \(\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{n}}\right)\),
- internal nodes = are nodes of the dual tree, and
- leaves = are remaining sides of the tree.
- This partitioning of polygon is equivalent to a binary tree with \(\mathrm{n}-1\) leaves, and vice versa.

\section*{Dynamic Programming Solution}
- Let \(t[i, j]=\) minimum weight triangulation for the sub-polygon \(\left\langle v_{i-1}, v_{i}, \ldots, v_{j}\right\rangle\), for \(1 \leq i \leq j \leq n\)
- We have start with \(v_{i-1}\) rather than \(v_{i}\), to keep the structure as similar as matrix chain multiplication
- It is to be noted that if we can compute \(t[i, j]\) for all \(i\) and \(j(1 \leq i \leq j \leq n)\), then the weight of minimum weight triangulation of the entire polygon will be \(t[1, n]\). Hence it is our objective function.
- For the base case \(t[i, i]=0\), for line \(\left(v_{i-1}, v_{i}\right)\).

\section*{Optimal Substructure}
- t[i, j] = weight of an optimal triangulation of polygon
\(\left\langle\mathrm{V}_{\mathrm{i}-1}, \mathrm{~V}_{\mathrm{i}}, \ldots, \mathrm{V}_{\mathrm{j}}\right\rangle\).
- \(t[i, j]=\min _{k}\{t[i, k]+t[k+1, j]\)
\[
\left.+w\left(\Delta v_{i-1} v_{k} v_{j}\right)\right\}, i<j
\]
- \(t[i, i]=0\)
- \(\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}-1\)
- In general, to compute t[i, j], consider the sub-polygon
\(\left\langle v_{i-1}, v_{i}, \ldots, v_{j}>\right.\), where \(\mathrm{i} \leq \mathrm{j}\).

- One of the chords of this polygon is the side ( \(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{j}}\) ).
- We may split this sub-polygon by introducing a triangle whose base is this chord, and whose third vertex is any vertex \(v_{k}\), where \(\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}-1\).
- This subdivides the polygon into 2 sub-polygons \(\left\langle\mathrm{v}_{\mathrm{i}-1}, \ldots \mathrm{v}_{\mathrm{k}}\right\rangle\) and \(\left\langle\mathrm{v}_{\mathrm{k}+1}, \ldots \mathrm{v}_{\mathrm{j}}\right\rangle\), whose minimum weights are \(t[i, k]\) and \(t[k+1, j]\).
- It leads to following recursive rule computing t[i, j]
- \(t[i, i]=0\)
- \(t[i, j]=\min _{i \leq k \leq j-1}\left(t[i, k]+t[k+1, j]+w\left(v_{i-1} v_{k} v_{j}\right)\right)\) for \(i<j\)

\section*{Algorithm}
\(t[i, j]=\min _{i<k<j}\left(t[i, k]+t[k, j]+w\left(v_{i} v_{j} v_{k}\right)\right) \quad\) if \(i<j ;\)
\(t[i, j]=0\) if \(i=j\).
function min_weight_tri(p[ ], n)
1. for \(\mathrm{i} \equiv 1\) to n do
2. \(t[i, i] \equiv 0\);
3. for I \(\equiv 2\) to n do
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{T}[1,1]\) & \(\mathrm{T}[1,2]\) & \(\ldots \ldots \ldots\). & \(\mathrm{T}[1, \mathrm{n}]\) \\
\hline & \(\mathrm{T}[2,2]\) & \(\ldots \ldots \ldots\) & \(\mathrm{T}[2, \mathrm{n}]\) \\
\hline & & \(\ldots \ldots \ldots\) & \(\ldots \ldots \ldots\) \\
\hline & & & \(\mathrm{T}[\mathrm{n}, \mathrm{n}]\) \\
\hline
\end{tabular}
4. for \(\mathrm{i} \equiv 1\) to \(\mathrm{n}-\mathrm{l}+1\) do
5. \(\quad \mathrm{j} \equiv \mathrm{i}+\mathrm{l}-1\);
6. \(\mathrm{t}[\mathrm{i}, \mathrm{j}] \equiv \infty\);
7. for \(\mathrm{k} \equiv \mathrm{i}\) to \(\mathrm{j}-1\) do
8. \(q \equiv t[i, k]+t[k+1, j]+w\left(v_{i} v_{j} v_{k}\right)\);
9. if \((q<t[i, j])\) then
10. \(t[i, j] \equiv \min (t[i, j], q)\);
11. \(v[i, j] \equiv k\);
12. return( \(\mathrm{t}(1, \mathrm{n})\) );

\section*{Computational Cost}
\[
\begin{aligned}
& T(n)=n+\sum_{i=1}^{n} \sum_{j=1+1}^{n}(j-i)=\sum_{i=1}^{n} \sum_{k=1}^{n-i} k \\
& T(n)=n+\sum_{i=1}^{n} \frac{(n-i)(n-i+1)}{2} \\
& T(n)=n+\frac{1}{2} \sum_{i=1}^{n}\left(n^{2}+n+1\right)-\frac{1}{2} \sum_{i=1}^{n}\left((1+2 n) i-i^{2}\right) \\
& =n+\frac{1}{2}\left(n^{2}+n+1\right) \sum_{i=1}^{n} 1-\frac{1}{2}(1+2 n) \sum_{i=1}^{n} i+\frac{1}{2} \sum_{i=1}^{n} i^{2} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
\]

\section*{Longest Common Subsequence Problem}

An Introduction
- In biological applications, we often want to compare the DNA of two (or more) different organisms.
- A part of DNA consists of a string of molecules called bases, where the possible bases are
- adenine,
- guanine,
- cytosine, and
- thymine.
- Represent each of the bases by their initial letters
- A part of DNA can be expressed as a string over the finite set \(\{A, C, G, T\}\).
- For example, the DNA of one organism may be

S1 = CCGGTCGAGTGCGCGGAAGCCGGCCGAA,
- While the DNA of another organism may be

S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.
- One goal of comparing two parts of DNA is to determine how "similar" two parts are, OR
- Measure of how closely related two organisms are.
- As we know that similarity is an ambiguous term and can be defined in many different ways.
- Here we give some ways of defining it with reference to this problem.

\section*{An Introduction: Similarity}
- For example, we can say that two DNA parts are similar if one is a substring of the other. In our case, neither S 1 nor S 2 is a substring of the other. This will be discussed in string matching.
- Alternatively, we could say two parts are similar if changes needed to turn one to other is small.
- Another way to measure similarity is by finding third part S3 in which bases in S3 appear in both S1, S2
- Bases must preserve order, may not consecutively.
- Longer S3 we can find, more similar S1 and S2 are.
- In above, S3 is GTCGTCGGAAGCCGGCCGAA

\section*{What is a Subsequence?}
- In mathematics, a subsequence of some sequence is a new sequence which is formed from original one by deleting some elements without disturbing the relative positions of the remaining elements.

\section*{Examples:}
- <B,C,D,B > is a subsequence of < A,C,B,D,E,G,C,E,D,B,G > , with corresponding index sequence \(<3,7,9,10>\).
- < D, E, E, B > is also a subsequence of the same < A,C,B,D,E,G,C,E,D,B,G > , with corresponding index sequence \(<4,5,8,10>\).

\section*{Longest Common Subsequence}
- The sequence \(Z=(B, C, A)\) is a subsequence of
\[
X=(A, B, C, B, D, A, B) .
\]
- The sequence \(Z=(B, C, A)\) is also a subsequence of
\[
Y=(B, D, C, A, B, A) .
\]
- Of course, it is a common subsequence of \(X\) and \(Y\).
- But the above sequence is not a longest common subsequence
- This is because the sequence \(Z^{\prime}=(B, D, A, B)\) is a longer subsequence of \(X=(A, B, C, B, D, A, B)\) and \(Y=(B, D, C, A, B, A)\)

\section*{Problem}

Statement:
- In the longest-common-subsequence (LCS) problem, we are given two sequences
\[
\begin{aligned}
& X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \text { and } \\
& Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}>\right.
\end{aligned}
\]
- And our objective is to find a maximum-length common subsequence of \(X\) and \(Y\).

Note:
- This LCS problem can be solved using brute force approach as well but using dynamic programming it will be solved more efficiently.

\section*{Brute Force Approach}
- First we enumerate all the subsequences of \(X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle\).
- There will be \(2^{m}\) such subsequences.
- Then we check if a subsequence of \(X\) is also a subsequence of \(Y\).
- In this way, we can compute all the common subsequences of \(X\) and \(Y\).
- Certainly, this approach requires exponential time, making it impractical for long sequences.
Note:
- Because this problem has an optimal sub-structure property, and hence can be solved using approach of dynamic programming

\section*{Dynamic Programming Solution}

Towards Optimal Substructure of LCS: Prefixes
- As we shall see, the natural classes of sub-problems correspond to pairs of "prefixes" of the two input sequences.
- To be precise, given a sequence \(X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle\), we define the ith prefix of \(X\), for \(i=\) \(0,1, \ldots, m\), as \(X_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle\).

Examples,
If \(X=<A, B, C, B, D, A, B>\) then
- \(X_{4}=<A, B, C, B>\) and
- \(X_{0}\) is the empty sequence \(=<>\)

\section*{Theorem:}
- If \(X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)\), and \(Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) be sequences and let us suppose that \(Z=\) \(\left(z_{1}, z_{2}, \ldots, z_{k}\right)\) be a longest common sub-sequence of \(X\) and \(Y\)
- Let, \(X_{i}=\left(x_{1}, x_{2}, \ldots, x_{i}\right), Y_{j}=\left(y_{1}, y_{2}, \ldots, y_{j}\right)\) and \(Z_{I}=\left(z_{1}, z_{2}, \ldots, z_{1}\right)\) are prefixes of \(X, Y\) and \(Z\) res.
1. if \(x_{m}=y_{n}\), then \(Z_{k}=x_{m}\) and \(Z_{k-1}\) is LCS of \(X_{m-1}, Y_{n-1}\).
2. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq x_{m}\) implies that \(Z\) is LCS of \(X_{m-1}\) and \(Y\)
3. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq y_{n}\) implies that \(Z\) is LCS of \(X\) and \(Y_{n-1}\)

\section*{Proof of Theorem}

\section*{Case 1}
- On contrary suppose that \(x_{m}=y_{n}\) but \(z_{k} \neq x_{m}\),
- Then we could append \(x_{m}=y_{n}\) to \(Z\) to obtain a common subsequence of \(X\) and \(Y\) of length \(k+1\), contradicting the supposition that \(Z\) is a LCS of \(X\) and \(Y\).
- Thus, we must have \(z_{k}=x_{m}=y_{n}\).
- Now, the prefix \(Z_{k-1}\) is a length-( \(k-1\) ) common subsequence of \(X_{m-1}\) and \(Y_{n-1}\).

Now we wish to show that it is an LCS.
- Suppose, there is a common subsequence \(W\) of \(X_{m-1} \& Y_{n-1}\) with length greater than \(k\) - 1
- Appending \(x_{m}=y_{n}\) to \(W\) gives common subsequence of \(X\) and \(Y\) whose length is greater than k , a contradiction.

\section*{Case 2}
- If \(Z_{k} \neq x_{m}\), then \(Z\) is a common subsequence of \(X_{m-1}\) and \(Y\).
- If there were a common subsequence \(W\) of \(X_{m-1}\) and \(Y\) with length greater than \(k\), then \(W\) would also be a common subsequence of \(X_{m}\) and \(Y\), contradicting the assumption that \(Z\) is an LCS of \(X\) and \(Y\).

\section*{Case 3}
- The proof is symmetric to (2).

\section*{Lecture No. 22}

Review Lectures 1-21

\section*{Lecture No 1: Model of Computation}
- Analysis independent of the variations in
- machine, operating system, language, compiler,
- We did not consider the low-level details
- We supposed our model to be an abstraction of a standard generic single-processor machine, called a random access machine RAM, an idealized machine
- infinitely large random-access memory,
- instructions execute sequentially
- Every instruction is in fact a basic operation on two values in machine's memory which takes unit time.

Drawbacks in Model of Computation
- We assumed each basic operation takes constant time i.e. adding, multiplying, comparing etc. of two numbers of any length in constants time
- Addition of two numbers takes a unit time!
- not good because numbers may be arbitrarily
- Addition and multiplication both take unit time!
- Again very bad assumption

Finally what about Our Model?
- But with all these weaknesses, our model is not so bad because we have to give the comparison not the absolute analysis of any algorithm.

\section*{Lecture No 2: Mathematical Tools}

A Sequence of Mathematical Tools
- Sets
- Sequences
- Order pairs
- Cross Product

\section*{Lecture No 3: Logic and Proving Techniques}
- Propositional Logic
- Predicate Logic
- Proofs using
- Truth Tables
- Logical Equivalences
- Counter Example
- Contradiction
- Rule of Inference

\section*{Lecture No 4 \& 5: Mathematical Induction}

Claim: \(\mathrm{P}(\mathrm{n})\) is true for all \(\mathrm{n} \in \mathrm{Z}^{+}\), for \(\mathrm{n} \geq \mathrm{n}_{0}\)
1. Basis
- Show formula is true when \(\mathrm{n}=\mathrm{n}_{0}\)
2. Inductive hypothesis
- Assume formula is true for an arbitrary \(n=k\), where, \(k \in Z^{+}\)and \(k \geq n_{0}\)
3. To Prove Claim
- Show that formula is then true for \(k+1\)

Note: In fact we have to prove
1) \(P\left(n_{0}\right)\) and
2) \(P(k) \Rightarrow P(k+1)\)

\section*{Mathematical Way of Expressing Induction}
- Basis step.

Show that proposition \(\mathrm{P}(1)\) is true.
- Inductive step.

Show that for every positive integer \(n\), the implication \(P(n) \rightarrow P(n+1)\) is true.
\(P(n)\) for a fixed \(n\) is called inductive hypothesis.
- \([\mathrm{P}(1) \wedge \forall \mathrm{n},(\mathrm{P}(\mathrm{n}) \rightarrow \mathrm{P}(\mathrm{n}+1))] \rightarrow \forall \mathrm{n}, \mathrm{P}(\mathrm{n})\)

\section*{Well Ordering and Modus Ponens Principal}

Definition (Well-Ordering Principle)
- The Well-ordering Principle is the following statement
- "every nonempty set of positive integers contains a least element"
- In a mathematical way we can define this Principle as:
there is \(a\) in \(S\) such that \(a \leq b\) for all \(b\) in \(S\) i.e.
\(\exists a \in S\), such that \(a \leq b, \forall b \in S\)
- And we say that set \(S\) is well-ordered with respect to \(\leq\).

Modus Ponens Principal
\[
\begin{aligned}
& p \Rightarrow q \\
& p
\end{aligned}
\]

Hence, q

\section*{Why Mathematical Induction is Valid?}
- Let's suppose that \(P(1)\) is true, and that \(\forall k(P(k) \rightarrow P(k+1))\) is also true,
- Claim: \(\forall \mathrm{n} P(\mathrm{n})\) is true
- Assume proposition \(\forall \mathrm{n}, \mathrm{P}(\mathrm{n})\) is false, i. e, there are some positive integers for which \(P(n)\) false.
- Let \(S\) be the set of those n's. By well-ordering property, \(S\) has a least element,
suppose, k .
- As \(1 \notin S\), so \(1<k\), so \(k-1\) is a positive
- Since \(k-1<k\), hence \(k-1 \notin S\). So \(P(k-1)\) is true.
- By modus ponens, \(P((k-1)+1)=P(k)\) is true.
- Contradiction, hence \(\forall \mathrm{n}, \mathrm{P}(\mathrm{n})\)

\section*{Another Reason for Validity}

Basis Step
First suppose that we have a proof
of \(P(0)\).
Inductive Hypothesis
\[
\forall \mathrm{k}>0, \quad \mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1)
\]

How it is proved \(\forall \mathrm{n}>0\),?
\[
P(0) \Rightarrow P(1)
\]
\(P(1) \Rightarrow P(2)\)
\(P(2) \Rightarrow P(3)\)

\section*{Strong Mathematical Induction}
- Let \(P(n)\) be a predicate defined for integers \(n\), and \(a\) and \(b\) are fixed integers with \(a \leq b\).
- Suppose the following statements are true:
1. \(P(a), P(a+1), \ldots, P(b)\) are all true
(basis step)
2. For any integer \(k>b\), if \(P(i)\) is true for all integers \(i\) with \(a \leq i<k\), then \(P(k)\) is true. (inductive step)
- Then \(P(n)\) is true for all integers \(n \geq a\).

\section*{Lecture No 6: Fibonacci Sequences}
- Start with a pair of rabbits, one male and one female, born on January 1. Assume that all months are of equal length and that rabbits begin to produce two months after their own birth. After reaching age of two months, each pair produces another mixed pair, one male and one female, then another mixed pair each month, and no rabbit dies.
How many pairs of rabbits will there be after one year?
- Construction of Mathematical Model
- Explicit Formula Computing Fibonacci Numbers
- Recursive Algorithms, Generalizations of Rabbits Problem and Constructing its Mathematical Models
- Applications of Fibonacci Sequences

\section*{Lecture 7, 8, \& 9: Recursion}
- Recursion? Recursive Mathematical Models
- Solving Recurrence Relations
- First and second Order Linear Homogenous Recurrences with Constant Coefficients its

\section*{Characteristics and Solution}
- General Homogenous Recurrences, Characteristics and solution
- Solution: General Homogenous Recurrence when
- Roots distinct, repeated, multiplicity of root is \(k\)
- many roots with different multiplicities
- Non-homogenous Recurrence Relations
- Characteristics and solution of various type of non-homogenous recurrence relations

\section*{Lecture 10 \& 11: Asymptotic Notations}
- Major Factors in Algorithms Design
- Complexity Analysis
- Growth of Functions
- Asymptotic Notations
- Usefulness of Notations
- Reflexivity, Symmetry, Transitivity Relations over \(\Theta, \Omega, \mathrm{O}, \omega\) and o
- Relation between \(\Theta, \Omega\) and \(O\)
- Various Examples Explaining each concept

\section*{Big-Oh Notation (O)}

If \(f, g: N \rightarrow R^{+}\), then we can define Big-Oh as
For a given function \(g(n) \geq 0\), denoted by \(\mathrm{O}(g(n))\) the set of functions,
\(\mathrm{O}(g(n))=\left\{f(n)\right.\) : there exist positive constants \(c\) and \(n_{o}\) such that
\(0 \leq f(n) \leq c g(n)\), for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\mathrm{O}(g(n))\) means function \(g(n)\) is an asymptotically upper bound for \(f(n)\).
We may write \(f(n)=O(g(n)) O R f(n) \in O(g(n))\)
Intuitively: Set of all functions whose rate of growth is the same as or lower than that of \(g(n)\).

\section*{Big-Omega Notation \((\Omega)\)}

If \(f, g: N \rightarrow R^{+}\), then we can define Big-Omega as
For a given function \(g(n)\) denote by \(\Omega(g(n))\) the set of functions,
\(\Omega(g(n))=\left\{f(n)\right.\) : there exist positive constants \(c\) and \(n_{o}\) such that
\(0 \leq c g(n) \leq f(n)\) for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\Omega(g(n))\), means that function \(g(n)\) is an asymptotically
lower bound for \(f(n)\).
We may write \(f(n)=\Omega(g(n))\) OR \(f(n) \in \Omega(g(n))\)
Intuitively: Set of all functions whose rate of growth is the same as or higher than that of \(\mathrm{g}(\mathrm{n})\).

\section*{Theta Notation \((\Theta)\)}

If \(f, g: N \rightarrow R^{+}\), then we can define Big-Theta as
For a given function \(g(n)\) denoted by \(\Theta(g(n))\) the set of functions,
\(\Theta(g(n))=\left\{f(n)\right.\) : there exist positive constants \(c_{1}, c_{2}\) and \(n_{o}\) such that
\(0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\) for all \(\left.n \geq n_{o}\right\}\)
\(f(n)=\Theta(g(n))\) means function \(f(n)\) is equal to \(g(n)\) to within a constant
factor, and \(g(n)\) is an asymptotically tight bound for \(f(n)\).
We may write \(\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))\) OR \(\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))\)
Intuitively: Set of all functions that have same rate of growth as \(\mathrm{g}(\mathrm{n})\).

\section*{Relations over Asymptotic Notations}

\section*{Reflexivity}
- All the relations, \(Q, W, O\), are reflexive
- Small o and small omega are not reflexive relations

Symmetry
- \(Q\) is symmetric.
- Big O, big omega \(\Omega\), little 0 , and little \(\omega\), do not satisfy the symmetry property.

Transitivity
- All complexity measuring notations \(\mathrm{Q}, \mathrm{W}, \mathrm{O}, \omega\) and \(o\) satisfy the transitive property.

\section*{Lecture 12 \&13: Brute Force Approach}

Brute Force Approach,
- Checking primality
- Sorting sequence of numbers
- Knapsack problem
- Closest pair in 2-D, 3-D and n-D
- Finding maximal points in n-D

\section*{Lecture 12 \&13: Brute Force Approach}

Brute Force Approach,
- Checking primality
- Sorting sequence of numbers
- Knapsack problem
- Closest pair in 2-D, 3-D and n-D
- Finding maximal points in n-D

\section*{Lecture 14: Divide and Conquer}

Divide and Conquer?
- Merge Sort algorithm
- Finding Maxima in 1-D, and 2-D
- Finding Closest Pair in 2-D

\section*{Lecture 15 \& 16:}

Dynamic Programming
- Optimizations problem?
- Steps in Development of Dynamic Algorithms
- Why dynamic in optimization problem?
- Chain-Matrix Multiplication
- Problem Analysis
- Brute Force approach
- Time Complexity
- Chain-Matrix Multiplication
- Using Dynamic
- Notations
- Dynamic Algorithm
- Time Complexity

\section*{Chain Matrix Multiplication}

Statement: The chain-matrix multiplication problem can be stated as below:
- Given a chain of \(\left[A_{1}, A_{2}, \ldots, A_{n}\right]\) of \(n\) matrices where for \(i=1,2, \ldots, n\), matrix \(A_{i}\) has dimension \(p_{i-1} \times p_{i}\), find the order of multiplication which minimizes the number of scalar multiplications.
Note:
- Order of \(A_{1}\) is \(p_{0} \times p_{1}\),
- Order of \(A_{2}\) is \(p_{1} \times p_{2}\),
- Order of \(A_{3}\) is \(p_{2} \times p_{3}\), etc.
- Order of \(A_{1} \times A_{2} \times A_{3}\) is \(p_{0} \times p_{3}\),
- Order of \(A_{1} \times A_{2} \times \ldots \times A_{n}\) is \(p_{0} \times p_{n}\)

\section*{Steps in Development of Dynamic Algorithms}
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Note: Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be omitted only if the value of an optimal solution is required.

Lecture 17 \& 18: Assembly Line Scheduling
- Assembly Line Scheduling Problem
- Problem Analysis
- Notations, Brute Force and Dynamic Solutions
- Algorithm using Dynamic Programming
- Time Complexity
- n -Line Assembly Problem
- n -Line Assembly Algorithm using Dynamic Programming
- Time Complexity
- Applications
- There are two assembly lines each with \(n\) stations
- The jth station on line \(i\) is denoted by \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line \(i\) taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the ( \(\mathrm{j}+1\) ) st station on either line
- There is no transfer cost if it stays on the same line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer to other line after station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- After exiting the nth station on a line, it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 and 2 to minimize total time through the factory.

\section*{Lecture 19 \& 20: 0-1 Knapsack Problem}
- 0-1 Knapsack Problem
- Problem Analysis
- Divide and Conquer
- Dynamic Solution
- Algorithm using Dynamic Programming
- Time Complexity
- Optimal Weight Triangulation
- Definitions, Problem Analysis
- Dynamic Solution
- Algorithm using Dynamic

Programming
- Time Complexity
- Conclusion
- Generalization, Variations and Applications

\section*{Lecture 21: Longest Common Subsequence}
- Longest Common sub-sequence problem
- Problem Analysis
- Brute Force approach
- Dynamic Solution
- Algorithm using Dynamic Programming

\section*{Mid-Term 2015 Exam Questions}
1. Chain Matrix using brute force
2. \(\mathrm{j}_{\mathrm{n}}=\mathrm{j}_{\mathrm{n}-2}\) solve the recurrence
3. Given a sequence [A1, A2, A3, A4]
[ \(A 1=10 \times 100],[A 2=100 \times 5],[A 3=5 \times 50][A 4=50 \times 20]\)
Compute the order of the product A1, A2, A3, A4 in such a way that minimizes the total number of scalar multiplications.
4. Let N be a set of natural numbers. Then <= (equal) is relations over N . Prove or disprove the < is reflexive, symmetric and transitive
5. Write algorithm to Closest Pair in 2-D using Divide and Conquer
6. Write algorithm to find line assembly scheduling DP pseudo code
7. 0-1 knapsack problem DP pseudo code
8. Write pseudo code of assembly line scheduling
9. Write knapsack for brute force algorithm
10. Write steps for divide and conquer with time complexity
11. Write assembly line dynamic algorithm
12. Use Dynamic Programming to find an optimal solution for the 0-1 Knapsack problem.
item weight value knapsack capacity \(\mathrm{W}=11\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline i & 1 & 2 & 3 & 4 & 5 \\
\hline \(\mathrm{v}_{\mathrm{i}}\) & 1 & 2 & 5 & 6 & 7 \\
\hline \(\mathrm{w}_{\mathrm{i}}\) & 1 & 6 & 18 & 22 & 28 \\
\hline
\end{tabular}

And write algorithm for it.
13. Prove that \(2 . n^{3}+3 . n+10 \in O\left(n^{4}\right)\)
14. Suppose sequence, \(b_{0}, b_{1}, b_{2}, \ldots\)., satisfies recurrence relation \(b_{k}=6 b_{k-1}-9 b_{k-2}\) \(\forall k \geq 2\) with condition initial condition: \(b_{0}=2\) and \(b_{1}=6\), then find explicit formula for \(b_{0}, b_{1}, b_{2}, \ldots\), using characteristic equation of the above recursion.
15. Show that any amount in cents \(\geq 20\) cents can be obtained using 5 cents and 6 cents coins only.
16. Use mathematical induction to prove sigma \(i=0\) to \(n(i]=n(n+1)(2 n+1) / 6\).
17. Write 2 line assembly algorithm
18. What is the Fibonacci sequence, write formula for it.
19. Sigma \(i=0\) to \(n(i)=n(n+1)(2 n+1) / 6\). Prove by mathematical induction
20. Write \(n\)-line assembly line algorithm
21. Write algorithm of 0-1 knapsack problem by brute force.
22. Write algorithm knapsack problem by dynamic programming.
23. Write algorithm of 2-dimension points.
24. N be a set of natural number < or = over relation prove or disprove ,symmetric ,transitive ,reflexive

Lecture No. 23
Longest Common Subsequence
(Dynamic Algorithm)
Optimal Binary Search Trees

\section*{Theorem: Optimal Substructure of an LCS}
- If \(X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)\), and \(Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) be sequences and let us suppose that \(Z=\) \(\left(z_{1}, z_{2}, \ldots, z_{k}\right)\) be a longest common sub-sequence of \(X\) and \(Y\)
1. if \(x_{m}=y_{n}\), then \(z_{k}=x_{m}\) and \(Z_{k-1}\) is LCS of \(X_{m-1}, Y_{n-1}\).
2. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq x_{m}\) implies that \(Z\) is LCS of \(X_{m-1}\) and \(Y\)
3. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq y_{n}\) implies that \(Z\) is LCS of \(X\) and \(Y_{n-1}\)
\[
c(i, j)= \begin{cases}0 & \text { if } \mathrm{i}=0 \mathrm{OR} \mathrm{j}=0 \\ c(i-1, j-1)+1 & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}} \\ \max (c(i-1, j), c(i, j-1)) & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}\end{cases}
\]

\section*{Problem}

If \(\mathrm{X}=<\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}, \mathrm{B}>\), and \(\mathrm{Y}=<\mathrm{B}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{A}>\) are two sequences then compute a maximum-length common subsequence of \(X\) and \(Y\).

Solution:
- Let \(\mathrm{c}(\mathrm{i}, \mathrm{j})=\) length of LCS of \(\mathrm{X}_{\mathrm{i}}\) and \(\mathrm{Y}_{\mathrm{j}}\), now we have to compute \(\mathrm{c}(7,6)\).
- The recursive mathematical formula computing LCS is given below
\[
c(i, j)= \begin{cases}0 & \text { if } \mathrm{i}=0 \text { OR } \mathrm{j}=0 \\ c(i-1, j-1)+1 & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}} \\ \max (c(i-1, j), c(i, j-1)) & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}\end{cases}
\]

If \(X=<A, B, C, B, D, A, B>, Y=<B, D, C, A, B, A>\)
- \(c(1,1)=\max (c(0,1), c(1,0))=\max (0,0)=0\)
- \(c(1,2)=\max (c(0,2), c(1,1))=\max (0,0)=0\)
- \(c(1,3)=\max (c(0,3), c(1,2))=\max (0,0)=0\)
- \(c(1,4)=c(0,3)+1=0+1=1\);
- \(c(1,5)=\max (c(0,5), c(1,4))=\max (0,1)=1\)
- \(c(1,6)=c(0,5)+1=0+1=1\);
- \(c(2,1)=c(1,0)+1=0+1=1\);
- \(c(2,2)=\max (c(1,2), c(2,1))=\max (0,1)=1\)
- \(c(2,3)=\max (c(1,3), c(2,2))=\max (0,1)=1\)
- \(c(2,4)=\max (c(1,4), c(2,3))=\max (1,1)=1\)
- \(c(2,5)=c(1,4)+1=1+1=2\);
\(\mathrm{b}[1,1]=\leftarrow\)
\(\mathrm{b}[1,2]=\leftarrow\)
\(\mathrm{b}[1,3]=\leftarrow\)
\(\mathrm{b}[1,4]=\nwarrow\)
\(\mathrm{b}[1,5]=\leftarrow\)
\(\mathrm{b}[1,6]=\nwarrow\)
- \(c(2,6)=\max (c(1,6), c(2,5))=\max (1,2)=2\)
\[
\begin{aligned}
& \mathrm{b}[2,1]=\nwarrow \\
& \mathrm{b}[2,2]=\leftarrow \\
& \mathrm{b}[2,3]=\leftarrow \\
& \mathrm{b}[2,4]=\leftarrow \\
& \mathrm{b}[2,5]=\nwarrow \\
& \mathrm{b}[2,6]=\leftarrow
\end{aligned}
\]

If \(X=<A, B, C, B, D, A, B>, Y=<B, D, C, A, B, A>\)
- \(c(3,1)=\max (c(2,1), c(3,0))=\max (1,0)=1\)
- \(c(3,2)=\max (c(2,2), c(3,1))=\max (1,1)=1\)
- \(c(3,3)=c(2,2)+1=1+1=2\);
- \(c(3,4)=\max (c(2,4), c(3,3))=\max (1,2)=2\)
- \(c(3,5)=\max (c(2,5), c(3,4))=\max (2,2)=2\)
- \(c(3,6)=\max (c(2,6), c(3,5))=\max (2,2)=2\)
- \(c(4,1)=c(3,0)+1=0+1=1\);
- \(c(4,2)=\max (c(3,2), c(4,1))=\max (1,1)=1\)
- \(c(4,3)=\max (c(3,3), c(4,2))=\max (2,1)=2\)
- \(c(4,4)=\max (c(3,4), c(4,3))=\max (2,2)=2\)
- \(c(4,5)=c(3,4)+1=2+1=3\);
- \(c(4,6)=\max (c(3,6), c(4,5))=\max (2,3)=3\)
- \(c(5,1)=\max (c(4,1), c(5,0))=\max (1,0)=1\)
- \(c(5,2)=c(4,1)+1=1+1=2\);
- \(c(5,3)=\max (c(4,3), c(5,2))=\max (2,2)=2\)
- \(c(5,4)=\max (c(4,4), c(5,3))=\max (2,2)=2\)
- \(c(5,5)=\max (c(4,5), c(5,4))=\max (3,2)=3\)
- \(c(5,6)=\max (c(4,6), c(5,5))=\max (3,3)=3\)
- \(c(6,1)=\max (c(5,1), c(6,0))=\max (1,0)=1\)
- \(c(6,2)=\max (c(5,2), c(6,1))=\max (2,1)=2\)
- \(c(6,3)=\max (c(5,3), c(6,2))=\max (2,2)=2\)
- \(c(6,4)=c(5,3)+1=2+1=3\);
- \(c(6,5)=\max (c(5,5), c(6,4))=\max (2,3)=3\)
- \(c(6,6)=c(5,5)+1=3+1=4\);
- \(c(7,1)=c(6,0)+1=0+1=1\);
- \(c(7,2)=\max (c(6,2), c(7,1))=\max (2,1)=2\)
- \(c(7,3)=\max (c(6,3), c(7,2))=\max (2,2)=2\)
- \(c(7,4)=\max (c(6,4), c(7,3))=\max (3,2)=3\)
- \(c(7,5)=c(6,4)+1=3+1=4\);
- \(c(7,6)=\max (c(6,6), c(7,5))=\max (4,4)=4\)
\(\mathrm{b}[3,1]=\leftarrow\)
\(\mathrm{b}[3,2]=\leftarrow\) \(\mathrm{b}[3,3]=\nwarrow\) \([3,4]=\leftarrow\) \(\mathrm{b}[3,5]=\leftarrow\) \(\mathrm{b}[2,6]=\leftarrow\)
\(\mathrm{b}[4,1]=\nwarrow\)
\(\mathrm{b}[4,2]=\leftarrow\)
\(\mathrm{b}[4,3]=\uparrow\)
\(\mathrm{b}[4,4]=\leftarrow\)
\(\mathrm{b}[4,5]=\nwarrow\)
\(\mathrm{b}[4,6]=\leftarrow\)
\(b[5,1]=\uparrow\)
\(b[5,2]=\nwarrow\)
\(\mathrm{b}[5,3]=\leftarrow\)
\(\mathrm{b}[5,4]=\leftarrow\)
\(b[5,5]=\uparrow\)
\(b[6,1]=\uparrow\)
\(b[6,1]=\uparrow\)
\(\mathrm{b}[6,3]=\leftarrow\)
\(\mathrm{b}[6,4]=\nwarrow\)
\(\mathrm{b}[6,5]=\leftarrow\)
\(b[6,6]=\nwarrow\)
\(\mathrm{b}[7,1]=\nwarrow\)
\(\mathrm{b}[7,2]=\uparrow\)
\(\mathrm{b}[7,3]=\leftarrow\)
\(\mathrm{b}[7,4]=\uparrow\)
\(\mathrm{b}[7,5]=\nwarrow\)

Results:


Computable Tables:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(i^{j}\) & 0
\(y_{j}\) & 1 & 2 & 3 & 4
A & B & A \\
\hline \(0 x_{i}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 2 B & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 3 C & 0 & 1 & 1 & 2 & 2 & 2 & 2 \\
\hline 4 B & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
\hline 5 D & 0 & 1 & 2 & 2 & 2 & 3 & 3 \\
\hline 6 A & 0 & 1 & 2 & 2 & 3 & 3 & 4 \\
\hline 7 B & 0 & 1 & 2 & 2 & 3 & 4 & 4 \\
\hline \multicolumn{8}{|c|}{\[
c(i, j)=
\]} \\
\hline
\end{tabular}

if \(\mathrm{i}=0 \mathrm{OR} \mathrm{j}=0\)
if \(i, j>0\) and \(x_{i}=y_{j}\)
if \(i, j>0\) and \(x_{1} \neq y_{j}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(i^{j}\) & & & \[
\begin{aligned}
& 2 \\
& \mathrm{D}
\end{aligned}
\] & & & \[
\begin{aligned}
& 5 \\
& \text { B }
\end{aligned}
\] & A & \(i^{j}\) & 0
\(y_{j}\) & \[
\begin{gathered}
1 \\
B
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& \mathrm{D}
\end{aligned}
\] & C & \[
\begin{array}{r}
4 \\
\mathbf{A}
\end{array}
\] & \[
\begin{aligned}
& 5 \\
& \text { B }
\end{aligned}
\] & A \\
\hline \(0 x_{i}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(0 x_{i}\) & - & - & - & - & - & - & - \\
\hline 1 A & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 A & - & \(\leftarrow\) & \(\leftarrow\) & \(\leftarrow\) & * & \(\leftarrow\) & \(\checkmark\) \\
\hline 2 B & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 B & - & 1 & \(\leftarrow\) & \(\leftarrow\) & \(\leftarrow\) & \(\leqslant\) & \(\leftarrow\) \\
\hline 3 C & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 3 C & - & \(\uparrow\) & \(\leftarrow\) & * & \(\leftarrow\) & \(\leftarrow\) & \(\leftarrow\) \\
\hline 4 B & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 B & - & k & \(\leftarrow\) & \(\uparrow\) & \(\leftarrow\) & \(*\) & \(\leftarrow\) \\
\hline 5 D & 0 & 1 & 2 & 2 & 2 & 3 & 3 & 5 D & - & \(\uparrow\) & \(\checkmark\) & \(\leftarrow\) & \(\leftarrow\) & \(\uparrow\) & \(\leftarrow\) \\
\hline 6 A & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 6 A & - & \(\uparrow\) & \(\uparrow\) & \(\leftarrow\) & 1 & \(\leftarrow\) & N \\
\hline 7 B & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 7 B & - & 1 & \(\uparrow\) & \(\leftarrow\) & \(\uparrow\) & \(\uparrow\) & \(\leftarrow\) \\
\hline \multicolumn{8}{|r|}{\[
\left\{\begin{array}{l}
0 \\
c(i-1, j-1)+1 \\
\max (c(i-1, j), c(i, j-1))
\end{array}\right.
\]} & \multicolumn{8}{|l|}{\begin{tabular}{l}
if \(\mathrm{i}=0 \mathrm{OR} \mathrm{j}=0\) \\
if \(i, j>0\) and \(x_{i}=y_{j}\) \\
if \(\mathrm{i}, \mathrm{j}>0\) and \(\mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}\)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(j\) & \[
\begin{gathered}
0 \\
y_{j}
\end{gathered}
\] & & & & A & 5 & 6 \\
\hline \(0 x_{i}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 2 B & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 3 C & 0 & 1 & 1 & 2 & 2 & 2 & 2 \\
\hline 4 B & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
\hline 5 D & 0 & 1 & 2 & 2 & 2 & 3 & 3 \\
\hline 6 A & 0 & 1 & 2 & 2 & 3 & 3 & 4 \\
\hline 7 B & 0 & 1 & 2 & 2 & 3 & 4 & 4 \\
\hline
\end{tabular}
- Table size: O(n.m)
- Every entry takes O(1) time to compute.
- The algorithm takes \(\mathrm{O}(\mathrm{n} . \mathrm{m})\) time and space.
- The space complexity can be reduced to \(2 \cdot \min (m, n)+O(1)\).

\section*{Longest Common Subsequence Algorithm}
```

$c[i, j]=c(i-1, j-1)+1$
$c[i, j]=\max (c(i-1, j), c(i, j-1))$
$c[i, j]=0$

```
function LCS(X, Y)
```

 \(\mathrm{m} \equiv\) length \([\mathrm{X}]\)
 \(\mathrm{n} \equiv\) length \([\mathrm{Y}]\)
 for \(\mathrm{i} \equiv 1\) to m
 do c[i, 0] \(\equiv 0\);
 for \(\mathrm{j} \equiv 1\) to n
 do c[0, j] \(\equiv 0\);
 for \(\mathrm{i} \equiv 1\) to m
 do for \(\mathrm{j} \equiv 1\) to n
 do if (\(\mathrm{xi}==\mathrm{yj}\))
 then \(c[i, j] \equiv c[i-1, j-1]+1\)
 \(\mathrm{b}[\mathrm{i}, \mathrm{j}] \equiv\) " "
 else if \(c[i-1, j] \geq c[i, j-1]\)
 then \(\mathrm{c}[\mathrm{i}, \mathrm{j}] \equiv \mathrm{c}[\mathrm{i}-1, \mathrm{j}]\)
 \(\mathrm{b}[\mathrm{i}, \mathrm{j}] \equiv\) " \(\uparrow\) "
 else \(c[i, j] \equiv c[i, j-1]\)
 b[i, j] \(\equiv " \leftarrow "\)
    ```
    Return c and b ;

\section*{Relationship with shortest common supper-sequence}
- Shortest common super-sequence problem is closely related to longest common subsequence problem

\section*{Shortest common super-sequence}
- Given two sequences:
\[
\begin{aligned}
& \mathrm{X}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right\rangle \text { and } \\
& \mathrm{Y}=\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle
\end{aligned}
\]
- A sequence \(U=<u_{1}, \ldots, u_{k}>\) is a common super-sequence of \(X\) and \(Y\) if \(U\) is a supersequence of both X and Y .
- The shortest common supersequence (scs) is a common supersequence of minimal length.

Problem Statement
- The two sequences \(X\) and \(Y\) are given and task is to find a shortest possible common supersequence.
- Shortest common supersequence is not unique.
- Easy to make SCS from LCS for 2 input sequences.

Example,
- \(\mathrm{X}[1 . . \mathrm{m}]=\) abcbdab, \(\mathrm{Y}[1 . . \mathrm{n}]=\) bdcaba, we get LCS \(=\mathrm{Z}[1 . . \mathrm{r}]=\mathrm{bcba}\)
- Insert non-Ics symbols preserving order, we get \(\operatorname{SCS}=\mathrm{U}[1 . . \mathrm{t}]=\) abdcabdab.

\section*{Binary Search Trees}
- Binary search tree (BST) is a binary data structure which has the following properties:
- Each node has a value.
- An order is defined on these values.
- Left sub-tree of node contains values less than node value
- Right sub-tree of a node contains only values greater than or equal to the node's value.

\section*{Optimal Binary Search Trees}

Example: A translator from English to, say, Urdu.
- Use a binary search tree to store all the words in our dictionary, together with their translations.
- The word "the" is much more likely to be looked up than the word "ring"
- So we would like to make the search time for the word "the" very short, possibly at the expense of increasing the search time for the word "ring."

Problem Statement: We are given a probability distribution that determines, for every key in the tree, the likelihood that we search for this key.
- The objective is to minimize the expected search time of the tree.
- We need is known as an optimal binary search tree.
- Formally, we are given a sequence \(K=\left\langle k_{1}, k_{2}, \ldots, k_{n}>\right.\) of \(n\) distinct keys in sorted order i.e. \(k_{1}<k_{2}<\cdots<k_{n}\), and we wish to build a binary search tree from these keys.
- For each \(k_{i}\), we have a probability \(p_{i}\) that search is for \(k_{i}\).
- Some searches may not be successful, so we have \(n+1\) "dummy keys" \(d_{0}, d_{1}, d_{2}, \ldots, d_{n}\) representing values not in K
- In particular
\(\mathrm{d}_{0}=\) represents all values less than \(\mathrm{k}_{1}\),
\(d_{n}=\) represents all values greater than \(k_{n}\), and
\(\mathrm{d}_{\mathrm{i}}=\) represents all values between \(\mathrm{k}_{\mathrm{i}}\) and \(\mathrm{k}_{\mathrm{i}+1}, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{n}-1\)
- For each dummy key \(\mathrm{d}_{\mathrm{i}}\), we have a probability \(\mathrm{q}_{\mathrm{i}}\) that a search will correspond to \(\mathrm{d}_{\mathrm{i}}\).
- Each \(\mathrm{k}_{\mathrm{i}}\) is an internal node, each dummy key \(\mathrm{d}_{\mathrm{i}}\) is a leaf.
- Every search is either successful (finding some key \(\mathrm{k}_{\mathrm{i}}\) ) or failure (finding some dummy key \(\mathrm{d}_{\mathrm{i}}\), and so we have
\[
\sum_{i=1}^{n} p_{i}+\sum_{i=0}^{n} q_{i}=1
\]


\section*{Total Cost: Optimal Binary Search Trees}

Total \(\cos t=\)
\(\sum_{i=1}^{n} p_{i}\left(\operatorname{depth}\left(\left(k_{i}\right)+1\right)+\sum_{i=0}^{n} q_{i}\left(\operatorname{depth}\left(\left(d_{i}\right)+1\right)\right.\right.\)
\(=\sum_{i=1}^{n} p_{i} \cdot d e p t h\left(k_{i}\right)+\sum_{i=1}^{n} p_{i}+\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(d_{i}\right)+\sum_{i=0}^{n} q_{i}\)
Since we know that: \(\quad \sum_{i=1}^{n} p_{i}+\sum_{i=0}^{n} q_{i}=1\)
HenceTotal Cost
\(=\sum_{i=1}^{n} p_{i} \cdot \operatorname{depth}\left(k_{i}\right)+\sum_{i=0}^{n} q_{i} \operatorname{depth}\left(d_{i}\right)+1\)

Let
\(p_{i}=\) probability of searching \(k_{1}\) \(q_{i}=\) probability representing \(d_{i}\)

Expected cost \(=2.8\)

\begin{tabular}{llllll}
\(i\) & 0 & 1 & 2 & 3 & 4 \\
\hline\(\overline{\mathrm{p}}_{\mathrm{i}}\) & & 0.15 & 0.10 & 0.05 & 0.10
\end{tabular}
\(\begin{array}{llllll}q_{i} & 0.05 & 0.10 & 0.05 & 0.05 & 0.05\end{array}\)
Define cost of a search is as number of nodes examined in a search Cost of a key \(=\) depth of the key +1

Expected cost \(=2.75\)


\section*{Brute Force Solution}
- Total number of binary trees will be exponential as in case of chain matrix problem

- Brute force approach is not economical

- Observations:
- Optimal BST may not have smallest height.
- Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
- Construct each n-node BST.
- For each, assign keys and compute expected search cost.
- But there are \(\Omega\left(4^{n} / \mathrm{n}^{3 / 2}\right)\) different BSTs with n nodes.

\section*{Optimal Substructure}

Observation:
Any subtree of a BST contains keys range \(k_{i}, \ldots, k_{j}\) for some \(1 \leq i \leq j \leq n\).

Lemma:
If \(T\) is an optimal BST and contains subtree \(T\) ' with keys \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{j}}\), then T ' must be an optimal BST for keys \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{j}}\).

\section*{Proof:}

Cut and paste method.


\section*{Limitations of Dynamic Programming}
- Dynamic programming can be applied to any problem that observes the principle of optimality.
- Generally, it means that partial solutions can be optimally extended with regard to the state after the partial solution instead of the partial solution itself.
- The biggest limitation using dynamic programming is number of partial solutions we must keep track of
- For all examples we have seen, partial solutions can be described by stopping places in the input.
- This is because combinatorial objects e.g. strings, numerical sequences, and polygons etc., all have an implicit order defined upon their elements.
- This order cannot be changed without completely changing the origional problem.
- Once order fixed, there are relatively few possible stopping places, and we get an efficient algorithms.
- If objects are not firmly ordered then we have an exponential number of possible partial solutions
- And we get an infeasible amount of memory resulting an infeasible solution.

\section*{Construction: Optimal Substructure}
- One of the keys in \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{j}}\), say \(\mathrm{k}_{\mathrm{r}}, \mathrm{i} \leq\) \(r \leq j\), must be the root of an optimal subtree for these keys.
- Left subtree of \(\mathrm{k}_{\mathrm{r}}\) contains \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{r}-1}\).
- Right subtree of \(\mathrm{k}_{\mathrm{r}}\) contains \(\mathrm{k}_{\mathrm{r}+1}, \ldots, \mathrm{k}_{\mathrm{j}}\)

- To find an optimal BST:
- Examine all candidate roots \(k_{r}\), for \(i \leq r \leq j\)
- Determine all optimal BSTs containing \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{r}-1}\) and containing \(\mathrm{k}_{\mathrm{r}+1}, \ldots, \mathrm{k}_{\mathrm{j}}\)
- Find optimal BST for \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{j}}\), where \(\mathrm{i} \geq 1, \mathrm{j} \leq \mathrm{n}, \mathrm{j} \geq \mathrm{i}-1\)
- When \(\mathrm{j}=\mathrm{i}-1\), the tree is empty.
- Define e[i, j ] = expected search cost of optimal BST for \(\mathrm{k}_{\mathrm{i}}, \ldots, \mathrm{k}_{\mathrm{j}}\).
- If \(j=i-1\), then \(e[i, j]=q_{i-1}\).
- If \(\mathrm{j} \geq \mathrm{i}\),
- Select a root \(k_{r}\), for some \(i \leq r \leq j\).
- Recursively make an optimal BSTs
- for \(\mathrm{k}_{\mathrm{i}}, . ., \mathrm{k}_{\mathrm{r}-1}\) as the left subtree, and
- for \(\mathrm{k}_{\mathrm{r}+1}, . ., \mathrm{k}_{\mathrm{j}}\) as the right subtree.

\section*{Lemma}

Prove that when OPT tree becomes a sub-tree of a node then expected search cost increases by
\[
w(i, j)=\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l}
\]

Proof
Total \(\cos t\) when a tree becomes subtree
\[
\begin{aligned}
& =\sum_{l=i}^{j} p_{l}\left(\operatorname{depth}\left(\left(k_{l}\right)+1+1\right)+\sum_{l=i-1}^{j} q_{l}\left(\operatorname{depth}\left(\left(d_{l}\right)+1+1\right)\right.\right. \\
& =\sum_{l=i}^{j} p_{l} \cdot\left(\operatorname{depth}\left(k_{l}\right)+1\right)+\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l}\left(\operatorname{depth}\left(d_{l}\right)+1\right)+\sum_{l=i-1}^{j} q_{l} \\
& =\sum_{l=i}^{j} p_{l} \cdot\left(\operatorname{depth}\left(k_{l}\right)+1\right)+\sum_{l=i-1}^{j} q_{l}\left(\operatorname{depth}\left(d_{l}\right)+1\right)+\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l} \\
& =\text { total cost when tree was not subtree }+\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l}
\end{aligned}
\]
- When OPT subtree becomes a subtree of a node:
- Depth of every node in OPT subtree goes up by 1.
- Expected search cost increases by
\[
w(i, j)=\sum_{l=i}^{j} p_{l}+\sum_{l=i-1}^{j} q_{l}
\]
- If \(k_{r}\) is the root of an optimal BST for \(k_{i}, . ., k_{j}\)
\[
\begin{aligned}
& e[i, j]=p_{r}+(e[i, r-1]+w(i, r-1))+(e[r+1, j]+w(r+1, j)) \\
& \quad=e[i, r-1]+e[r+1, j]+w(i, j) .
\end{aligned}
\]
- But, we don't know \(\mathrm{k}_{\mathrm{r}}\). Hence,
\[
e[i, j]= \begin{cases}q_{i-1} & \text { if } j=i-1 \\ \min _{i \leq r \leq j}\{e[i, r-1]+e[r+1, j]+w(i, j)\} & \text { if } i \leq j\end{cases}
\]

Algorithm: Optimal Binary Search
- OPTIMAL-BST(p, q, n)
- for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n}+1\)
- do e \([i, i-1] \leftarrow q_{i-1}\).
- \(\quad \mathrm{w}[\mathrm{i}, \mathrm{i}-1] \leftarrow \mathrm{q}_{\mathrm{i}-1}\). Consider all trees with I keys
- forl \(\mathrm{l} \leftarrow 1\) to n
- do for \(\mathrm{i} \leftarrow\) to \(\mathrm{n}-\mathrm{I}+\longleftarrow \quad\) Fix the first key
- do j \(\leftarrow \mathrm{i}+\mathrm{l}-1\)
- \(e[i, j] \leftarrow \infty \longleftarrow\) Fix the last key
- \(\quad w[i, j] \leftarrow w[i, j-1]+p_{j}+q_{j}\)-Determine the root of the optimal sub-tree
- for \(r \leftarrow i\) to
- do \(t \leftarrow e[i, r-1]+e[r+1, j]+w[i, j]\)
- if \(t<e[i, j]\)
- then e[i, j] \(\leftarrow t\)
- \(\quad \operatorname{root}[i, j] \leftarrow r\)
- return e and root

\title{
Lecture No. 24 \\ Optimal Binary Search Trees \\ Constructing Dynamic Programming
}

\section*{Today Covered}
- Introduction to Greedy Algorithms
- Dynamic programming
- Why Greedy Algorithm? solution
- Where Greedy?
- Greedy choice
- Where Greed Algorithm do not work?
- Activity Selection Problem
- Recursive algorithm
- Iterative algorithm
- Steps developing activity selection algorithm

\section*{Why Greedy Algorithm?}

The algorithms we have studied in dynamic programming are relatively inefficient, for example
- Cost of 0-1 knapsack problem: \(\mathrm{O}(\mathrm{nW})\)
- Cost of matrix chain multiplication: \(\mathrm{O}\left(n^{3}\right)\)
- Cost in longest common subsequence: \(\mathrm{O}(\mathrm{mn})\)
- Optimal binary search trees: \(\mathrm{O}\left(n^{3}\right)\)

This is because
- We have many choices computing optimal solution.
- We check all of them in dynamic programming.
- We must think which choice is the best or
- At least restrict the choices we have to try.

\section*{What are Greedy Algorithm?}
- In greedy algorithms, we do the same thing
- Mostly optimization algorithms go through a sequence of steps, with a set of choices at each step.
- In dynamic programming best choices is ignored
- Some times a simpler and efficient algorithm required.
- Greedy algorithms make best choice at a moment.
- It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- Greedy algorithms do not always yield an optimal solutions, but mostly they do
- They tend to be easier to implement.

\section*{Where Greedy Algorithms do not work?}
- Greedy choice:
- We make the choice that looks best at a moment.
- Every time make a choice, greedily maximize value
- An example where this does not work
- Find longest monotonically increasing subsequence
- Given sequence <3 451778 9>
- Longest such subsequence is \(<345789\) >.
- The greedy choice after choosing <345> is to choose 17 , which is an unwanted element, results in the sequence \(<34517>\) which is suboptimal.

\section*{Some Definitions:}

Closed Interval \(=[a, b]=\{x \in R \mid a \leq x \leq b\}\)
Open Interval \(=(a, b)=\{x \in R \mid a<x<b\}\)
Left Semi Open \(=(a, b]=\{x \in R \mid a<x \leq b\}\)
Right Semi Open \(=[a, b)=\{x \in R \mid a \leq x<b\}\)

\section*{Activity Selection Problem}

The problem involves scheduling of several competing activities that require exclusive use of common resource

\section*{Problem Statement}
- The problem can be stated as, suppose we have a set:
\(S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\) of \(n\) proposed activities.
- Each activity wish to use a resource which can be used by only one activity at a time.
- Each activity \(a_{i}\) has starting time \(s_{i}\), finishing time \(f_{i}\) where, \(0 \leq s_{i}<f_{i}<\infty\)
- Objective in activity-selection problem is to select a maximum-size subset of mutually compatible activities

\section*{Steps in Designing Activity Selection Algorithm}
- Steps to solve the problem
- We will formulate the dynamic-programming solution in which
- Combine optimal solutions to two subproblems to form an optimal solution to original problem
- Check several choices when determining which subproblems to use in an optimal solution
- Then needed to make a greedy choice in which
- One of the subproblems guaranteed empty, so that only one nonempty subproblem remains
- Then a recursive greedy algorithm is developed and converted to an iterative one

\section*{Application : Scheduling Problem}
- A classroom can be used for one class at a time.
- There are \(n\) classes that want to use the classroom.
- Every class has a corresponding time interval \(\mathrm{I}_{\mathrm{j}}=\left[\mathrm{s}_{\mathrm{j}}, \mathrm{f}_{\mathrm{j}}\right.\) ) during which the room would be needed for this class.
- Our goal is to choose a maximal number of classes that can be scheduled to use the classroom without two classes ever using the classroom at the same time.
- Assume that the classes are sorted according to increasing finish times; that is, \(\mathrm{f}_{1}<\mathrm{f}_{2}<\) \(\ldots<f_{n}\).


\section*{Designing Activity Selection Problem}

Compatible Activity
- If a selected activity \(\mathrm{a}_{\mathrm{i}}\) is required to take place during the half-open time interval \(\left[\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right.\) ). And activity \(\mathrm{a}_{\mathrm{j}}\) is required to take place during the half-open time interval \(\left[\mathrm{s}_{\mathrm{j}}, \mathrm{f}_{\mathrm{j}}\right)\). Then the activities \(\mathrm{a}_{\mathrm{i}}\) and \(\mathrm{a}_{\mathrm{j}}\) are compatible if the intervals \(\left[\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}\right.\) ) and \(\left[\mathrm{s}, \mathrm{f}_{\mathrm{j}}\right.\) ) do not overlap i.e \(\mathrm{s}_{\mathrm{i}} \geq \mathrm{f}_{\mathrm{j}}\) or \(\mathrm{s}_{\mathrm{j}} \geq \mathrm{f}_{\mathrm{i}}\)

Compatible Activities:

\section*{\(a_{i}\)}


Not Compatible Activities:

\section*{\(b_{i}\)}


\section*{Compatible not Maximal}
\begin{tabular}{l|llllllccccc}
\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline\(s_{i}\) & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
\(f_{i}\) & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{tabular}

A set \(S\) of activities sorted in increasing order of finish time
- The subset consisting of mutually compatible activities are
- \(\left\{a_{3}, a_{9}, a_{11}\right\}\) but it is not a maximal subset,
\(-\left\{a_{1}, a_{4}, a_{8}, a_{11}\right\}\) is larger.
\(-\quad\left\{a_{2}, a_{4}, a_{9}, a_{11}\right\}\) is another largest subset.

\section*{Optimal Substructure of Activity Selection Problem}
- The first step is to find optimal substructure and then use it to construct an optimal solution to the problem from optimal solutions to subproblems.
- Let us start by defining sets \(S_{i j}=\left\{a_{k} \square S: f_{i} \leq s_{k}<f_{k} \leq s_{j}\right\} S_{i j}\) is the subset of activities in \(S\) that can start after activity \(a_{i}\) finishes and finish before activity \(a_{j}\) starts.
- The fictitious activities \(\mathrm{a}_{0}\) and \(\mathrm{a}_{\mathrm{n}+1}\) are added and adopt the conventions that \(\mathrm{f}_{0}=0\) and \(S_{n+1}=\infty\). Then \(S=S_{0 . n+1}\), and the ranges for \(i\) and \(j\) are given by \(0 \leq i, j \leq n+1\).
- Let us assume that \(A_{i j}\) is a solution to \(S_{i j}\)

\section*{Optimal Substructure of Problem}
- Let us assume that the activities are sorted in monotonically increasing order of finish times of the activities:
\[
f_{0} \leq f_{1} \leq f_{2} \leq \ldots \leq f_{n}<f_{n+1}
\]
- Assuming that we have sorted set of activities, our space of subproblems is
- to select a maximum-size subset of mutually compatible activities from \(\mathrm{S}_{\mathrm{i}}\), for \(0 \leq\) \(\mathrm{i}<\mathrm{j} \leq \mathrm{n}+1\),
- knowing that all other \(\mathrm{S}_{\mathrm{ij}}\) are empty.

\section*{Decomposition: Optimal Substructure of Problem}
- Suppose that a solution to \(\mathrm{S}_{\mathrm{ij}}\) is non-empty and includes some activity \(\mathrm{a}_{\mathrm{k}}\), so that \(\mathrm{f}_{\mathrm{i}} \leq \mathrm{s}_{\mathrm{k}}<\mathrm{f}_{\mathrm{k}} \leq \mathrm{s}_{\mathrm{j}}\).
- After choosing activity \(a_{k}\), it decomposes \(\mathrm{S}_{\mathrm{ij}}\) into two subproblems, \(\mathrm{S}_{\mathrm{ik}}\) and \(\mathrm{S}_{\mathrm{kj}}\)
\(\mathrm{S}_{\mathrm{ik}}=\) activities that start after \(\mathrm{a}_{\mathrm{i}}\) finishes and finish before \(\mathrm{a}_{\mathrm{k}}\) starts and
\(S_{k j}=\) activities that start after \(a_{k}\) finishes and finish before \(a_{j}\) starts,
- Each of \(\mathrm{S}_{\mathrm{ik}}\) and \(\mathrm{S}_{\mathrm{kj}}\) are subset of the activities in \(\mathrm{S}_{\mathrm{ij}}\)

\section*{Solution to \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\) : Optimal Substructure of Problem}
- Our solution to \(\mathrm{S}_{\mathrm{ij}}\) is the union of the solutions to \(\mathrm{S}_{\mathrm{ik}}\) and \(\mathrm{S}_{\mathrm{k} j}\), along with the activity \(\mathrm{a}_{\mathrm{k}}\).
- Thus, the number of activities in our solution to \(\mathrm{S}_{\mathrm{ij}}\) is the size of our solution to \(\mathrm{S}_{\mathrm{ik}}\), plus the size of our solution to \(S_{k j}\), plus \(a_{k}\).
Solution \(\left(S_{i j}\right)=\) Solution \(\left(S_{i k}\right) \cup\) Solution \(\left(S_{k j}\right) \cup\left\{a_{k}\right\}, A_{i j}=A_{i k} \cup A_{k j} \cup\left\{a_{k}\right\}\)
- Suppose we now that an optimal solution \(A_{i j}\) includes activity \(a_{k}\), then the solutions \(A_{i k}\) and \(A_{k j}\) used within this optimal solution must be optimal.

\section*{Why \(\mathrm{A}_{\mathrm{ik}}\) and \(\mathrm{A}_{\mathrm{kj}}\) are Optimal?}

Proof Why \(A_{i k}\) and \(A_{k j}\) are Optimal?
- If we had a solution \(A_{i k}^{\prime}\) to \(S_{i k}\) that included more activities than \(A_{i k}\), we could cut out \(A_{i k}\) from \(A_{i j}\) and paste \(A_{i k}^{\prime}\) in \(A_{i j}\), thus producing another solution \(A_{i j}^{\prime}\) to \(S_{i j}\) with more activities than \(\mathrm{A}_{\mathrm{ij}}\).
- Because we assumed that \(A_{i j}\) is an optimal solution, we have derived a contradiction.
- Similarly, if we had a solution \(A_{k j}^{\prime}\) to \(S_{k j}\) with more activities than \(A_{k j}\), we could replace \(A_{k j}\) by \(\mathrm{A}_{\mathrm{kj}}\) to produce solution to \(\mathrm{S}_{\mathrm{ij}}\) with more activities than \(\mathrm{A}_{\mathrm{ij}}\)

\section*{Further Decomposition to Find \(\mathbf{S}_{0, \mathrm{n}+1}\)}
- Now we can build a maximum-size subset of mutually compatible activities in \(\mathrm{S}_{\mathrm{ij}}\)
- by splitting the problem into two subproblems, mutually compatible activities in \(\mathrm{S}_{\mathrm{ik}}\) and \(\mathrm{S}_{\mathrm{kj}}\)
- finding maximum-size subsets \(A_{i k}\) and \(A_{k j}\) of theses activities for these subproblems and then
- forming maximum-size subset \(A_{i j}\) as \(A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}\)
- Optimal solution to entire problem is: \(A_{0, n+1}\).

\section*{A Recursive Solution}
- Let c[i, j] = number of activities in a maximum-size subset of mutually compatible activities in \(\mathrm{S}_{\mathrm{ij}}\).
- We have \(c[i, j]=0\) whenever \(\mathrm{S}_{\mathrm{ij}}=\varnothing\); In particular we have, \(\mathrm{c}[\mathrm{i}, \mathrm{j}]=0\) for \(\mathrm{i} \geq \mathrm{j}\).
- Since \(A_{i j}=A_{i k} \square\left\{a_{k}\right\} \square A_{k j}\)

Therefore the recurrence relation for the problem is \(c[i, j]=c[i, k]+c[k, j]+1\).
- Since value of \(k\) varies between \(i+1, \ldots, j-1\), and hence there are \((j-1)-(i-1)+1\) possible values of k, i.e., j-1-i-1+1=j-i-1
- Since maximum-size subset of \(\mathrm{S}_{\mathrm{ij}}\) must use one of these values for k , we check them all to find the best.
- Thus, our full recursive definition of \(\mathrm{c}[\mathrm{i}, \mathrm{j}]\) becomes
\[
c[i, j]=\left\{\begin{array}{lr}
0 & \text { if } S_{i j}=\phi \\
\max _{i<k<j}\{c[i, k]+c[k, j]+1\} & \text { if } S_{i j} \neq \phi
\end{array}\right.
\]
- Now it is a straightforward exercise to write a tabular, bottom-up, dynamic programming algorithm based on recurrence relation defined in previous slide.

Lecture No. 25
Greedy Algorithm

\section*{Today Covered}
- Activity Selection Problem
- Example
- Recursive algorithm
- Iterative Algorithm
- Fractional Knapsack Problem
- Problem Analysis
- Greedy Approach for Fractional Knapsack
- Coin Change Making Problem
- Analysis
- Greedy Algorithm

\section*{Theorem: Why This Solution is Optimal?}

\section*{Statement:}

Consider any nonempty subproblem \(\mathrm{S}_{\mathrm{i}}\), and let \(\mathrm{a}_{\mathrm{m}}\) be the activity in \(\mathrm{S}_{\mathrm{ij}}\) with the earliest finish time: \(f_{m}=\min \left\{f_{k}: a_{k} \in S_{i j}\right\}\), then
1. Activity \(a_{m}\) is used in some maximum-size subset of mutually compatible activities of \(\mathrm{S}_{\mathrm{ij}}\).
2. The subproblem \(S_{i m}\) is empty, so that choosing \(a_{m}\) leaves the subproblem \(S_{m j}\) as the only one that may be nonempty.

Note: After proving these properties, it is guaranteed that the greedy solution to this problem does exist.

Proof (Part B)
First we prove second part because it is bit simpler
- Suppose that \(\mathrm{S}_{\mathrm{im}}\) is nonempty
- It means there is some activity \(a_{k}\) such that: \(f_{i} \leq s_{k}<f_{k} \leq s_{m}<f_{m} . \Rightarrow f_{k}<f_{m}\).
- Then \(a_{k}\) is also in \(S_{i j}\) and it has an earlier finish time than \(a_{m}\), which contradicts our choice of \(a_{m}\). Hence \(S_{i m}\) is empty, proved


Part A
- To prove first part, suppose that \(\mathrm{A}_{\mathrm{ij}}\) is a maximum-size subset of mutually compatible activities of \(\mathrm{S}_{\mathrm{ij}}\),
- Order \(\mathrm{A}_{\mathrm{ij}}\) monotonic increasing order of finish time
- Let \(\mathrm{a}_{\mathrm{k}}\) be the first activity in \(\mathrm{A}_{\mathrm{ij}}\).

\section*{Case 1}
- If \(a_{k}=a_{m}\), then we are done, since we have shown that \(a_{m}\) is used in some maximal subset of mutually compatible activities of \(\mathrm{S}_{\mathrm{ij}}\).

Case 2
- If \(a_{k} \neq a_{m}\), then we construct the subset
\[
\mathrm{A}_{\mathrm{ij}}^{\prime}=\mathrm{A}_{\mathrm{ij}} \backslash\left\{\mathrm{a}_{\mathrm{k}}\right\} \in\left\{\mathrm{a}_{\mathrm{m}}\right\}
\]
- Since activities in \(\mathrm{A}_{\mathrm{ij}}\) are disjoint, so is true for \(\mathrm{A}^{\prime}{ }_{\mathrm{ij}}\).
- As \(a_{k}\) is first activity in \(A_{i j}\) to finish, and \(f_{m} \leq f_{k}\).
- Noting that \(A_{i j}^{\prime}\) has same number of activities as \(A_{i j}\)
- We see that \(A_{i j}^{\prime}\) is a maximal subset of mutually compatible activities of \(S_{i j}\) that includes \(a_{m}\).
- Hence proves the theorem.


\section*{Why is this Theorem Useful?}
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l} 
Dynamic \\
programming
\end{tabular} & Using the theorem \\
\hline \begin{tabular}{l} 
Number of \\
subproblems in the \\
optimal solution
\end{tabular} & \begin{tabular}{l}
2 subproblems: \\
\(\mathrm{S}_{\mathrm{ik}}, \mathrm{S}_{\mathrm{kj}}\)
\end{tabular} & \begin{tabular}{l}
1 subproblem: \(\mathrm{S}_{\mathrm{mj}}\) \\
\(\mathrm{S}_{\mathrm{im}}=\varnothing\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Number of choices to \\
consider
\end{tabular} & \(\mathrm{j}-\mathrm{i}-1\) choices & \begin{tabular}{l}
1 choice: the activity \\
with the earliest \\
finish time in \(\mathrm{S}_{\mathrm{ij}}\)
\end{tabular} \\
\hline
\end{tabular}
- Making the greedy choice i.e., the activity with the earliest finish time in \(\mathrm{S}_{\mathrm{ij}}\)
- Reduce the number of subproblems and choices
- Solved each subproblem in a top-down fashion
- Only one subproblem left to solve

\section*{A Recursive Greedy Algorithm}

Recursive-Activity-Selector (s, f, i, j)
\(1 \quad \mathrm{~m} \leftarrow \mathrm{i}+1\)
2 while \(\mathrm{m}<\mathrm{j}\) and \(\mathrm{s}_{\mathrm{m}}<\mathrm{f}_{\mathrm{i}} \quad / /\) Find the first activity in \(\mathrm{S}_{\mathrm{ij}}\).
\(3 \quad\) do \(\mathrm{m} \leftarrow \mathrm{m}+1\)
4 if \(m<j\)
5 then return \(\left\{\mathrm{a}_{\mathrm{m}}\right\} \cup\) Recursive-Activity-Selector \((\mathrm{s}, \mathrm{f}, \mathrm{m}, \mathrm{j})\)
6 else return \(\varnothing\)
\begin{tabular}{l|cccccccccccc}
\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline\(s_{i}\) & - & 1 & 3 & 0 & 5 & 3 & 5 & 6 & 8 & 8 & 2 & 12 \\
\(f_{i}\) & 0 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14
\end{tabular}

\(i=0\),
\(j=n+1=12\)
\(\mathrm{m} \leftarrow \mathrm{i}+1 \leftarrow 0+1=1\)
\(\mathrm{m}<\mathrm{j}(1<12)\) and \(\mathrm{s}_{1}<\mathrm{f}_{0}\) (But \(1>0\) )
if \(\mathrm{m}<\mathrm{j}(1<12)\)
return \(\left\{\mathrm{a}_{1}\right\} \cup\) Recursive-Activity-Selector (s, f, 1,12)

\(i=1\),
\(\mathrm{m} \leftarrow \mathrm{i}+1 \leftarrow 1+1=2\)
\(\mathrm{m}<\mathrm{j}(2<12)\) and \(\mathrm{s}_{2}<\mathrm{f}_{1}(3<4)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 2+1=3\)

\(\mathrm{m}<\mathrm{j}(3<12)\) and \(\mathrm{s}_{3}<\mathrm{f}_{1}(0<4)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 3+1=4\)

\(\mathrm{m}<\mathrm{j}(4<12)\) and \(\mathrm{s}_{4}<\mathrm{f}_{1}\) (But \(5>4\) )
if \(m<j(4<12)\)
return \(\left\{\mathrm{a}_{4}\right\} \cup\) Recursive-Activity-Selector(s, f, 4,12)

\(i=4\),
\(\mathrm{m} \leftarrow \mathrm{i}+1 \leftarrow 4+1=5\)
\(\mathrm{m}<\mathrm{j}(5<12)\) and \(\mathrm{s}_{5}<\mathrm{f}_{4}(3<7)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 5+1=6\)

\(\mathrm{m}<\mathrm{j}(6<12)\) and \(\mathrm{s}_{6}<\mathrm{f}_{4}(5<7)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 6+1=7\)

\(\mathrm{m}<\mathrm{j}(7<12)\) and \(\mathrm{s}_{7}<\mathrm{f}_{4}(6<7)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 7+1=8\)

\(\mathrm{m}<\mathrm{j}(8<12)\) and \(\mathrm{s}_{8}<\mathrm{f}_{1}(\) But \(8>7)\)
if \(m<j(8<12)\)
return \(\left\{\mathrm{a}_{8}\right\} \cup\) Recursive-Activity-Selector (s, f, 8,12)

\(i=8\),
\(\mathrm{m} \leftarrow \mathrm{i}+1 \leftarrow 8+1=9\)
\(\mathrm{m}<\mathrm{j}(9<12)\) and \(\mathrm{s}_{9}<\mathrm{f}_{8}(8<11)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 9+1=10\)

\(\mathrm{m}<\mathrm{j}(10<12)\) and \(\mathrm{s}_{10}<\mathrm{f}_{8}(2<11)\)
\(\mathrm{m} \leftarrow \mathrm{m}+1 \leftarrow 10+1=11\)

\(\mathrm{m}<\mathrm{j}(11<12)\) and \(\mathrm{s}_{11}<\mathrm{f}_{8}\) (But \(12>11\) )
if \(\mathrm{m}<\mathrm{j}(11<12)\)
return \(\left\{\mathrm{a}_{11}\right\} \cup\) Recursive-Activity-Selector (s, f, 11,12)

\(i=11\),
\(\mathrm{m} \leftarrow \mathrm{i}+1 \leftarrow 11+1=12\)
\(\mathrm{m}<\mathrm{j}\) (But \(12=12\) )

\section*{An Iterative Greedy Algorithm}

Iterative-Activity-Selector (s, f)
```

$\mathrm{n} \leftarrow$ length[s]
$A \leftarrow\left\{a_{1}\right\}$
$\mathrm{i} \leftarrow 1$
for $\mathrm{m} \leftarrow 2$ to n
do if $s_{m} \geq f_{i}$
then $A \leftarrow A \cup\left\{a_{m}\right\}$
$\mathrm{i} \leftarrow \mathrm{m}$
return A

```

\section*{Summary}

A greedy algorithm obtains an optimal solution to a problem by making a sequence of choices.

For each decision point in the algorithm, the choice that seems best at the moment is chosen at that time.

This strategy does not always produce an optimal solution, but as we saw in the activity-selection problem, sometimes it does.

Now we give a sequence of steps designing an optimal solution of using greedy approach

\section*{Summary: Steps Designing Greedy Algorithms}

We went through the following steps in the above problem:
1. Determine the suboptimal structure of the problem.
2. Develop a recursive solution.
3. Prove that at any stage of the recursion, one of the optimal choices is the greedy choice. Thus, it is always safe to make the greedy choice.
4. Show that all but one of the sub-problems induced by having made the greedy choice are empty.
5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert this recursive algorithm to an iterative one.

\section*{Checks in Designing Greedy Algorithms}
- In the beneath every greedy algorithm, there is almost always a dynamic programming solution.
How can one tell if a greedy algorithm will solve a particular optimization problem?
- There is no way in general, but there are two key ingredients
- greedy choice property and
- optimal sub-structure
- If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm for it.

\section*{The Knapsack Problem}
- The 0-1 Knapsack Problem
- A thief robbing a store finds \(n\) items: \(i\)-th item worth \(v_{i}\) and weight \(w_{i}\), where \(v_{i}\) and \(w_{i}\) integers
- The thief can only carry weight W in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?
- The Fractional Knapsack Problem
- Similar to 0-1 can be solved by greedy approach
- In this case, the thief can take fractions of items.

\section*{Greedy Fails in 0-1 knap sack problem}


Figure 16.2 The greedy strategy does not work for the \(0-1\) knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item I has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

\section*{Developing Algorithm: Fractional Knapsack}
- Pick the item with the maximum value per pound \(v_{i} / w_{i}\)
- If the supply of that element is exhausted and the thief can carry more then take as much as possible from the item with the next greatest value per pound
- Continue this process till knapsack is filled
- It is good to order items based on their value per pound \(\frac{v_{1}}{w_{1}} \geq \frac{v_{2}}{w_{2}} \geq \ldots \geq \frac{v_{n}}{w_{n}}\)

\section*{Algorithm: Fractional Knapsack Problem}

Fractional-Knapsack (W, v[n], w[n])
1. While \(w>0\) and as long as there are items remaining
2. pick item with maximum \(v_{i} / w_{i}\)
3. \(\quad x_{i} \leftarrow \min \left(1, \mathrm{w} / \mathrm{w}_{\mathrm{i}}\right)\)
4. remove item i from list
5. \(\quad w \leftarrow w-x_{i} w_{i}\)
- \(w\) the amount of space remaining in the knapsack ( \(\mathrm{w}=\mathrm{W}\) )
- Running time: \(\Theta(n)\) if items already ordered; else \(\Theta\) (nlgn)

\section*{Making Change}

Someone comes to your store and makes a purchase of 98.67. He/she gives you 100. You want to give back change using the least number of coins.

INPUT: The values of coins: \(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\), and an integer N . Assume that some coin has value 1 .

GOAL: To find a multi-set of coins \(S\) whose sum is N where the total number of coins is minimized.

A greedy approach is to add the highest value coin possible.
```

Greedy algorithm (C, N)
sort coins so $\mathrm{C} 1 \geq \mathrm{C} 2 \geq \ldots \geq \mathrm{Ck}$
S = Ф;
Change $=0$
$\mathrm{i}=1 \underline{\}$ Check for next coin
while Change $\neq \mathrm{N}$ do
II all most valuable coins
if Change $+\mathrm{Ci} \leq \mathrm{N}$ then
Change $=$ Change +Ci
$S=S \cup\{C i\}$
else $\mathrm{i}=\mathrm{i}+1$

```
- In Pakistan, our currency notes are
\(C_{1}=5000, C_{2}=1000, C_{3}=500, C_{4}=100, C_{5}=50, C_{6}=20, C_{7}=10\)
- Applying above greedy algorithm to \(\mathrm{N}=13,660\), we get
\(\mathrm{S}=\left\{\mathrm{C}_{1}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{7}\right\}\)
- Does this algorithm always find an optimal solution? For Pakistani currency.
- It does but does not hold always

\section*{Dynamic Programming vs. Greedy Algorithms}
- Dynamic programming
- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, smaller to larger subproblems
- Greedy algorithm
- Make the greedy choice and THEN
- Solve subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
Top down solution, problems decrease in size

\section*{Conclusion}
- Weaknesses of dynamic programming are discussed
- Approach of designing dynamic algorithms is used for design of greedy algorithms.
- Activity selection problem is discussed in detail.
- Best, at a moment, of the sub-problems in dynamic programming are selected. The other sub-problem is forced to become empty in activity selection problem
- Optimality and correctness is proved.
- Discussed why greedy algorithms are efficient.
- Some problems are discussed where Greedy algorithms do not work.
- 0-1 Knapsack problem discussed with greedy approach
- Fractional Knapsack problem analyzed and algorithm using greedy approach is given
- Two different versions of the Task Scheduling Problem are analyzed
- Task Scheduling linked with 0-1 Knapsack
- Coin change problem is discussed with greedy approach
- It is observed that all coin changing problems can not be solved using greedy approach
- Relationship between dynamic programming and greedy approach is reviewed

\section*{Lecture 26 \\ Huffman Coding}

\section*{Today Covered}
- Huffman Problem
- Problem Analysis
- Binary coding techniques
- Prefix codes
- Algorithm of Huffman Coding Problem
- Time Complexity
- Road Trip Problem
- Analysis and Greedy Algorithm
- Conclusion

\section*{Using ASCII Code: Text Encoding}
- Our objective is to develop a code that represents a given text as compactly as possible.
- A standard encoding is ASCII, which represents every character using 7 bits

\section*{Example}

Represent "An English sentence" using ASCII code
1000001 (A) 1101110 (n) 0100000 () 1000101 (E) 1101110 (n) 1100111 (g) 1101100 (I) 1101001 (i) 1110011 (s) 1101000 (h) 0100000 () 1110011 (s) 1100101 (e) 1101110 (n) 1110100 (t) 1100101 (e) 1101110 (n) 1100011 (c) 1100101 (e) = 133 bits \(\approx 17\) bytes

\section*{Refinement in Text Encoding}
- Now a better code is given by the following encoding:
«space \(=000, A=0010, E=0011, s=010\),
\(c=0110, g=0111, \quad h=1000, i=1001\),
\(l=1010, t=1011, \quad e=110, \quad n=111\)
- Then we encode the phrase as 0010 (A) 111 (n) 000 () 0011 (E) 111 (n) 0111 (g) 1010 (I) 1001 (i) \(\quad 010\) (s) 1000 (h) 000 () 010 (s) 110 (e) 111 (n) 1011 (t) 110 (e) 111 (n) 0110 (c) 110 (e)
- This requires 65 bits \(\approx 9\) bytes. Much improvement.
- The technique behind this improvement, i.e., Huffman coding which we will discuss later on.

\section*{Major Types of Binary Coding}

There are many ways to represent a file of information.
- Binary Character Code (or Code)
- each character represented by a unique binary string.
- Fixed-Length Code
- If \(\Sigma=\{0,1\}\) then
- All possible combinations of two bit strings \(\Sigma \times \Sigma=\{00,01,10,11\}\)
- If there are less than four characters then two bit strings enough
- If there are less than three characters then two bit strings not economical
- All possible combinations of three bit strings
\(\Sigma \times \Sigma \times \Sigma=\{000,001,010,011,100,101,110,111\}\)
- If there are less than nine characters then three bit strings enough
- If there are less than five characters then three bit strings not economical and can be considered two bit strings
- If there are six characters then needs 3 bits to represent, following could be one representation. \(a=000, b=001, c=010, d=011, e=100, f=101\)
- Variable-Length Code
- better than a fixed-length code
- It gives short code-words for frequent characters and
- long code-words for infrequent characters
- Assigning variable code requires some skill
- Before we use variable codes we have to discuss prefix codes to assign variable codes to set of given characters
- A prefix code is a code typically a variable length code, with the "prefix property"
- Prefix property is defined as no codeword is a prefix of any other code word in the set.

\section*{Examples}
1. Code words \(\{0,10,11\}\) has prefix property
2. A code consisting of \(\{0,1,10,11\}\) does not have, because " 1 " is a prefix of both " 10 " and "11".

\section*{Other names}
- Prefix codes are also known as prefix-free codes, prefix condition codes, comma-free codes, and instantaneous codes etc.

Why are prefix codes?
- Encoding simple for any binary character code;
- Decoding also easy in prefix codes. This is because no codeword is a prefix of any other.

\section*{Example 1}
- If \(a=0, b=101\), and \(c=100\) in prefix code then the string: 0101100 is coded as \(0 \cdot 101 \cdot 100\)

\section*{Example 2}
- In code words: \(\{0,1,10,11\}\), receiver reading " 1 " at the start of a code word would not know whether
- that was complete code word "1", or
- prefix of the code word "10" or of "11"

Prefix codes and binary trees
- Tree representation of prefix codes


\section*{Huffman Codes}
- In Huffman coding, variable length code is used
- Data considered to be a sequence of characters.
- Huffman codes are a widely used and very effective technique for compressing data
- Savings of \(20 \%\) to \(90 \%\) are typical, depending on the characteristics of the data being compressed.
- Huffman's greedy algorithm uses a table of the frequencies of occurrence of the characters to build up an optimal way of representing each character as a binary string.
- Now let us see an example to understand the concepts used in Huffman coding

\section*{Example: Huffman Codes}
\begin{tabular}{lcccccc} 
& a & b & c & d & e & f \\
\hline Frequency (in thousands) & 45 & 13 & 12 & 16 & 9 & 5 \\
Fixed-length codeword & 000 & 001 & 010 & 011 & 100 & 101 \\
Variable-length codeword & 0 & 101 & 100 & 111 & 1101 & 1100
\end{tabular}

\section*{Binary Tree: Variable Length Codeword}
\begin{tabular}{|c|cc|}
\hline & \begin{tabular}{c} 
Frequency \\
(in \\
thousands)
\end{tabular} & \begin{tabular}{c} 
Variable- \\
length \\
codeword
\end{tabular} \\
\hline a & 45 & 0 \\
b & 13 & 101 \\
c & 12 & 100 \\
d & 16 & 111 \\
e & 9 & 1101 \\
f & 5 & 1100 \\
\hline
\end{tabular}


\section*{Cost of Tree Corresponding to Prefix Code}
- Given a tree T corresponding to a prefix code. For each character c in the alphabet C,
- let \(f(c)\) denote the frequency of \(c\) in the file and
- let \(d_{T}(c)\) denote the depth of \(c\) 's leaf in the tree.
\(-\quad d_{T}(c)\) is also the length of the codeword for character \(c\).
- The number of bits required to encode a file is
\[
B(T)=\sum_{c \in C} f(c) d_{T}(c)
\]
- which we define as the cost of the tree T.

\section*{Algorithm: Constructing a Huffman Codes}

Huffman (C)
```

1 n\leftarrow|C|
2 Q\leftarrowC
3 fori}\leftarrow1\mathrm{ to n-1
4 do allocate a new node z
5 left[z]}\leftarrowx\leftarrow\mathrm{ Extract-Min (Q)
6 right[z] \leftarrowy\leftarrow Extract-Min (Q)
7 f[z]\leftarrowf[x]+f[y]
| Insert (Q, z)
return Extract-Min(Q) Return root of the tree.

```

\section*{Example: Constructing a Huffman Codes}


Q: \(\mathrm{c}: 12 \mathrm{~b}: 13\)

for \(\mathrm{i} \leftarrow 1\)
Allocate a new node \(z\)
left[z] \(\leftarrow \mathrm{x} \leftarrow\) Extract-Min (Q) \(=\mathrm{f}: 5\)
\(\operatorname{right}[z] \leftarrow y \leftarrow\) Extract-Min \((Q)=e: 9\)
\(\mathrm{f}[\mathrm{z}] \leftarrow \mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}](5+9=14)\)
Insert (Q, z)


Q:

for \(\mathrm{i} \leftarrow 2\)
Allocate a new node z
left[z] \(\leftarrow \mathrm{x} \leftarrow\) Extract-Min \((\mathrm{Q})=\mathrm{c}: 12\)
right \([z] \leftarrow y \leftarrow\) Extract-Min \((Q)=b: 13\)
\(\mathrm{f}[\mathrm{z}] \leftarrow \mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}](12+13=25)\)
Insert (Q, z)


Q:


\section*{a:45}

\section*{a:45}

for \(\mathrm{i} \leftarrow 4\)
Allocate a new node z
left[z] \(\leftarrow \mathrm{x} \leftarrow\) Extract-Min (Q) \(=\mathrm{z}: 25\)
right \([z] \leftarrow y \leftarrow\) Extract-Min \((Q)=z: 30\)
\(\mathrm{f}[\mathrm{z}] \leftarrow \mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}](25+30=55)\)
Insert (Q, z)
for \(\mathrm{i} \leftarrow 5\)
Allocate a new node z
left[z] \(\leftarrow \mathrm{x} \leftarrow\) Extract-Min (Q) \(=\mathrm{a}: 45\)
right \([z] \leftarrow y \leftarrow\) Extract-Min \((Q)=z: 55\)
\(\mathrm{f}[\mathrm{z}] \leftarrow \mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}](45+55=100)\)
Insert (Q, z)


\section*{Lemma 1: Greedy Choice}

There exists an optimal prefix code such that the two characters with smallest frequency are siblings and have maximal depth in \(T\).

Proof:
- Let \(x\) and \(y\) be two such characters, and let \(T\) be a tree representing an optimal prefix code.
- Let \(a\) and \(b\) be two sibling leaves of maximal depth in T, and assume with out loss of generality that \(f(x) \leq f(y)\) and \(f(a) \leq f(b)\).
- This implies that \(f(x) \leq f(a)\) and \(f(y) \leq f(b)\).
- Let T ' be the tree obtained by exchanging \(a\) and \(x\) and \(b\) and \(y\).


The cost difference between trees T and T ' is
\[
\begin{aligned}
& B(T)-B\left(T^{\prime}\right)= \sum_{c \in C} f(c) d_{T}(c)-\sum_{c \in C} f(c) d_{T^{\prime}}(c) \\
&= f(x) d_{T}(x)+f(a) d_{T}(a)-f(x) d_{T^{\prime}}(x)-f(a) d_{T^{\prime}}(a)+ \\
& f(y) d_{T}(y)+f(b) d_{T}(b)-f(y) d_{T^{\prime}}(y)-f(b) d_{T^{\prime}}(b) \\
&=(f(a)-f(x))\left(d_{T}(a)-d_{T}(x)\right)+(f(b)-f(y))\left(d_{T}(b)-d_{T}(y)\right) \\
& \geq 0
\end{aligned}
\]

Hence \(B\left(T^{\prime}\right) \leq B(T)\)
Since \(B(T) \leq B\left(T^{\prime}\right)\)
Hence \(B(T)=B\left(T^{\prime}\right)\)


Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

Lecture No. 27
Huffman Coding Problem and Graph Theory

\section*{Algorithm: Constructing a Huffman Codes}

Huffman (C)
```

$n \leftarrow|C|$
$Q \leftarrow C$
for $\mathrm{i} \leftarrow 1$ to $\mathrm{n}-1$
do allocate a new node z
left[z] $\leftarrow \mathrm{x} \leftarrow$ Extract-Min (Q)
right[z] $\leftarrow y \leftarrow$ Extract-Min (Q)
$\mathrm{f}[\mathrm{z}] \leftarrow \mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}]$
Insert (Q, z)
return Extract-Min(Q) // Return root of the tree

```

\section*{Lemma 2: Optimal Substructure Property}
- Let C be a given alphabet with frequency \(\mathrm{f}[\mathrm{c}]\) defined for each character \(\mathrm{c} \in \mathrm{C}\).
- Let \(x, y\) (characters) \(\in C\) with minimum frequency.
- Let \(C^{\prime}\) be alphabet \(C\) with characters \(x\), \(y\) removed, new character \(z\) added, so that \(C^{\prime}=\) \(C-\{x, y\} \cup\{z\}\);
- Define f for \(\mathrm{C}^{\prime}\) as for C , except that \(\mathrm{f}[\mathrm{z}]=\mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}]\).
- Let T' be any tree representing an optimal prefix code for the alphabet \(\mathrm{C}^{\prime}\).
- Then tree \(T\), obtained from \(T^{\prime}\) by replacing leaf node for \(z\) with an internal node having \(x\), \(y\) as children, represents an optimal prefix code for alphabet C.

\section*{Proof}
- Since C' \(=C-\{x, y\} \cup\{z\}\); where \(f(z)=f(x)+f(y)\),
- We are give that \(\mathrm{T}^{\prime}\) is an optimal tree for \(\mathrm{C}^{\prime}\).
- Let T be tree obtained from T' by making \(x\), \(y\) children of \(z\).
- We prove: \(\mathrm{B}(\mathrm{T})=\mathrm{B}\left(\mathrm{T}^{\prime}\right)+\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})\)
\[
\begin{aligned}
B(T) & =\sum_{c \in C} f(c) d_{T}(c) \\
& =\sum_{c \in C \backslash\{x, y\}} f(c) d_{T}(c)+f(x) d_{T}(x)+f(y) d_{T}(y) \\
& =\sum_{c \in C^{\prime} \backslash\{z\}} f(c) d_{T^{\prime}}(c)+(f(x)+f(y))\left(d_{T^{\prime}}(z)+1\right) \\
& =\sum_{c \in C^{\prime} \backslash\{z\}} f(c) d_{T^{\prime}}(c)+f(z) d_{T^{\prime}}(z)+f(x)+f(y) \\
& =\sum_{c \in C^{\prime}} f(c) d_{T^{\prime}}(c)+f(x)+f(y) \\
& =B\left(T^{\prime}\right)+f(x)+f(y)
\end{aligned}
\]
- \(B\left(T^{\prime}\right)=B(T)-f(x)-f(y)\)

If \(\mathrm{T}^{\prime}\) is optimal for \(\mathrm{C}^{\prime}\), then T is optimal for C ?
- Assume on contrary that there exists a better tree \(T\) " for \(C\), such that \(B\left(T^{\prime \prime}\right)<B(T)\)
- Assume without loss of generality \(T\) " has siblings \(x\) and \(y\).
- Let tree T"' be a tree T" with the common parent of \(x\) and \(y\) replaced by vertex \(z\) with frequency \(f[z]=f[x]+f[y]\). Then \(B\left(T^{\prime \prime \prime}\right)=B\left(T^{\prime \prime}\right)-f(x)-f(y)\)
\[
<B(T)-f(x)-f(y) \quad \text { Since, } B\left(T^{\prime \prime}\right)<B(T)
\]
\[
\text { = B( } \left.\mathrm{T}^{\prime}\right) \text {. }
\]
- This contradicts the optimality of \(\mathrm{B}\left(\mathrm{T}^{\prime}\right)\).
- Hence, T must be optimal for C.

\section*{Road Trip Problem}

\section*{Problem Statement}
- You purchase a new car. On your semester break, you decide to take a road trip from Peshawar to Karachi.
- Your car has a tank of some capacity such that only a distance km can be traveled before refilling the tank.
- Suppose there are filling stations at distances of
\[
\mathrm{d}_{0}<\mathrm{d}_{1}<\mathrm{d}_{2}<\ldots<\mathrm{d}_{\mathrm{n}}
\]
where \(d_{n}\) is the total distance of your trip.
- Your goal is to find the smallest number of stops required i.e. shortest subsequence of \(<d_{0} \cdots d_{n}>\), given that you start at \(d_{0}\) and end at \(d_{n}\).

\section*{INPUT:}
- The max distance k , along with the distances: \(\mathrm{d}_{0}, \mathrm{~d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}\).

\section*{GOAL:}
- To find a smallest sub sequence of \(d_{0}, \ldots, d_{n}\) so that you can start from \(d_{0}\) and end at \(d_{n}\).

Note
- Greedy approach is considered each \(\mathrm{d}_{\mathrm{i}}\) in order.
- We stop to refuel at \(d_{i}\) only if the tank will finish before we get to \(d_{i+1}\).

\section*{Greedy algorithm}
1. for \(\mathrm{i}=1\) to n do
2. if \(d_{i}-d_{i-1}>k\) then "do not use this car"
3. \(\quad \mathrm{S}=\mathrm{d}_{0}\)
4. \(\quad\) last \(=d_{0}\) (the distance of the last item in S)
5. \(\quad d_{n+1}=\infty\) (forces \(d_{n}\) to be in \(S\) )
6. for \(\mathrm{i}=1\) to n do
7. if \(d_{i+1}\) - last \(>k\) then
8.
\(\mathrm{S}:=\mathrm{S} \cup \mathrm{d}_{\mathrm{i}}\)
9.
last := \(\mathrm{d}_{\mathrm{i}}\)

\section*{Graph Theoretic Concepts}

\section*{Definitions}
- Graph \(G\) consists of two finite sets \(V(G)\) and \(E(G)\)
- Endpoints a set of one or two vertices of an edge
- Loop an edge with just one endpoint
- Edge-endpoint function: End-Point-Function: E \(\rightarrow\) Set of V
- Parallel edges two distinct edges with same endpoints
- Adjacent vertices vertices connected by an edge
- Vertex adjacent to itself vertex endpoint of a loop
- Adjacent edges two edges incident on the same endpoint
- Isolated a vertex on which no edge is incident
- Empty a graph with no vertices, otherwise nonempty.

\section*{Examples}
1. Vertex set \(=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}\)
2. Edge set \(=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}\)
3. \(e_{1}, e_{2}\), and \(e_{3}\) are incident on \(v_{1}\)
4. \(v_{2}\) and \(v_{3}\) are adjacent to \(v_{1}\)
5. \(e_{2,}, e_{3}\) and \(e_{4}\) are adjacent to \(e_{1}\)
6. \(\mathrm{e}_{6}\) and \(\mathrm{e}_{7}\) are loops
7. \(e_{2}\) and \(e_{3}\) are parallel
8. \(v_{5}\) and \(v_{6}\) are adjacent to themselves
9. \(v_{4}\) is an isolated vertex
10. Endpoint \(\left(e_{5}\right)=\left(v_{5}, v_{6}\right)\)


\section*{Directed, Simple and Complete Graph}
- Directed graph (digraph) in which each edge is associated with an ordered pairs of vertices
- Simple graph does not have any loop or parallel edge
- Subgraph H is subgraph of G if and only if, every vertex in \(H\) is also vertex in \(G\), and every edge in H has the same endpoints as in G .
- Complete graph on \(n\) vertices, \(\left(\mathrm{K}_{\mathrm{n}}\right)\) is a simple graph in which each pair of vertices has exactly one edge


\section*{Complete Graph}

\section*{Example 1:}

Find a recursive formula to compute number of edges in a complete graph on n vertices.

Solution:
- Let \(S_{k}=\) total number of edges of a complete graph with \(k\) vertices
- \(S_{k}=\) total number of edges of a complete graph with \(\mathrm{k}-1\) vertices + total number of edges connected \(\mathrm{k}^{\text {th }}\) node
- = total number of edges of a complete graph with k - 1 vertices +k -1 number of edges \(S_{k}=S_{k-1}+(k-1)\)


\section*{Example 2:}

Find an explicit formula to compute number of edges in complete graph on \(n\) vertices.

Solution:
Since, \(\mathrm{S}_{\mathrm{k}}=\mathrm{S}_{\mathrm{k}-1}+(\mathrm{k}-1) \Rightarrow \mathrm{S}_{\mathrm{k}-1}=\mathrm{S}_{\mathrm{k}-2}+(\mathrm{k}-2)\) and so on
By back substitution
\(\mathrm{S}_{\mathrm{k}}=\mathrm{S}_{\mathrm{k}-2}+(\mathrm{k}-2)+(\mathrm{k}-1)=\mathrm{S}_{\mathrm{k}-3}+(\mathrm{k}-3)+(\mathrm{k}-2)+(\mathrm{k}-1)\)
\(S_{k}=S_{1}+1+2+\ldots+(k-2)+(k-1)=(k-1) k / 2\)
\(\mathrm{S}_{\mathrm{k}}=(\mathrm{k}-1) \mathrm{k} / 2\)
\(S_{n}=(n-1) n / 2\)


\section*{Complete Bipartite Graph}
- A complete bipartite graph on ( \(m, n\) ) vertices, denoted \(K_{m, n}\), is a simple graph with vertices \(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\) and \(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\) that satisfies the following properties:
for all \(i, k=1,2, \ldots, m\) and for all \(j, I=1,2, \ldots, n\)
1. there is an edge from each vertex \(v_{i}\) to each vertex \(w_{j}\);
2. there is not an edge from any vertex \(v_{i}\) to any other vertex \(v_{k}\);
3. there is not an edge from any vertex \(w_{j}\) to any other vertex \(w_{l}\)


\section*{Degree of Graph}

Definition degree of \(v\) is number of edges incident on \(v\)

\section*{Theorem:}

In a graph \(G\), sum of degrees of all vertices equals twice the number of edges of \(G\). Specifically, if the vertices of \(G\) are \(v_{1}, v_{2}, \ldots, v_{n}\) where \(n\) is a positive integer, then

Total degree of \(G=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\ldots+\operatorname{deg}\left(v_{n}\right)\)
\(=2\). (the number of edges of \(G\) )
Proof: easy
Note: Total degree of an undirected graph, G, is even.

\section*{Proposition}

In a graph there are even number of vertices of odd degree.

\section*{Solution:}

Let us suppose that: \(\mathrm{V}=\) all vertices of a graph
\(\mathrm{V} 1=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}=\) set of all vertices of odd degree
\(\mathrm{V} 2=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}}\right\}=\) set of all vertices of even degree
Now we have to prove that k is even?
On contrary, suppose that \(k\) is odd
Degree \((\operatorname{graph})=\operatorname{deg}\left(\mathrm{v}_{1}\right)+\operatorname{deg}\left(\mathrm{v}_{2}\right)+, \ldots, \operatorname{deg}\left(\mathrm{v}_{\mathrm{k}}\right)+\operatorname{deg}(\mathrm{V} 2)=\) odd + even \(=\) odd, contradiction. Hence k must be even.
That is there even number of vertices of odd degree.

\section*{Walk of Graph}
- Walk from \(v\) to \(w\) is a finite alternating sequence of adjacent vertices and edges of \(G\). It has the form \(v=v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}=w\), for all \(i=1,2, \ldots, n, v_{i-1}\) and \(v_{i}\) are endpoints of \(e_{i}\)
- Trivial walk from v to v consists of single vertex v .
- Closed walk starts and ends at the same vertex
- Path a walk that does not contain a repeated edge. \(v=v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}=w\), where all the \(e_{i}\) are distinct (that is, \(e_{i} \neq e_{k}\) for any \(i \neq k\) ).
- Simple path a path that does not contain a repeated vertex. Thus a simple path is a walk of form \(v=v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}=w\), all \(e_{i}\) and \(v_{j}\) are distinct ( \(v_{i} \neq v_{j}, e_{i} \neq e_{j}\) for any \(\left.\mathrm{i} \neq \mathrm{j}\right)\).

\section*{Circuit of Graph}
- A circuit is a closed walk that does not contain a repeated edge. Thus a circuit is a walk of the form \(v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}\) where \(v_{0}=v_{n}\) and all the \(e_{i}\) are distinct.
- A simple circuit is a circuit that does not have any other repeated vertex except the first and last. Thus a simple circuit is walk of the form \(v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}\), where all the \(e_{i}\) are distinct and all the \(v_{j}\) are distinct except that \(v_{0}=v_{n}\)

\section*{Euler Circuit}
- An Euler circuit for \(G\) is a circuit that contains every vertex and every edge of \(G\). That is, an Euler circuit is a sequence of adjacent vertices and edges in \(G\) that starts and ends at the same vertex, uses every vertex of \(G\) at least once, and every edge exactly once.

\section*{Theorem}

If a graph has an Euler circuit, then every vertex of the graph has even degree.

\section*{Theorem}

A graph \(G\) has an Euler circuit if, and only if, \(G\) is connected and every vertex of \(G\) has even degree.

\section*{Euler Path}
- Let \(G\) be a graph and let \(v\) and \(w\) be two vertices of \(G\). An Euler path from \(v\) to \(w\) is a sequence of adjacent edges and vertices that starts at v , ends at w , passes through every vertex of \(G\) at least once, and traverses every edge of \(G\) exactly once.

\section*{Corollary}
- Let G be a graph and let v and w be two vertices of G . There is a an Euler path from v to w if, and only if, \(G\) is connected, v and w have odd degree, and all other vertices of \(G\) have even degree.

\section*{Hamiltonian Circuit}
- Given a graph \(G\), a Hamiltonian circuit for \(G\) is a simple circuit that includes every vertex of \(G\). That is, a Hamiltonian circuit of \(G\) is a sequence of adjacent vertices and distinct edges in which every vertex of \(G\) appears exactly once.
- If a graph \(G\) has a Hamiltonian circuit then \(G\) has a sub-graph \(H\) with the following properties:
1. H contains every vertex of G ;
2. H is connected;
3. H has the same number of edges as vertices;
4. every vertex of H has degree 2.

\section*{Connected Graph}
- Two vertices \(v\) and \(w\) of \(G\) are connected if, and only if, there is a walk from \(v\) to \(w\).
- \(G\) is connected if, and only if, for any two vertices \(v\) and \(w\) in \(G\), there is a walk from \(v\) to w . symbolically: G is connected \(\because \mathrm{v}, \mathrm{w} m \vee(\mathrm{G})\), , a walk from v to w

\section*{Lemma}
- If G is connected, then any two distinct vertices of G can be connected by a simple path.
- If \(v, w\) are in circuit and one edge is removed from the circuit, then there still exists a path from \(v\) to \(w\)
- If G is connected and contains a circuit, then an edge of circuit can be removed without disconnecting \(G\).

\section*{Connected Component}
- A graph H is a connected component of a graph G if, and only if,
1. H is a subgraph of G ;
2. H is connected;
3. No connected subgraphs of G has H as a subgraph and contains vertices or edges that are not in H .


\section*{Isomorphism}
- Let \(G\) and \(G^{\prime}\) be graphs with vertex sets \(V(G)\) and \(V\left(G^{\prime}\right)\) and edge sets \(E(G)\) and \(E\left(G^{\prime}\right)\), respectively. \(G\) is isomorphic to \(G^{\prime}\) if, and only if, there exist one-to-one correspondence \(g: V(G) x^{\top} V\left(G^{\prime}\right)\) and \(h: E(G) x^{\top} E\left(G^{\prime}\right)\) that preserve the edge-endpoint functions of \(G\) and \(G^{\prime}\) in the sense that for all \(v V(G)\) and e \(m E(G)\), \(v\) is an endpoint of e \(g(v)\) is an endpoint of \(h(e)\)

\section*{Isomorphism Invariants}
- A property P is called an isomorphic invariant if, and only if, given any graphs \(G\) and \(\mathrm{G}^{\prime}\), if \(G\) has property \(P\) and \(G^{\prime}\) is isomorphic to \(G\), then \(G\) ' has property \(P\).
- If \(G\) and \(G^{\prime}\) are simple graphs then \(G\) is isomorphic to \(G^{\prime}\) if, and only if, there exists a one-to-one correspondence \(g\) from the vertex set \(V(G)\) of \(G\) to the vertex set \(V\left(G^{\prime}\right)\) of \(G^{\prime}\) that preserves the edge-endpoint functions of \(G\) and \(G^{\prime}\) in the sense that for all vertices \(u\) and \(v\) of \(G,\{u, v\}\) is an edge in \(G \in\{g(u), g(v)\}\) is an edge in \(G^{\prime}\)

\section*{Theorem}
- Each of following properties is an invariant for graph isomorphism, \(\mathrm{n}, \mathrm{m}\), and k are all nonnegative integers:
1. has \(n\) vertices;
2. has m edges;
3. has a vertex of degree \(k\);
4. has \(m\) vertices of degree \(k\);
5. has a circuit of length \(k\);
6. has a simple circuit of length \(k\);
7. has \(m\) simple circuits of length \(k\);
8. is connected;
9. has an Euler circuit;
10. has a Hamiltonian circuit.

\section*{Trees}
- Graph is circuit-free \(\Leftrightarrow\) it has no nontrivial circuits.
- A graph is a tree \(\Leftrightarrow\) it is circuit-free and connected.
- A trivial tree is a graph that consists of a single vertex
- Empty tree that does not have any vertices or edges.
- Forest a graph if circuit-free.
- Terminal vertex (Leaf) a vertex of degree 1 in T
- Internal vertex a vertex of degree greater than 1 in \(T\)

\section*{Lemma 1:}

Any tree having more than one vertices has at least one vertex of degree 1.

\section*{Lemma 2:}

If \(G\) is any connected graph, \(C\) is any nontrivial circuit in \(G\), and one of the edges of \(C\) is removed form \(\mathrm{G}^{\prime}\), then the graph that remains is connected.

\section*{Theorem:}

For any positive integer \(n\), if \(G\) is a connected graph with \(n\) vertices and \(n-1\) edges, then \(G\) is a tree

\section*{Statement}

For positive integer \(n\), any tree with \(n\) vertices has \(n-1\) edges.

\section*{Solution}

We prove this theorem by mathematical induction
Basis
\(\mathrm{n}=1\), tree has no edge and hence true
Inductive hypothesis
Suppose that id \(\mathrm{n}=\mathrm{k}\) then tree has \(\mathrm{k}-1\) edges

\section*{Claim}
- Now if we add one more vertex to the tree then exactly one edge will be added otherwise it will not remain tree. And hence it will become k edges in the tree. Proved.

\section*{Rooted Trees}
- Rooted tree a distinguished vertex
- Level of a vertex is the number of edges along the unique path between it and the root.
- Height of a rooted tree is maximum level to any vertex
- Children of \(v\) are all those vertices that are adjacent to \(v\) and are one level farther away from the root than \(v\).
- Parent if \(w\) is child of \(v\), then \(v\) its parent
- Siblings vertices that are children of same parent
- Ancestor and Descendent given vertices \(v\) and \(w\), if \(v\) lies on the unique path between \(w\) and the root, then \(v\) is an ancestor of \(w\) and \(w\) is a descendent of \(v\).


\section*{Binary Trees}
- A binary tree is a rooted tree in which every internal vertex has at most two children. Each child in a binary tree is either left child or a right child (but not both), an internal vertex has at most one left and one right child.
- Full binary tree is a binary tree in which each internal vertex has exactly two children


\section*{Theorem}

If \(k\) is a positive integer and \(T\) is a full binary tree with \(k\) internal vertices, the \(T\) has a total of \(2 k\) +1 vertices and has \(k+1\) terminal vertices.

\section*{Theorem}

If \(T\) is a binary tree that has \(t\) number of terminal vertices and height is \(h\), then \(t \leq 2^{k} O R \log _{2} t\) \(\leq h\)

\section*{Spanning Trees}
- A spanning tree for a graph \(G\) is a subgraph of \(G\) that contains every vertex of \(G\) and is a tree.
Proposition
- Every connected graph has a spanning tree.
- Any two spanning trees for a graph have the same number of edges.

\section*{Minimal Spanning Trees}
- A weighted graph is a graph for which each edge has an associated real number weight. The sum of the weights of all the edges is the total weight of the graph.
- A minimal spanning tree for a weighted graph is a spanning tree that has the least possible total weight compared to all other spanning trees for the graphs.
- If \(G\) is a weighted graph and \(e\) is an edge of \(G\) then \(w(e)\) denotes the weight of \(e\) and \(w(G)\) denotes the total weight of \(G\).

\section*{Lecture No. 28 \\ Breadth First Search}

\section*{Contents of the Today Lecture}
- Representation of Graphs
- Breadth First Search
- Algorithm - Proof of correctness
- Analysis
- Supporting lemmas in the proof
- Shortest paths, for unweighted edges, based on Breadth First Search
- Conclusion

\section*{Representations of Graphs}
- Two standard ways to represent a graph
- Adjacency lists,
- Adjacency Matrix
- Applicable to directed and undirected graphs.

Adjacency lists
- A compact way to represent sparse graphs.
- \(|E|\) is much less than \(|V|^{2}\)
- Graph \(G(V, E)\) is represented by array Adj of \(|V|\) lists
- For each \(u \square V\), the adjacency list Adj[ \(u\) ] consists of all the vertices adjacent to \(u\) in \(G\)
- The amount of memory required is: \((\mathrm{V}+\mathrm{E})\)

Adjacency Matrix
- A graph \(\mathrm{G}(\mathrm{V}, \mathrm{E})\) assuming the vertices are numbered \(1,2,3, \ldots,|\mathrm{~V}|\) in some arbitrary manner, then representation of \(G\) consists of: \(|\mathrm{V}| \times|\mathrm{V}|\) matrix \(\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)\) such that \(a_{i j}= \begin{cases}1 & \text { if }(i, j) \mathrm{M}, \mathrm{E} \\ 0 & \text { otherwise }\end{cases}\)
- Preferred when graph is dense
\(-|E|\) is close to \(|V|^{2}\)
Adjacency matrix of undirected graph

\begin{tabular}{|c|c|}
\hline & 12345 \\
\hline 1 & 010 \\
\hline 2 & 01 \\
\hline 3 & \(\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}\) \\
\hline 4 & 011 \\
\hline \multicolumn{2}{|r|}{11010} \\
\hline \multicolumn{2}{|r|}{123456} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 0\end{array}\)} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}\)} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{lllllll}0 & 0 & 0 & 0 & 1 & 1\end{array}\)} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}\)} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}\)} \\
\hline & 00000 \\
\hline
\end{tabular}

\section*{Adjacency Matrix}
- The amount of memory required is \(\left(\mathrm{V}^{2}\right)\)
- For undirected graph to cut down needed memory only entries on and above diagonal are saved
- In an undirected graph, ( \(u, v\) ) and ( \(v, u\) ) represents the same edge, adjacency matrix
\(A\) of an undirected graph is its own transpose \(A=A^{\top}\)
- It can be adapted to represent weighted graphs.

\section*{Breadth First Search}
- One of simplest algorithm searching graphs
- A vertex is discovered first time, encountered
- Let \(\mathrm{G}(\mathrm{V}, \mathrm{E})\) be a graph with source vertex s , BFS
- discovers every vertex reachable from s.
- gives distance from \(s\) to each reachable vertex
- produces BF tree root with s to reachable vertices
- To keep track of progress, it colors each vertex
- vertices start white, may later gray, then black
- Adjacent to black vertices have been discovered
- Gray vertices may have some adjacent white vertices
- It is assumed that input graph \(G(V, E)\) is represented using adjacency list.
- Additional structures maintained with each vertex \(\mathbf{v} \square \mathrm{V}\) are
- color[u] - stores color of each vertex
- m[u] - stores predecessor of u
- d[u] - stores distance from source s to vertex u

BFS(G, s)
1 for each vertex \(u \in \mathrm{~V}[\mathrm{G}]-\{\mathrm{s}\}\)
2 do color \([u] \leftarrow\) WHITE
\(3 \quad \mathrm{~d}[\mathrm{u}] \leftarrow \infty\)
\(4 \quad \pi[u] \leftarrow \mathrm{NIL}\)
5 color[s] \(\leftarrow\) GRAY
\(6 \quad \mathrm{~d}[\mathrm{~s}] \leftarrow 0\)
\(7 \quad \mathrm{~m}[\mathrm{~s}] \leftarrow \mathrm{NIL}\)
\(8 \mathrm{Q} \leftarrow \varnothing \quad / * \mathrm{Q}\) always contains the set of GRAY vertices */
9 ENQUEUE (Q, s)
10 while \(Q \neq \varnothing\)
\(11 \quad\) do \(u \leftarrow\) DEQUEUE (Q)
        for each \(v \in\) Adj [ \(u\) ]
        do if color [v] = WHITE /* For undiscovered vertex. */
                then color \([\mathrm{v}] \leftarrow\) GRAY
                \(d[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{u}]+1\)
                \(\pi[v] \leftarrow u\)
                    ENQUEUE(Q, v)
    color \([\mathrm{u}] \leftarrow\) BLACK


Except root node, s
For each vertex \(u \in V(G)\)
color [u] \(\equiv\) WHITE
\(\mathrm{d}[\mathrm{u}] \equiv \infty\)
\(\pi[\mathrm{s}] \equiv \mathrm{NIL}\)

Considering s as root node color[s] \(\equiv\) GRAY
\(\mathrm{d}[\mathrm{s}] \equiv 0\)
T [s] \(\equiv\) NIL
ENQUEUE (Q, s)

DEQUEUE s from Q
Adj[s] = w, r
color [ w ] = WHITE
color [ w ] \(\leftarrow\) GRAY
\(\mathrm{d}[\mathrm{w}] \leftarrow \mathrm{d}[\mathrm{s}]+1=0+1=1\)
\(\pi[\mathrm{w}] \leftarrow \mathrm{s}\)
ENQUEUE (Q, w)
color [r] = WHITE
color \([r] \leftarrow\) GRAY
\(\mathrm{d}[\mathrm{r}] \leftarrow \mathrm{d}[\mathrm{s}]+1=0+1=1\)
\(\pi[r] \leftarrow s\)
ENQUEUE (Q, r)
color \([\mathrm{s}] \leftarrow\) BLACK


DEQUEUE w from Q
\(\operatorname{Adj}[\mathrm{w}]=\mathrm{s}, \mathrm{t}, \mathrm{x}\)
color [s] \(\neq\) WHITE
color \([\mathrm{t}]=\) WHITE
color \([\mathrm{t}] \leftarrow\) GRAY
\(\mathrm{d}[\mathrm{t}] \leftarrow \mathrm{d}[\mathrm{w}]+1=1+1=2\)
\(\pi[t] \leftarrow w\)
ENQUEUE (Q, t)
color [ x\(]=\) WHITE color \([\mathrm{x}] \leftarrow\) GRAY \(\mathrm{d}[\mathrm{x}] \leftarrow \mathrm{d}[\mathrm{w}]+1=1+1=2\) \(m[\mathrm{x}] \leftarrow \mathrm{w}\)
ENQUEUE (Q, x)
color \([w] \leftarrow\) BLACK

DEQUEUE r from Q
\(\operatorname{Adj}[r]=s, v\)
color [s] \(\neq\) WHITE
color [v] = WHITE
color [v] \(\leftarrow\) GRAY
\(\mathrm{d}[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{r}]+1=1+1=2\)
\(\pi[v] \leftarrow r\)
ENQUEUE (Q, v)
color \([r] \leftarrow\) BLACK

DEQUEUE t from Q
Adj \([t]=u, w, x\)
color [u] = WHITE
color [u] \(\leftarrow\) GRAY
\(\mathrm{d}[\mathrm{u}] \leftarrow \mathrm{d}[\mathrm{t}]+1=2+1=3\)
\(\pi[u] \leftarrow t\)
ENQUEUE (Q, u)
color [w] \(\neq\) WHITE
color \([\mathrm{x}] \neq\) WHITE
color \([t] \leftarrow\) BLACK

\(Q \longdiv { y }\)


DEQUEUE y from Q
Adj[y] = u, x
color [u] \(\neq\) WHITE
color \([\mathrm{x}] \neq\) WHITE
color \([y] \leftarrow\) BLACK
\(Q\)

- Each vertex is enqueued and dequeued atmost once
- Total time devoted to queue operation is \(\mathrm{O}(\mathrm{V})\)
- The sum of lengths of all adjacency lists is \(\Theta\) ( E )
- Total time spent in scanning adjacency lists is O(E)
- The overhead for initialization \(\mathrm{O}(\mathrm{V})\)
- Total Running Time of \(\mathrm{BFS}=\mathrm{O}(\mathrm{V}+\mathrm{E})\)

\section*{Shortest Paths}
- The shortest-path-distance \(\delta(s, v)\) from \(s\) to \(v\) as the minimum number of edges in any path from vertex s to vertex v .
- if there is no path from \(s\) to \(v\), then \(\delta(s, v)=\infty\)
- A path of length \(\delta(\mathrm{s}, \mathrm{v})\) from s to v is said to be a shortest path from s to v .
- Breadth First search finds the distance to each reachable vertex in the graph \(G(V, E)\) from a given source vertex s V.
- The field d , for distance, of each vertex is used.

BFS-Shortest-Paths (G, s)
\(1 \square \mathrm{~V} \in \mathrm{~V}\)
\(2 \mathrm{~d}[\mathrm{v}] \leftarrow \infty\)
\(3 \mathrm{~d}[\mathrm{~s}] \leftarrow 0\)
4 ENQUEUE (Q, s)
5 while \(Q \neq \varphi\)
6 do \(v \leftarrow\) DEQUEUE(Q)
7 for each win Adj[v]
\[
\text { do if } d[w]=\infty
\]
then \(\mathrm{d}[\mathrm{w}] \leftarrow \mathrm{d}[\mathrm{v}]+1\)
ENQUEUE (Q, w)

\section*{Lemma 1}

Statement:
- Let \(G=(V, E)\) be a directed or undirected graph, and let \(s \in V\) be an arbitrary vertex. Then, for any edge \((u, v) \in E, \delta(s, v) \leq \delta(s, u)+1\)
Proof
- If \(u\) is reachable from \(s\), then so is \(v\). In this case, the shortest path from \(s\) to \(v\) cannot be longer than the shortest path from \(s\) to \(u\) followed by the edge ( \(u, v\) ), and thus the inequality holds.
- If \(u\) is not reachable from \(s\), then \(\delta(s, u)=\infty\), and the inequality holds.

\section*{Lemma 2}

Statement:
Let \(G=(V, E)\) be a directed or undirected graph, and suppose that BFS is run on \(G\) from a given source vertex \(s \in V\). Then upon termination, for each vertex \(v \in V\), value \(d[v]\) computed by BFS satisfies: \(\quad d[v] \geq \delta(s, v)\).
Proof
- Induction on number of ENQUEUE operations.
- To prove \(\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}\)
- The basis of the induction is situation immediately after s is enqueued in line 9 of BFS algorithm.
- Base case holds, because \(\mathrm{d}[\mathrm{s}]=0=\delta(\mathrm{s}, \mathrm{s})\) and \(\mathrm{d}[\mathrm{v}]=\infty \geq \delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}-\{\mathrm{s}\}\)
- Inductive hypothesis: \(\mathrm{d}[\mathrm{u}] \geq \delta(\mathrm{s}, \mathrm{u})\). Here white vertex \(v\) is discovered during search from a vertex u.
- By line 15 of BFS we have \(d[v]=d[u]+1\)
- By Inductive hypothesis \(d[u] \geq \delta(s, u)\)
- By previous Lemma, \(\delta(\mathrm{s}, \mathrm{u})+1 \geq \delta(\mathrm{s}, \mathrm{v})\)
- Now by (1), (2) and (3),
\(-\quad d[v]=d[u]+1 \geq \delta(s, u)+1 \geq \delta(s, v)\)
- Hence \(\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})\). Vertex v is then enqueued, and never enqueued again because it is also grayed.
- Hence it prove the theorem

\section*{Lemma 3}

\section*{Statement}
- Suppose that during execution of BFS on a graph \(G=(V, E)\), the queue \(Q\) contains the vertices \(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}} \uparrow\), where \(\mathrm{v}_{1}\) is the head of \(Q\) and \(\mathrm{v}_{\mathrm{r}}\) is the tail. Then, \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}}\right] \leq \mathrm{d}\left[\mathrm{v}_{1}\right]+1\) and \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}+1}\right]\) for \(\mathrm{i}=1,2, \ldots, r-1\)
Proof
- Proof is done by induction on queue operations
- Initially, when queue contains s, lemma holds.
- For inductive step, we must prove that lemma holds after dequeuing and enqueuing a vertex.

Dequeuing a vertex.
- If head \(v_{1}\) of queue is dequeued, \(\mathrm{v}_{2}\) becomes new head. (If queue is empty, lemma holds vacuously.)
- Now \(\mathrm{d}\left[\mathrm{v}_{1}\right] \leq \mathrm{d}\left[\mathrm{v}_{2}\right]\) (by inductive hypothesis)
- To prove that \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}}\right] \leq \mathrm{d}\left[\mathrm{v}_{2}\right]+1\)
- We have \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}}\right] \leq \mathrm{d}\left[\mathrm{v}_{1}\right]+1 \leq \mathrm{d}\left[\mathrm{v}_{2}\right]+1\)
- And remaining inequalities are unaffected.

Enqueuing a vertex.
- When we enqueue vertex \(v_{r+1}\)
- At time of enqueuing \(v_{r+1}\), let \(u\) was removed. Hence, by inductive hypothesis, \(\mathrm{d}\left[\mathrm{v}_{1}\right] \geq \mathrm{d}[\mathrm{u}]\) i.e. \(\mathrm{d}[\mathrm{u}] \leq \mathrm{d}\left[\mathrm{v}_{1}\right]\).
- Since \(v_{r+1}\) is adjacent to \(u\) \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}+1}\right]=\mathrm{d}[\mathrm{u}]+1\)
\(-B y(1)\) and (2), \(d\left[v_{r+1}\right]=d[u]+1 \leq d\left[v_{1}\right]+1\)
- By inductive hypothesis we have \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}}\right] \leq \mathrm{d}[\mathrm{u}]+1\)
- Now \(\mathrm{d}\left[\mathrm{v}_{\mathrm{r}}\right] \leq \mathrm{d}[u]+1=\mathrm{d}\left[\mathrm{v}_{\mathrm{r}+1}\right]\), and the remaining inequalities are unaffected.
- Thus, the lemma is proved when \(v_{r+1}\) is enqueued

\section*{Corollary}

Suppose that vertices \(v_{i}\) and \(v_{j}\) are enqueued during execution of BFS, and that \(v_{i}\) is enqueued before \(\mathrm{v}_{\mathrm{j}}\). Then \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{j}}\right]\) at the time that \(\mathrm{v}_{\mathrm{j}}\) is enqueued.

Proof
- Immediate from above Lemma and
- the property that each vertex receives a finite \(d\) value at most once during the course of BFS

\section*{Theorem (Correctness of BFS)}

Statement: Let \(G=(V, E)\) be a directed or undirected graph, and suppose that BFS is run on \(G\) from a given source vertex \(s \in \mathrm{~V}\). Then, during its execution, BFS discovers every vertex \(\mathrm{v} \in \mathrm{V}\) that is reachable from the source s , and upon termination \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}\).
Moreover, for any vertex \(v \neq s\) that is reachable from \(s\), one of the shortest paths from \(s\) to \(v\) is a shortest path from s to \(\pi[v]\) followed by edge ( \(\pi[\mathrm{v}], \mathrm{v}\) ).

\section*{Proof}
- Assume, for the purpose of contradiction, that some vertex receives a d value not equal to its shortest path distance.
- Let \(v\) be the vertex with minimum \(\delta(s, v)\) that receives such an incorrect \(d\) value; clearly \(\mathrm{v} \neq \mathrm{s}\).
- By Lemma 22.2, \(\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})\), and thus we have that \(\mathrm{d}[\mathrm{v}]>\delta(\mathrm{s}, \mathrm{v})\). Vertex v must be reachable from s , for if it is not, then \(\delta(\mathrm{s}, \mathrm{v})=\infty \geq \mathrm{d}[\mathrm{v}]\).
- Let \(u\) be the vertex immediately preceding \(v\) on a shortest path from \(s\) to \(v\), so that \(\delta(s, v)=\delta(s, u)+1\).
- Because \(\delta(\mathrm{s}, \mathrm{u})<\delta(\mathrm{s}, \mathrm{v})\), and because of how we chose v , we have \(\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\).
- Putting these properties together, we have
- \(\mathrm{d}[\mathrm{v}]>\delta(\mathrm{s}, \mathrm{v})=\delta(\mathrm{s}, \mathrm{u})+1=\mathrm{d}[\mathrm{u}]+1\)
- Now consider the time when BFS chooses to dequeue vertex u from \(Q\) in line 11.
- At this time, vertex v is, white, gray, or black.
- We shall show that in each of these cases, we derive a contradiction to inequality (22.1).
- If \(v\) is white, then line 15 sets \(d[v]=d[u]+1\), contradicting inequality (22.1).
- If \(v\) is black, then it was already removed from the queue and, by Corollary 22.4, we have \(\mathrm{d}[\mathrm{v}] \leq \mathrm{d}[\mathrm{u}]\), again contradicting inequality (22.1).
- If \(v\) is gray, then it was painted gray upon dequeuing some vertex \(w\), which was removed from \(Q\) earlier than \(u\) and, \(d[v]=\mathrm{d}[\mathrm{w}]+1\).
- By Corollary 22.4, however, \(\mathrm{d}[\mathrm{w}] \leq \mathrm{d}[\mathrm{u}]\), and so we have \(\mathrm{d}[\mathrm{v}] \leq \mathrm{d}[\mathrm{u}]+1\), once again contradicting inequality (22.1).
- Thus we conclude that \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}\). All vertices reachable from s must be discovered, if they were not, they would have infinite \(d\) values.
- To conclude the proof of the theorem, observe that if \(\pi[v]=u\), then \(d[v]=d[u]+1\).
- Thus, we can obtain a shortest path from \(s\) to \(v\) by taking a shortest path from \(s\) to \(\pi[v]\) and then traversing the edge ( \(\pi[\mathrm{v}], \mathrm{v}\) )

\section*{Lemma}

When applied to a directed or undirected graph \(G=(V, E)\), procedure BFS constructs \(\pi\) so that the predecessor subgraph \(G_{\pi}=\left(V_{\pi}, E_{\pi}\right)\) is a breadth-first tree.

Proof
- Line 16 of BFS sets \(\pi[v]=u\) if and only if ( \(u v\) ) \(\in E\) and \(\delta(s, v)<\infty\) that is, if \(v\) is reachable from \(s\) and thus \(V_{\pi}\) consists of the vertices in \(V\) reachable from \(s\).
- Since \(G_{\pi}\) forms a tree, it contains a unique path from \(s\) to each vertex in \(V_{\pi}\).
- By applying previous Theorem inductively, we conclude that every such path is a shortest path.
- The procedure in upcoming slide prints out the vertices on a shortest path from s to v , assuming that BFS has already been run to compute the shortest-path tree.

\section*{Print Path}

PRINT-PATH (G, s, v)
if \(v=s\)
then print s
else if \(\pi[v]=\) NIL
then print "no path from s to \(v\) exists
else PRINT-PATH (G, s, m[v])
print v

\section*{Conclusion}
- How graphs can be represented
- Breadth First Search Techniques is discussed
- Algorithms is designed
- It is to be noted that just designing an algorithm of any problem is not enough, to give its proof is required as well.
- Correctness of Breadth First Search is given
- BFS algorithm is refined to find shortest path
- This shortest path is, of course, for un-weighted graphs
- Searching algorithms have various applications.

\section*{Lecture 29}

Proof (Breadth First Search Algorithm)
Depth First Search

\section*{Depth First Search}
- The predecessor subgraph of a depth-first search forms a depth-first forest composed of several depth-first trees defined as
\(G_{\pi}=\left(V_{\pi}, E_{\pi}\right)\), where
\(E_{\pi}=\{(\pi[v], v): v m \vee\) and \(\pi[v] \neq N I L\}\)
the edges in \(\mathrm{E}_{\pi}\) are called tree edges.
- Each vertex is initially white
- It is grayed when it is discovered in the search, and
- It is blackened when it is finished, that is, when its adjacency list has been examined completely.

\section*{Discovery and Finish Times}
- It guarantees that each vertex ends up in exactly one depth-first tree, so that these trees are disjoint.
- It timestamps each vertex
- the first timestamp d[v] records when vis first discovered (and grayed), and
- the second timestamp f [v] records when the search finishes examining v's adjacency list (and blackens v).
- For every vertex u \(\mathrm{d}[\mathrm{u}]<\mathrm{f}[\mathrm{u}]\)

\section*{Algorithm: Depth First Search}

\section*{DFS(G)}

1 for each vertex u m V [G]
2 do color \([u] \leftarrow\) WHITE
3
4
5 for each vertex u m \(\vee\) [G]
6 do if color [u] = WHITE
7 then DFS-Visit (u)
Total Running Time \(={ }^{*}(\mathrm{~V}+\mathrm{E})\)

DFS-Visit(u)
1 color \([u] \leftarrow\) GRAY
2 time \(\leftarrow\) time +1
\(3 \mathrm{~d}[\mathrm{u}] \leftarrow\) time
4 for each \(v \mathrm{~m}\) Adj [u]
5 do if color [v] = WHITE then \(\pi[v] \leftarrow u\)

DFS-Visit (v)
8 color [u] \(\leftarrow\) BLACK
\(9 \mathrm{f}[\mathrm{u}] \leftarrow\) time \(\leftarrow\) time +1


Considering white vertex u color [u] \(\equiv\) GRAY
\(\mathrm{d}[\mathrm{u}] \equiv\) time \(+1=0+1=1\)
Adj[u] = v, x
color [v] = WHITE
\(\pi[\mathrm{v}] \leftarrow \mathrm{u}\)
DFS-VISIT (v)
\[
\text { color }[\mathrm{v}] \equiv \text { GRAY }
\]
\(\mathrm{d}[\mathrm{v}] \equiv\) time \(+1=1+1=2\)
Adj[v] = y
color [y] = WHITE
\(\pi[y] \leftarrow v\)
DFS-VISIT ( y )


> color \([y] \equiv\) GRAY
> \(\mathrm{d}[\mathrm{y}] \equiv\) time \(+1=2+1=3\)
> Adj \([\mathrm{y}]=\mathrm{x}\)
> \(\operatorname{color}[\mathrm{x}]=\) WHITE
> \(\Pi[\mathrm{x}] \leftarrow \mathrm{y}\)
> \(\quad \operatorname{DFS}-\operatorname{VISIT}(x)\)

color [x] \(\equiv\) GRAY
\(\mathrm{d}[\mathrm{x}] \equiv\) time \(+1=3+1=4\)
\(\operatorname{Adj}[\mathrm{x}]=\mathrm{v}\)
color [v] \(\neq\) WHITE


The edge ( \(x, v\) ) is a back edge that is a non tree edge and is labeled as B


The vertex x is finished.
color [ x ] \(\equiv\) BLACK
\(\mathrm{f}[\mathrm{x}] \equiv\) time \(+1=4+1=5\)


The vertex y is finished.
color [y] ミ BLACK
\(\mathrm{f}[\mathrm{y}] \equiv\) time \(+1=5+1=6\)


The vertex v is finished.
color [v] ミ BLACK
\(\mathrm{f}[\mathrm{v}] \equiv\) time \(+1=6+1=7\)


The edge \((u, x)\) is a forward edge that is a non tree edge and is labeled as F


The vertex u is finished.
color [u] ミ BLACK
\(\mathrm{f}[\mathrm{u}] \equiv\) time \(+1=7+1=8\)


Considering white vertex w color [w] \(\equiv\) GRAY
\(\mathrm{d}[\mathrm{w}]\) Etime \(+1=8+1=9\)
\(\operatorname{Adj}[w]=y, z\)
color [y] \(=\) WHITE
color [z] = WHITE
\(m[z] \leftarrow \mathrm{w}\)
DFS-VISIT (z)


The edge ( \(\mathrm{w}, \mathrm{y}\) ) is a cross edge that is a non tree edge and is labeled as C

\[
\begin{aligned}
& \text { color }[z] \equiv \text { GRAY } \\
& d[z] \equiv \text { time }+1=9+1=10 \\
& \text { Adj[z] }=z \\
& \text { color }[z] \neq \text { WHITE }
\end{aligned}
\]


The edge \((z, z)\) is a back edge that is a non tree edge and is labeled as B


The vertex \(z\) is finished.
color [z] ミ BLACK
\(\mathrm{f}[\mathrm{z}] \equiv\) time \(+1=10+1=11\)


The vertex w is finished.
color [w] ミ BLACK
\[
\mathrm{f}[\mathrm{w}] \equiv \text { time }+1=11+1=12
\]

\section*{Properties of Depth First Search}
- It yields valuable information about structure of a graph.
- Predecessor subgraph \(G_{\pi}\) does indeed form a forest of trees, since the structure of the depth-first trees exactly mirrors the structure of recursive calls of DFSVISIT.
- Discovery and finishing times have parenthesis structure.
- If we represent the discovery of vertex u with a left parenthesis "(u" and represent its finishing by a right parenthesis "u)", then
- history of discoveries and finishing makes well-formed expression in a sense that parentheses properly nested.

\section*{Parenthesis Structure}


Theorem: Parenthesis Theorem
In any depth-first search of a (directed or undirected) graph \(G=(V, E)\), for any two vertices \(u\) and \(v\), exactly one of the following three conditions holds:
1. The intervals \([d[u], f[u]]\) and \([\mathrm{d}[\mathrm{v}], \mathrm{f}[\mathrm{v}]]\) are entirely disjoint, and neither \(u\) nor \(v\) is a descendant of the other in the depth-first forest,
2. The interval \([d[u], f[u]]\) is contained entirely within the interval \([d[v], f[v]]\), and \(u\) is a descendant of \(v\) in a depth-first tree, or
3. The interval \([\mathrm{d}[\mathrm{v}], \mathrm{f}[\mathrm{v}]]\) is contained entirely within the interval \([\mathrm{d}[\mathrm{u}]\), \(\mathrm{f}[\mathrm{u}]]\), and v is a descendant of \(u\) in a depth-first tree.

\section*{Proof}
- We begin with case in which \(\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]\).
- There are two sub-cases, either \(\mathrm{d}[\mathrm{v}]<\mathrm{f}[\mathrm{u}]\) or \(\mathrm{d}[\mathrm{v}]>\mathrm{f}[\mathrm{u}]\).

\section*{Case 1}
- \(\mathrm{d}[\mathrm{v}]<\mathrm{f}[\mathrm{u}] \Rightarrow \mathrm{v}\) discovered while \(u\) was still gray.
- This means \(v\) is a descendant of \(u\).
- Since \(v\) was discovered more recently than \(u\), all of its outgoing edges are explored, and \(v\) is finished, before search finishes \(u\).
- Hence \(d[u]<d[v]<f(v)<f(u)\) (part 3 is proved)

\section*{Case 2}
- \(d[u]<d[v]\)
(supposed)
- and \(\mathrm{f}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]\) (by case 2)
- Hence intervals [d[u], f[u]] and [d[v], f[v]] disjoint.
- Because intervals are disjoint, neither vertex was discovered while the other was gray, and so neither vertex is a descendant of the other.
- Now if we suppose \(\mathrm{d}[\mathrm{v}]<\mathrm{d}[\mathrm{u}]\), then again either
- Intervals will be disjoint OR
- Interval of \(v\) will contain interval of \(u\).

\section*{Corollary (Nesting of Descendants' Intervals)}

Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph \(G\) if and only if \(d[u]<d[v]<f[v]<f[u]\)

\section*{Proof}
- Immediate from the above Theorem

\section*{Classification of Edges}

The depth-first search can be used to classify the edges of the input graph \(G=(V, E)\).
- Tree edges
- These are edges in the depth-first forest \(G_{\pi}\).
- Edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge \((u, v)\).
- Back edges
- those edges (u, v) connecting a vertex u to an ancestor vin a depth first tree.
- Self-loops, which may occur in directed graphs, are considered to be back edges.
- Forward edges
- Those nontree edges ( \(u, v\) ) connecting a vertex \(u\) to a descendant \(v\) in a depthfirst tree.
- Cross edges
- These are all other edges.
- They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or
- They can go between vertices in different depth-first trees.

\section*{Theorem}

In a depth-first search of an undirected graph \(G\), every edge of \(G\) is either a tree edge or back edge.

Proof
- Let ( \(u, v\) ) an arbitrary edge of \(G\), and suppose without loss of generality that \(\mathrm{d}[u]<\mathrm{d}[\mathrm{v}]\).
- Then, \(v\) must be discovered and finished before we finish \(u\) (while \(u\) is gray), since \(v\) is on u's adjacency list.
- If the edge \((u, v)\) is explored first in direction from \(u\) to \(v\), then \(v\) is undiscovered (white) until that time, for otherwise we would have explored this edge already in the direction from \(v\) to \(u\).
- Thus, ( \(u, v\) ) becomes a tree edge.
- If \((u, v)\) is explored first in the direction from \(v\) to \(u\), then \((u, v)\) is a back edge, since \(u\) is still gray at the time the edge is first explored.

\section*{Conclusion}
- Depth First Search Techniques is discussed
- Algorithms is designed
- Correctness of Depth First Search is given
- Topological sort and its benefits
- Computing strongly connected components
- Applications and Conclusion

\section*{Lecture 30 \\ Proof (White Path Theorem) \\ Applications of Depth First Search}

Classification of Edges


\section*{Tree edges}

Back edges
Forward edges
Cross edges

\section*{Theorem: White-Path Theorem}

In a depth-first forest of a (directed or undirected) graph \(G=(V, E)\), vertex \(v\) is a descendant of vertex \(u\) if and only if at the time \(d[u]\) that the search discovers \(u\), vertex \(v\) can be reached from \(u\) along a path consisting entirely of white vertices.

\section*{Proof:}
- Assume that \(v\) is a descendant of \(u\).
- Let \(w\) be any vertex on the path between \(u\) and \(v\) in depth-first tree, so that \(w\) is a descendant of \(u\)
- As \(\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{w}]\), and so w is white at time \(\mathrm{d}[u]\).
- Second part is proved by contradiction
- Suppose that vertex \(v\) is reachable from \(u\) along a path of white vertices at time \(d[u]\), but \(v\) does not become a descendant of \(u\) in the depth-first tree.
- Without loss of generality, assume that every other vertex along the path becomes a descendant of \(u\).
- (Otherwise, let \(v\) be the closest vertex to \(u\) along the path that doesn't become a descendant of \(u\).)
- Let \(w\) be predecessor of \(v\) in the path, so that \(w\) is a descendant of \(u\) ( \(w\), \(u\) may be same) by Corollary above \(\mathrm{f}[\mathrm{w}] \leq \mathrm{f}[\mathrm{u}]\).
- Note v must be discovered after \(u\) is discovered, \(\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]\)
- but \(v\) must be discovered before \(w\) is finished. \(d[v]<f[w]\)
- Therefore, by (1), (2) and (3) \(\mathrm{d}[\mathrm{u}]<\mathrm{d}[\mathrm{v}]<\mathrm{f}[\mathrm{w}] \leq \mathrm{f}[\mathrm{u}]\).
- Above Theorem implies that interval [d[v],f[v]] contained entirely within interval [d[u],f[u]].
- By Corollary above, \(v\) must be a descendant of \(u\).

\section*{Topological Sort}
- A Topological Sort of a directed acyclic graph, or a "dag" \(G=(V, E)\) is a linear ordering of all its vertices such that
- if \(G\) contains an edge \((u, v)\), then \(u\) appears before \(v\) in the ordering.
- It is ordering of its vertices along a horizontal line so that all directed edges go from left to right
- The depth-first search can be used to perform a topological sort of a dag.

TOPOLOGICAL-SORT (G)
1. Call DFS(G) to compute \(f[v]\) of each vertex \(v m \vee\).
2. Set an empty linked list \(L=\varnothing\).
3. When a vertex \(v\) is colored black, assign it \(f(v)\).
4. Insert \(v\) onto the front of the linked list, \(L=\{v\}\). \(L\).
5. Return the linked list.
6. The rank of each node is its position in the linked list started from the head of the list.

Total Running Time \(=\Theta(\mathrm{V}+\mathrm{E})\)
Example: Topological Sort


\footnotetext{
Ordering w. r. t. Finishing Time: Topological Sort
}


\section*{Lemma}

A directed graph \(G\) is acyclic if and only if a depth-first search of \(G\) yields no back edges.

\section*{Proof}

0: G is acyclic.
- Suppose that there is a back edge ( \(u, v\) ).
- Then, vertex \(v\) is an ancestor of \(u\) in DF forest.
- There is thus a path from \(v\) to \(u\) in \(G\), and the back edge ( \(u, v\) ) completes a cycle.
- \(G\) is cyclic and hence a contradiction,
- Our supposition is wrong and
- Hence G has no back edge

Э: If DFS yields no back edges \(G\) has no cycle
- We prove it by contra positive
- We prove that if \(G\) contains a cycle \(c\) the DFS of \(G\) yields a back edge.
- Let \(G\) has a cycle c.
- Let \(v\) be the first vertex to be discovered in \(c\), and let ( \(u, v\) ) be the preceding edge in \(c\).
- At time \(d[v]\), the vertices of \(c\) form a path of white vertices from \(v\) to \(u\).
- By the white-path theorem, vertex \(u\) becomes a descendant of \(v\) in the depth-first forest. Therefore, \((u, v)\) is a back edge.

\section*{Theorem}

TOPOLOGICAL-SORT (G) produces a topological sort of a directed acyclic graph G .

Proof
- Let DFS is run on \(G\) to determine finishing times.
- It sufficient to show that for any two distinct \(u, v \in V\), if there is an edge in \(G\) from \(u\) to \(v\), then \(\mathrm{f}[\mathrm{v}]<\mathrm{f}[\mathrm{u}]\)
- Consider any edge (u, v) explored by DFS(G).
- When ( \(u, v\) ) is explored, \(v\) is gray, white or black

Case 1
- \(v\) is gray. \(v\) is ancestor of \(u\). ( \(u, v\) ) would be a back edge. It contradicts the above Lemma.

\section*{Case 2}
- If \(v\) is white, it becomes a descendant of \(u\), and hence \(f[v]<f[u]\).

\section*{Case 3}
- If \(v\) is black, it has already been finished, so that \(\mathrm{f}[\mathrm{v}]\) has already been set.
- Because we are still exploring from \(u\), we have yet to assign a timestamp to f[u] to \(u\), and so once we do, we will have \(\mathrm{f}[\mathrm{v}]<\mathrm{f}[\mathrm{u}]\) as well.

Thus, for any edge ( \(u, v\) ) in the dag, we have \(\mathrm{f}[\mathrm{v}]<\mathrm{f}[\mathrm{u}]\). It proves the theorem.

\section*{Strongly Connected Components}
- A strongly connected component of a directed graph \(G=(V, E)\) is a maximal set of vertices \(\mathrm{C} \mathscr{H} \subseteq \mathrm{V}\) such that for every pair of vertices u and v in C , we have
- u \& v, v is reachable from \(u\).
- \(\quad\) \& \(u\); \(u\) is reachable from \(v\).
- The depth-first search can be used in decomposing a directed graph into its strongly connected components.

Transpose of a Graph
- The strongly connected components of a graph \(G=(V, E)\) uses the transpose of \(G\), which is defined as
\(G^{\top}=\left(V, E^{\top}\right)\), where
\(E^{\top}=\{(u, v):(v, u) \in E\}\)
\(E^{\top}\) consists of the edges of \(G\) with reversed directions.
- \(G\) and \(G^{\top}\) have exactly the same strongly connected components
- \(u\) and \(v\) are reachable from each other in \(G\) if and only if they are reachable from each other in \(G^{\top}\).

STRONGLY-CONNECTED-COMPONENTS (G)
1 call DFS(G), to compute the finish time \(f[u]\) of each vertex \(u\)
2 Compute \(G^{\top}\).
3 Call DFS \(\left(G^{\top}\right)\), but in the main loop of DFS, consider the vertices in order of decreasing \(\mathrm{f}[u]\). (as computed in line 1)
4 Output of the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component.

Total Running Time \(=\) * \((V+E)\)


\section*{Component Graph}

- The component graph \(G^{S C C}=\left(V^{S C C}, E^{S C C}\right)\)
- \(V^{S C C}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}\), where \(\mathrm{v}_{\mathrm{i}}\) corresponds to each strongly connected component \(\mathrm{C}_{\mathrm{i}}\)
- There an edge \(\left(v_{i}, v_{j}\right) \in E^{S C C}\) if \(G\) contains a directed edge \((x, y)\) for some \(x \in C_{i}\) and \(y \in C_{j}\)
- The component graph is a DAG

Lemma

\section*{Lemma 1}
- Let C and \(\mathrm{C}^{\prime}\) be distinct SCC's in G
- Let \(u, v \in C\), and \(u^{\prime}, v^{\prime} \in C^{\prime}\)
- Suppose there is a path \(u \in u^{\prime}\) in \(G\)
- Then there cannot also be a path \(v^{\prime} \in v\) in \(G\).

\section*{Proof}
- Suppose there is path v' \(v\)
- There exists u \& \(\mathbf{u}^{\prime}\) \& \(\mathrm{v}^{\prime}\)
- There exists v' \& v \& u
- \(u\) and \(v\) ' are reachable from each other, so they are not in separate SCC's: contradiction!


Notations

\section*{Notations: Vertices to SCC}
- \(d\) and \(f\) times of vertices of SCC
- Let \(\mathrm{U} \subseteq \mathrm{V}\), a SCC
- \(d(U)=\min _{\in U}\{\mathrm{~d}[u]\}\) (earliest discovery time)
- \(f(U)=\max _{u \in U}\{f[u]\}\) (latest finishing time)


\section*{Lemma 2}
- Let \(C\) and \(C^{\prime}\) be distinct \(S C C s\) in a directed graph \(G=(V, E)\). If there is an edge \((u, v) \in\) \(E\), where \(u \in C\) and \(v \in C^{\prime}\) then \(f(C)>f\left(C^{\prime}\right)\).

\section*{Proof}
- Consider C1 and C2, connected by edge (u, v)
- There are two cases, depending on which strongly connected component, C or \(\mathrm{C}^{\prime}\), had the first discovered vertex during the depth-first search

\section*{Case 1}
- If \(d(C)<d\left(C^{\prime}\right)\), let \(x\) be the first vertex discovered in \(C\). At time \(d[x]\), all vertices in \(C\) and \(\mathrm{C}^{\prime}\) are white.
- There is a path in \(G\) from \(x\) to each vertex in \(C\) consisting only of white vertices.
- Because \((u, v) \in E\), for any vertex \(w \in C^{\prime}\), there is also a path at time \(d[x]\) from \(x\) to \(w\) in \(G\) consisting only of white vertices: \(x\) \& \(u \quad v\) \& \(w\).
- By the white-path theorem, all vertices in \(C\) and \(C^{\prime}\) become descendants of \(x\) in the depth-first tree. By Corollary, \(f[x]=f(C)>f\left(C^{\prime}\right)\).

\section*{Case 2}
- \(\mathrm{d}(\mathrm{C})>\mathrm{d}\left(\mathrm{C}^{\prime}\right) \quad\) (supposition)
- Now ( \(u, v\) ) \(\in E\), where \(u \in C\) and \(v \in C^{\prime}\) (given)
- Let y be the first vertex discovered in \(\mathrm{C}^{\prime}\).
- At time \(\mathrm{d}[\mathrm{y}]\), all vertices in \(\mathrm{C}^{\prime}\) are white and there is a path in \(G\) from \(y\) to each vertex in C' consisting only of white vertices.
- By the white-path theorem, all vertices in \(\mathrm{C}^{\prime}\) become descendants of y in the depth-first tree, and by Corollary, \(\mathrm{f}[\mathrm{y}]=\mathrm{f}\left(\mathrm{C}^{\prime}\right)\).
- At time d[y], all vertices in C are white. Since there is an edge ( \(u, v\) ) from \(C\) to \(C^{\prime}\), Lemma implies that there cannot be a path from \(\mathrm{C}^{\prime}\) to C .
- Hence, no vertex in \(C\) is reachable from \(y\).
- At time \(\mathrm{f}[\mathrm{y}]\), therefore, all vertices in C are still white.
- Thus, for any vertex \(w \in C\), we have \(f[w]>f[y]\), which implies that \(f(C)>f\left(C^{\prime}\right)\).

\section*{Corollary}

Let C and \(\mathrm{C}^{\prime}\) be distinct strongly connected components in directed graph \(\mathrm{G}=(\mathrm{V}\), E). Suppose that there is an edge \((u, v) \in E^{\top}\), where \(u \in C\) and \(v \in C^{\prime}\). Then \(f(C)<f\left(C^{\prime}\right)\)

Proof
- Since \((u, v) \in E^{\top}\), we have \((v, u) \in E\).
- Since strongly connected components of \(G\) and \(G^{\top}\) are same, Lemma implies that \(f(C)<\) \(f\left(C^{\prime}\right)\).

\section*{Theorem: Correctness of SCC Algorithm}

STRONGLY-CONNECTED-COMPONENTS (G) correctly computes SCCs of a directed graph G.

Proof
- We argue by induction on number of DF trees of \(G^{\top}\) that "vertices of each tree form a SCC".
- The basis for induction, when \(\mathrm{k}=0\), is trivial.
- Inductive hypothesis is that, first \(k\) trees produced by DFS of \(G^{\top}\) are strongly connected components.
- Now we prove for \((k+1)^{\text {st }}\) tree produced from \(G^{\top}\), i.e. vertices of this tree form a SCC.
- Let root of this tree be \(u\), which is in SCC C.
- Now, \(f[u]=f(C)>f\left(C^{\prime}\right), \forall C^{\prime}\) yet to be visited and \(\neq C\)
- By inductive hypothesis, at the time search visits \(u\), all other vertices of \(C\) are white.
- By white-path theorem, all other vertices of \(C\) are descendants of \(u\) in its DF tree.
- Moreover, by inductive hypothesis and by Corollary above, any edges in \(G^{\top}\), that leave \(C\) must be, to SCCs that have already been visited.
- Thus, no vertex in any SCC other than \(C\) will be a descendant of \(u\) during the DFS of \(G^{\top}\).
- Thus, vertices of DF tree in \(G^{\top}\) rooted at u form exactly one SCC.

Lecture No. 31
Backtracking and Branch \& Bound Algorithms

\section*{Today Covered}
- Why backtracking?
- What is backtracking?
- Backtracking
- Solution Spaces
- Knapsack Problem
- The Queens Problem
- Branch and bound technique
- Assigning Task to Agents

\section*{Why BackTracking?}
- When the graph is too large
- Depth and breadth-first techniques are infeasible
- In this approach if node searched for
- is found out that cannot exist in the branch then
- return back to previous step and continue the search to find the required node
- What is backtracking?


\section*{What is BackTracking?}
- Backtracking is refinement of Brute Force approach
- It is a technique of constraint satisfaction problems
- Constraint satisfaction problems are with complete solution, where elements order does not matter.
- In backtracking, multiple solutions can be eliminated without examining, by using specific properties
- Backtracking closely related to combinatorial search
- There must be the proper hierarchy in produces
- When a node is rejected, whole sub-tree rejected, and we backtrack to the ancestor of node.
- Method is not very popular, in the worst case, it takes an exponential amount of time to complete.

\section*{Solution Spaces}
- Solutions are represented by vectors \(\left(v_{1}, \ldots, v_{m}\right)\) of values. If \(S_{i}\) is the domain of \(v_{i}\), then \(S_{1} \times \ldots \times S_{m}\) is the solution space of the problem.
- Approach
- It starts with an empty vector.
- At each stage it extends a partial vector with a new value
- Upon reaching a partial vector ( \(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}, \mathrm{v}\) ) which can't represent a partial solution, the algorithm backtracks by removing the trailing value from the vector, and then proceeds by trying to extend the vector with alternative values.

\section*{General Algorithm: Solution Spaces}

ALGORITHM try \(\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}\right)\)
IF \(\left(v_{1}, \ldots, v_{i}\right)\) is a solution
THEN RETURN ( \(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}\) )
FOR each v DO
IF \(\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}, \mathrm{v}\right)\) is acceptable vector
THEN
\[
\mathrm{sol}=\operatorname{try}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{i}}, \mathrm{v}\right)
\]

THEN RETURN sol

\section*{Knapsack: Feasible Solutions}
- Partial solution is one in which only first \(k\) items have been considered.
- Solution has form \(S_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, 1 \leq k<n\).
- The partial solution \(S_{k}\) is feasible if and only if
\[
\sum_{i=1}^{k} w_{i} x_{i} \leq C
\]
- If \(S_{k}\) is infeasible, then every possible complete solution containing \(S_{k}\) is also infeasible.

\section*{Knapsack Example: Backtracking}

Maximum Capacity = 8
\begin{tabular}{|c|l|l|l|l|}
\hline\(i\) & 1 & 2 & 3 & 4 \\
\hline\(v_{i}\) & 3 & 5 & 6 & 10 \\
\hline\(w_{i}\) & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
\((2,2,3 ; 11)\) means that two elements of each weight 2 and one element of weight 3 is with total value 11


Knapsack Algorithm: Backtracking
BackTrack(i, r) _ll BackTrack(1, C)
\(\mathrm{b} \leftarrow 0\)
\{try each kind of item in tern\}
for \(k \leftarrow i\) to \(n\)
do
if \(w(k) \leq r\) then
\(\mathrm{b} \leftarrow \max (\mathrm{b}, \mathrm{v}[\mathrm{k}]+\operatorname{BackTrack}(\mathrm{k}, \mathrm{r}-\mathrm{w}[\mathrm{k}]))\)
return b

Lecture No. 32
Minimal Spanning Tree Problem

\section*{Today Lecture Covers}
- Importance of Minimal Spanning - Algorithm

Trees (MST)
- MST Problem
- Definitions and analysis
- Generic Solution
- Proofs of correctness
- Kruskal's Algorithm

\section*{Minimum Spanning Tree}
- Given a graph \(G=(V, E)\) such that
- \(G\) is connected and undirected
- w(u,v) weight of edge (u,v)
- T is a Minimum Spanning Tree (MST) of G if
- \(\quad T\) is acyclic subset of \(E(T \square E)\)
- It connects all the vertices of \(G\) and
- Total weight, \(\mathrm{w}(\mathrm{T})=\sum_{(u, v) \in T} w(u, v)\) is minimized

\section*{Example of MST}
- Minimum spanning trees are not unique
- If we replace \((b, c)\) with \((a, h)\), get a different spanning tree with the same cost
- MST have no cycles
- We can take out an edge of
- a cycle, and still have the
- vertices connected while reducing the cost


\section*{Generic Solution : To Compute MST}

Minimum-spanning-tree problem: Find a MST for a connected, undirected graph, with a weight function associated with its edges

\section*{A generic solution:}
- Build a set A of edges (initially empty)
- Incrementally add edges to \(A\)
such that they would belong to a MST
- An edge \((u, v)\) is safe for \(A \Leftrightarrow A \cup\{(u, v)\}\) is also a subset of some MST


\section*{How to Find Safe Edge?}
- Let us look at edge (h, g)
- Is it safe for A initially?
- Let \(S \subset \mathrm{~V}\) be any set of vertices that includes \(h\) but not \(g\) (so that \(g\) is in \(V-S\) )
- In any MST, there has to be one edge (at least) that connects S with V - S
- Why not choose edge with minimum weight (h,g)


\section*{Generic Algorithm: Minimum Spanning Tree}

GENERIC-MST(G, w)
\(1 \mathrm{~A} \leftarrow \varnothing\)
2 while A does not form a spanning tree
3 for A
\(4 \quad \mathrm{~A} \leftarrow \mathrm{~A} \cup\{(\mathrm{u}, \mathrm{v})\}\)
5 return A

\section*{Strategy: Growing Minimum Spanning Tree}
- The algorithm uses greedy strategy which grows MST one edge at a time.
- Given a connected, undirected graph \(G=(V, E)\) with a weight function w:E \(\nearrow R\)
- Algorithm manages a set of edges \(A\), maintaining loop invariant
- Prior to each iteration, \(A\) is a subset of some MST
- An edge \((u, v)\) is a safe edge for \(A\) such that \(A \cup\{(u, v)\}\) is also a subset of some MST.
- Algorithms, discussed here, to find safe edge are
- Kruskal's Algorithm
- Prim's Algorithm

\section*{Definitions (Kruskal's Algorithm)}
- A cut (S, V-S) of an undirected graph is a partition of \(V\)
- An edge crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S.
- A cut respects set A of edges if no edge in A crosses cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.


\section*{Theorem (Kruskal's Algorithm)}

Let \(G=(V, E)\) be a connected, undirected graph with a real-valued weight function w on \(E\). Let A be a subset of \(E\) that is included in some minimum spanning tree for \(G\), let ( \(\mathrm{S}, \mathrm{V}-\mathrm{S}\) ) be any cut of \(G\) that respects \(A\), and let ( \(u, v\) ) be a light edge crossing ( \(S, V-S\) ). Then, edge \((u, v)\) is safe for \(A\).

Proof
- Let T be a minimum spanning tree that includes A (edges of A are shaded),
- Assume that T does not contain the light edge ( \(u, v\) ), since if it does, we are done.


Construction of another MST
- For \((u, v) \notin T\)
- We construct another MST T' that includes \(\mathrm{A} \cup\{(\mathrm{u}, \mathrm{v})\}\) by cut-and-paste, and showing that \((u, v)\) is a safe A.
- Since (u, v) crosses cut set (S, V-S) and
- \((u, v) \notin T\),
- Hence there must be an edge ( \(x, y\) ) \(\in T\) which crosses the cut set
- By removing ( \(x, y\) ) breaks T into two components.
- Adding ( \(u, v\) ) reconnects them to form a new spanning tree \(\mathrm{T}^{\prime}=\mathrm{T}-\{(\mathrm{x}, \mathrm{y})\} \cup\{(\mathrm{u}, \mathrm{v})\}\).

Show that \(\mathrm{T}^{\prime}\) is a minimum spanning tree.
- Since ( \(u, v\) ) is a light edge crossing ( \(S, V-S\) ) and ( \(x, y\) ) also crosses this cut, \(w(u, v) \leq\) \(\mathrm{w}(\mathrm{x}, \mathrm{y})\).
- Hence, \(w\left(T^{\prime}\right)=w(T)-w(x, y)+w(u, v) \leq w(T)\).
- But \(T\) is a MST, so that \(w(T) \leq w\left(T^{\prime}\right)\); thus, \(T^{\prime}\) must be a minimum spanning tree also.

Show that \((u, v)\) is safe for \(A:(u, v)\) can be part of MST
- Now \((x, y)\) is not in \(A\), because the cut respects \(A\).
- \(\quad\) Since \(A \subseteq T\) and \((x, y) \notin A \Rightarrow A \subseteq T-\{(x, y)\}\)
- \(A \cup\{(u, v)\} \subseteq T-\{(x, y)\} \cup\{(u, v)\}=T\),
- Since \(T^{\prime}\) is an MST \(\Rightarrow(u, v)\) is safe for \(A\)

\section*{Kruskal's Algorithm}

\section*{MST-KRUSKAL (G, w)}
\(1 \mathrm{~A} \leftarrow \varnothing\)
2 for each vertex \(v \in \mathrm{~V}[\mathrm{G}]\)
3 do MAKE-SET(v)
4 sort edges in non-decreasing order by weight w
5 for each ( \(u, v\) ) in non-decreasing order by weight
6 do if FIND-SET(u) \(\neq\) FIND-SET( \(v\) )
7
8
then \(\mathrm{A} \leftarrow \mathrm{A} \cup\{(\mathrm{u}, \mathrm{v})\}\)
UNION (u, v)
9 return A

Total Running time \(=\mathrm{O}(\mathrm{E} \lg \mathrm{V})\),

\section*{Kruskal's Algorithm}


Initial sets \(=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\},\{h\}\), \{i\}

\begin{tabular}{|l|l|l|l|}
\hline Edges & Weight & Edges & Weight \\
\hline\((\mathrm{g}, \mathrm{h})\) & 1 & \((\mathrm{~h}, \mathrm{i})\) & 7 \\
\hline\((\mathrm{c}, \mathrm{i})\) & 1 & \((\mathrm{a}, \mathrm{h})\) & 8 \\
\hline\((\mathrm{f}, \mathrm{g})\) & 2 & \((\mathrm{~b}, \mathrm{c})\) & 8 \\
\hline\((\mathrm{a}, \mathrm{b})\) & 4 & \((\mathrm{~d}, \mathrm{e})\) & 9 \\
\hline\((\mathrm{c}, \mathrm{f})\) & 4 & \((\mathrm{e}, \mathrm{f})\) & 10 \\
\hline\((\mathrm{~g}, \mathrm{i})\) & 6 & \((\mathrm{~b} \mathrm{~h})\) & 11 \\
\hline\((\mathrm{c}, \mathrm{d})\) & 7 & \((\mathrm{~d}, \mathrm{f})\) & 14 \\
\hline
\end{tabular}

Initial sets \(=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{\mathbf{g}\},\{\underline{\mathbf{h}}\}\), \{i\}
Final sets \(=\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{\mathbf{g}, \mathbf{h}\}\), \{i\}
\(A=\varnothing\)
\((g, h)\) is the least weight edge
FIND-SET \((\mathrm{g}) \neq\) FIND-SET \((\mathrm{h})\)
\(A \equiv A \cup\{(\mathrm{~g}, \mathrm{~h})\}\)
UNION ( \(\mathrm{g}, \mathrm{h}\) )
Initial sets \(=\{a\},\{b\},\{\mathbf{c}\},\{d\},\{e\},\{f\},\{g, h\}\), \{i\}
Final sets \(=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{f\},\{g, h\}\)
(c, i) is the least weight edge
FIND-SET (c) \(=\) FIND-SET (i)
\(A \equiv A \cup\{(c, i)\}\)
UNION (c, i)

Initial sets \(=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{\mathbf{f}\},\{\mathbf{q}, \mathrm{h}\}\)
Final sets \(=\{a\},\{b\},\{c, i\},\{d\},\{e\},\{\mathbf{f}, \mathbf{g}, \mathbf{h}\}\)
\((\mathrm{f}, \mathrm{g})\) is the least weight edge
FIND-SET ( f ) \(=\) FIND-SET ( g )
\(\mathrm{A} \equiv \mathrm{A} \cup\{(\mathrm{f}, \mathrm{g})\}\)
UNION (f, g)


Initial sets \(=\{\mathbf{a}\},\{\underline{\mathbf{b}}\},\{\mathrm{c}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{f}, \mathrm{g}, \mathrm{h}\}\)
Final sets \(=\{\mathbf{a}, \mathbf{b}\},\{\mathrm{c}, \mathrm{i}\},\{\mathrm{d}\},\{\mathrm{e}\},\{\mathrm{f}, \mathrm{g}, \mathrm{h}\}\)
\((a, b)\) is the least weight edge
FIND-SET (a) = FIND-SET (b)
\(A \equiv A \cup\{(a, b)\}\)
UNION (a, b)

Initial sets \(=\{a, b\},\{\underline{\mathbf{c}}, \mathbf{i}\},\{d\},\{e\},\{\mathbf{f}, \mathrm{g}, \mathrm{h}\}\) Final sets \(=\{a, b\},\{\mathbf{c}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}\},\{d\},\{e\}\)
(c, f) is the least weight edge
FIND-SET (c) \(\neq\) FIND-SET (f)
\(A \equiv A \cup\{(c, f)\}\)
UNION (c, f)

Initial sets \(=\{a, b\},\{c, f, \underline{g}, \mathrm{~h}, \underline{i}\},\{d\},\{e\}\) Final sets \(=\{a, b\},\{c, f, g, h, i\},\{d\},\{e\}\)
\((\mathrm{g}, \mathrm{i})\) is the least weight edge
FIND-SET ( g ) = FIND-SET ( i )

Initial sets \(=\{a, b\},\{\underline{\mathbf{c}}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}\},\{\underline{d}\},\{\mathrm{e}\}\) Final sets \(=\{a, b\},\{\mathbf{c}, \mathbf{d}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}\},\{\mathrm{e}\}\)
( \(c, d\) ) is the least weight edge
FIND-SET (c) \(=\) FIND-SET (d)
\(A \equiv A \cup\{(c, d)\}\)
UNION (c, d)


Initial sets \(=\{a, b\},\{c, d, f, g, \underline{\mathbf{h}, \mathbf{i}}\},\{e\}\) Final sets \(=\{a, b\},\{c, f, d, g, h, i\},\{e\}\)
\((h, i)\) is the least weight edge
FIND-SET (h) = FIND-SET (i)

Initial sets \(=\{\underline{\mathbf{a}}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \underline{\mathbf{h}}, \mathrm{i}\},\{\mathrm{e}\}\) Final sets \(=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}\},\{\mathrm{e}\}\) \((a, h)\) is the least weight edge FIND-SET ( \(a\) ) \(=\) FIND-SET ( \(h\) ) \(A \equiv A \cup\{(\mathrm{a}, \mathrm{h})\}\) UNION (a, h)

Initial sets \(=\{a, \underline{\mathbf{b}, \mathbf{c}}, \mathrm{~d}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}\},\{\mathrm{e}\}\) Final sets \(=\{a, b, c, d, f, g, h, i\},\{e\}\)
(b, c) is the least weight edge
FIND-SET (b) = FIND-SET (c)


Initial sets \(=\{a, b, c, \underline{\mathbf{d}}, f, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\},\{\underline{e}\}\)
Final sets \(=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \mathbf{i}\}\)
( \(\mathrm{d}, \mathrm{e}\) ) is the least weight edge
FIND-SET (d) \(=\) FIND-SET (e)
\(A \equiv A \cup\{(\mathrm{~d}, \mathrm{e})\}\)
UNION (d, e)


Initial sets \(=\{a, b, c, d, \underline{e}, \mathbf{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}\}\)
Final sets \(=\{a, b, c, d, e, f, g, h, i\}\)
\((e, f)\) is the least weight edge
FIND-SET (e) = FIND-SET (f)


Initial sets \(=\{\mathbf{a}, \underline{\mathbf{b}}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \underline{\mathbf{h}}, \mathrm{i}\}\)
Final sets \(=\{a, b, c, d, e, f, g, h, i\}\)
\((b, h)\) is the least weight edge
FIND-SET (b) = FIND-SET (h)


Initial sets \(=\{a, b, c, \underline{\mathbf{d}}, \mathrm{e}, \underline{\mathbf{f}}, \mathrm{g}, \mathrm{h}, \mathrm{i}\}\)
Final sets \(=\{a, b, c, d, e, f, g, h, i\}\)
\((\mathrm{d}, \mathrm{f})\) is the least weight edge
FIND-SET ( d ) = FIND-SET ( f )

\section*{Correctness of Kruskal's Algorithm}
- Used to determine the safe edge of GENERIC-MST
- The algorithm manages set of edges A which always form a single tree.
- The tree starts from an arbitrary vertex \(r\) and grows until tree spans all the vertices in V .
- At each step, a light edge added to the tree \(A\) that connects \(A\) to an isolated vertex of \(G_{A}\) \(=(\mathrm{V}, \mathrm{A})\)
- It is a greedy algorithm
- At each step tree is augmented with an edge that contributes least possible amount to tree's weight
- Since vertices, of each edge considered, are in different sets hence no cycle is created.

\section*{Prim's Algorithm}

MST-PRIM (G, w, r)
1 for each \(u \in V[G]\)
2 do key[u] \(\leftarrow \infty\)
\(3 \quad \pi[u] \leftarrow\) NIL
\(4 \mathrm{key}[r] \leftarrow 0\)
\(\mathrm{Q} \leftarrow \mathrm{V}\) [G]
while \(Q \neq \varnothing\)
do \(u \leftarrow\) EXTRACT-MIN(Q)
for each \(v \in \operatorname{Adj}[u]\) do if \(v \in Q\) and \(w(u, v)<k e y[v]\)
then \(m[v] \leftarrow u\)
\(k e y[v] \leftarrow w(u, v)\)

- The performance depends on the implementation of min-priority queue Q .
- Using binary min-heap Total Running time = O (E Ig V)
- Using fibonacci heaps Total Running time \(=\mathbf{O}(E+V \lg V)\)


For each vertex \(u \in V(G)\)
key[u] \(\equiv \infty\)
\(\pi[\mathrm{u}] \equiv \mathrm{NIL}\)
Considering a as root node key[a] = 0


\section*{}

\(\mathrm{w}(\mathrm{c}, \mathrm{d})<\operatorname{key}[\mathrm{d}](7<\infty)\)
    m[d] \(\equiv \mathrm{c}\)
    key[d] \(\equiv \mathrm{w}(\mathrm{c}, \mathrm{d})=7\)
\[
\begin{aligned}
& a \equiv \operatorname{EXTRACT}-\mathrm{MIN}(Q) \\
& \operatorname{Adj}[\mathrm{a}]=\mathrm{b}, \mathrm{~h} \\
& \mathrm{~b} \in \mathrm{Q} \text { and } \\
& \mathrm{w}(\mathrm{a}, \mathrm{~b})<\operatorname{key}[\mathrm{b}](4<\infty) \\
& \pi[b] \equiv \mathrm{a} \\
& \quad \operatorname{key}[\mathrm{~b}] \equiv \mathrm{w}(\mathrm{a}, \mathrm{~b})=4 \\
& \mathrm{~h} \in \mathrm{Q} \text { and } \\
& \mathrm{w}(\mathrm{a}, \mathrm{~h})<\operatorname{key}[\mathrm{h}](8<\infty) \\
& \pi[\mathrm{h}] \equiv \mathrm{a} \\
& \operatorname{key}[\mathrm{~h}] \equiv \mathrm{w}(\mathrm{a}, \mathrm{~h})=8
\end{aligned}
\]
\[
\mathrm{b} \equiv \mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})
\]
\[
\operatorname{Adj}[\mathrm{b}]=\mathrm{a}, \mathrm{c}, \mathrm{~h}
\]
\[
a \nearrow Q
\]
\[
c \in Q \text { and }
\]
\[
w(b, c)<\operatorname{key}[c](8<\infty)
\]
\[
\pi[\mathrm{c}] \equiv \mathrm{b}
\]
\[
\operatorname{key}[\mathrm{c}] \equiv \mathrm{w}(\mathrm{~b}, \mathrm{c})=8
\]
\(h \in Q\) and
\(\mathrm{w}(\mathrm{b}, \mathrm{h})<\operatorname{key}[\mathrm{h}]\)
(but \(11>8\) )
\(c \equiv \operatorname{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
\(\operatorname{Adj}[\mathrm{c}]=\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{i}\)
\(b \nearrow Q\)
\(d \in Q\) and
\(f \in Q\) and
\(\mathrm{w}(\mathrm{c}, \mathrm{f})<\operatorname{key}[\mathrm{f}](4<\infty)\)
\(\pi[f] \equiv \mathrm{c}\)
\(\operatorname{key}[\mathrm{f}] \equiv \mathrm{w}(\mathrm{c}, \mathrm{f})=4\)
\(i \in Q\) and
\(\mathrm{w}(\mathrm{c}, \mathrm{i})<\operatorname{key}[\mathrm{i}](2<\infty)\)
\(\pi[i] \equiv \mathrm{c}\)
\(\operatorname{key}[\mathrm{i}] \equiv \mathrm{w}(\mathrm{c}, \mathrm{i})=\)

\[
\begin{aligned}
& \mathrm{i} \equiv \text { EXTRACT-MIN(Q) } \\
& \text { Adj[i] }=\mathrm{c}, \mathrm{~g}, \mathrm{~h} \\
& \mathrm{c} \nearrow \mathrm{Q} \\
& \mathrm{~g} \in \mathrm{Q} \text { and } \\
& \mathrm{w}(\mathrm{i}, \mathrm{~g})<\operatorname{key}[\mathrm{g}](6<\infty) \\
& \pi[\mathrm{g}] \equiv \mathrm{I} \\
& \mathrm{key}[\mathrm{~g}] \equiv \mathrm{w}(\mathrm{i}, \mathrm{~g})=6 \\
& \mathrm{~h} \in \mathrm{Q} \text { and } \\
& \mathrm{w}(\mathrm{i}, \mathrm{~h})<\operatorname{key}[\mathrm{h}](7<8) \\
& \pi[\mathrm{h}] \equiv \mathrm{l} \\
& \mathrm{key}[\mathrm{~h}] \equiv \mathrm{w}(\mathrm{i}, \mathrm{~h})=7
\end{aligned}
\]
\(\mathrm{f} \equiv \mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
\(\operatorname{Adj}[f]=c, d, e, g\)
\(c \nearrow Q\)
\(d \in Q\) and
\(\mathrm{w}(\mathrm{f}, \mathrm{d})<\operatorname{key}[\mathrm{d}]\)
But \((14<7)\)
\(e \in Q\) and
\(w(f, e)<k e y[e](10<\infty)\)
\[
\pi[\mathrm{e}] \equiv \mathrm{f}
\]
\[
\operatorname{key}[\mathrm{e}] \equiv \mathrm{w}(\mathrm{f}, \mathrm{e})=10
\]
\[
g \in Q \text { and }
\]
\[
\mathrm{w}(\mathrm{f}, \mathrm{~g})<\operatorname{key}[\mathrm{g}](2<6)
\]
\[
\pi[g] \equiv f
\]
\[
\operatorname{key}[\mathrm{g}] \equiv \mathrm{w}(\mathrm{f}, \mathrm{~g})=2
\]
\(\mathrm{g} \equiv \mathrm{EXTRACT}-\mathrm{MIN}(\mathrm{Q})\)
\(\operatorname{Adj}[g]=\mathrm{f}, \mathrm{h}, \mathrm{i}\)
\(f \nearrow Q\)
\(h \in Q\) and
```

$\mathrm{w}(\mathrm{g}, \mathrm{h})<\operatorname{key}[\mathrm{h}](1<7)$
$\pi[\mathrm{h}] \equiv \mathrm{g}$
$\operatorname{key}[\mathrm{h}] \equiv \mathrm{w}(\mathrm{g}, \mathrm{h})=1$
$i \nearrow Q$

```

\begin{tabular}{|l|l|l|}
\hline\(\alpha\) & \(e\) & \(h\) \\
\hline 7 & 10 & 1
\end{tabular}

\(\mathrm{h} \equiv E X T R A C T-M I N(Q)\)
Adj[h] \(=\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{i}\)
\(\mathrm{a} \not(\mathrm{Q}\)
\(\mathrm{b} \not \mathrm{Q}\)
\(\mathrm{g} \nearrow \mathrm{Q}\)
\(\mathrm{I} \nearrow \mathrm{Q}\)
\[
\begin{aligned}
& d \equiv \text { EXTRACT-MIN(Q) } \\
& \text { Adj[d] = }, e, \mathrm{e}, \mathrm{f} \\
& \mathrm{c} \nearrow \mathrm{Q} \\
& \mathrm{e} \in \mathrm{Q} \text { and } \\
& \mathrm{w}(\mathrm{~d}, \mathrm{e})<\operatorname{key}[\mathrm{e}](9<10) \\
& \quad \pi[\mathrm{e}] \equiv \mathrm{d} \\
& \quad \mathrm{key}[\mathrm{e}] \equiv \mathrm{w}(\mathrm{~d}, \mathrm{e})=9
\end{aligned}
\]
\(f 入 Q\)
\[
O \begin{array}{|c}
e \\
9
\end{array}
\]

e \(\equiv \operatorname{EXTRACT}-M I N(Q)\)
\(\operatorname{Adj}[\mathrm{e}]=\mathrm{d}, \mathrm{f}\)
\(d \nearrow Q\)
\(f \nearrow Q\)
\(Q \theta\)

\section*{Importance of Minimal Spanning Trees}

There are various applications of Minimal Spanning Trees (MST). Let us consider a couple of real-world examples
- One practical application would be in designing a network.
- For example, a group of individuals, separated by varying distances, are to be connected in a telephone network.
- Although MST cannot do anything about distance from one connection to another, but it can reduce connecting cost.
- Another useful application of it is finding airline routes.
- The vertices of the graph would represent cities, and the edges would represent routes between the cities.
- Obviously, more traveling require more cost
- Hence MST can be applied to optimize airline routes by finding the least costly paths with no cycles.

Lecture No. 33
Single-Source Shortest Path

\section*{Today Covered}
- Road map problem
- Linking road map problem with graph theory
- Paths and Shortest paths
- Cycles and their role in finding shortest paths
- The Bellman-Ford Algorithm
- Initialization of graphs

\section*{Road Map Problem}
- We are given a road map on which the distance between each pair of adjacent cities is marked, and our goal is to determine the shortest route from one city to another.
- The number of possible routes can be huge.
- How do we choose which one routes is shortest?
- This problem can be modelled as a graph
- And then we can find the shortest path from one city to another using graph algorithms.
- How to solve this problem efficiently?

\section*{Linking Road Map with Graph Theory}

Road map problem
- This problem can be modeled as a graph problem
- Road map is a weighted graph:
set of vertices \(=\) set of cities
set of edges = road segments between cities
edge weight = length between two cities
- Goal: find a shortest path between two vertices i.e. between two cities

\section*{Weight of a Path}
- In a shortest path problem, a weighted, directed graph \(G=(V, E)\) is given with weight function
w : \(\mathrm{E} \nearrow \mathrm{R}\) mapping edges to real-valued weights.
- The weight of path \(\mathrm{p}=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle\) is the sum of the weights of its constituents edges
\[
\begin{aligned}
w(p) & =\sum_{i=1}^{k} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right) \\
& =w\left(v_{0}, v_{1}\right)+w\left(v_{1}, v_{2}\right)+\ldots+w\left(v_{k-1}, v_{k}\right)
\end{aligned}
\]

\section*{Shortest Path}
- A shortest path from vertex \(u\) to \(v\) is denoted by \(\delta(u, v)\) and is defined as
\(\delta(u, v)= \begin{cases}\min \{w(p): u \xrightarrow{p} v\} & \text { if there is a path from } u \text { to } v \\ \infty & \text { otherwise }\end{cases}\)
- Weight of edges can represent any metric such as
- Distance, - penalty,
- time, - loss etc.
- cost,

\section*{Variants of Shortest Path}
- Single-source shortest path
\(-\underset{V}{G}=(V, E) \Rightarrow\) find a shortest path from a given source vertex \(s\) to each vertex \(v \in\)
- Single-destination shortest path
- Find a shortest path to a given destination vertex \(t\) from each vertex \(v\)
- Reverse the direction of each edge \(\Rightarrow\) single-source
- Single-pair shortest path
- Find a shortest path from \(u\) to \(v\) for given vertices \(u\) and \(v\)
- Solve the single-source problem
- All-pairs shortest-paths
- Find shortest path for every pair of vertices \(u\) and \(v\) of \(G\)

\section*{Lemma : subpath of a shortest path, a shortest path}

\section*{Statement}

Given a weighted, directed graph \(G=(V, E)\) with weight function \(w: E \rightarrow \mathbf{R}\), let \(p=\nwarrow v_{1}, v_{2}, \ldots, v_{k}\) \(\uparrow\) be a shortest path from vertex \(v_{1}\) to vertex \(v_{k}\), for any \(i\), \(j\) such that \(1 \leq i \leq j \leq k\), let \(p_{i j}=\Sigma v_{i}\), \(v_{i+1}, \ldots, v_{j} \uparrow\) be subpath of \(p\) from \(v_{i}\) to vertex \(v_{j}\). Then, \(p_{i j}\) is a shortest path from \(v_{i}\) to \(v_{j}\).

\section*{Proof}
- We prove this lemma by contradiction
- If we decompose path \(p\) into \(v_{1} \&^{\text {ppii }} v_{i} \mathscr{S}^{\text {pij }} v_{\mathrm{j}} \wp^{\text {pjik }} v_{\mathrm{k}}\), then we have that \(w(p)=w\left(p_{1 i}\right)+w\left(p_{i j}\right)\) \(+\mathrm{w}\left(\mathrm{p}_{\mathrm{jk}}\right)\)
- Now, assume that there is a path \(p^{\prime}{ }_{i j}\) from \(v_{i}\) to \(v_{j}\) with weight \(w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)\)
- That is there is a subpath \(p_{i, j}^{\prime}\) from \(v_{i}\) to vertex \(v_{j}\) which is shortest than \(p_{i, j}\)
- Then, \(\mathrm{v}_{1} \mathcal{S}^{\mathrm{piti}} \mathrm{v}_{\mathrm{i}} \mathscr{S}^{\text {pij }} \mathrm{v}_{\mathrm{j}} \mathcal{P}^{\text {pjik }} \mathrm{v}_{\mathrm{k}}\) is a path from vertices \(\mathrm{v}_{1}\) to \(\mathrm{v}_{\mathrm{k}}\) whose weight \(\mathrm{w}\left(\mathrm{p}_{\mathrm{ij}}\right)+\mathrm{w}\left(\mathrm{p}_{\mathrm{ij}}^{\prime}\right)+\) \(\mathrm{w}\left(\mathrm{p}_{\mathrm{j} k}\right)\) is less than \(\mathrm{w}(\mathrm{p})\).
- It contradicts the assumption that \(p\) is a shortest path from \(v_{1}\) to \(v_{k}\).
- Hence subpath of a given shortest path is also a shortest path.

\section*{Why Positive Cycle Not?}
- \(s \rightarrow\) a: only one path
\[
\delta(s, a)=w(s, a)=3
\]
- \(s \rightarrow b\) : only one path
\[
\delta(s, b)=w(s, a)+w(a, b)=-1
\]
- \(s \rightarrow c\) : infinitely many paths
\[
\langle\mathrm{s}, \mathrm{c}\rangle,\langle\mathrm{s}, \mathrm{c}, \mathrm{~d}, \mathrm{c}\rangle,\langle\mathrm{s}, \mathrm{c}, \mathrm{~d}, \mathrm{c}, \mathrm{~d}, \mathrm{c}\rangle
\]
- cycle has positive weight (6-3=3)
\(\langle\mathrm{s}, \mathrm{c}\rangle\) shortest path with weight \(\delta(\mathrm{s}, \mathrm{c})=\mathrm{w}(\mathrm{s}, \mathrm{c})=5\),
- Positive cycle increases length of paths

\section*{Why Negative Cycle Not?}
- \(s \rightarrow e\) : infinitely many paths:
- \(\langle\mathrm{s}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{e}, \mathrm{f}, \mathrm{e}\rangle,\langle\mathrm{s}, \mathrm{e}, \mathrm{f}, \mathrm{e}, \mathrm{f}, \mathrm{e}\rangle \mathrm{etc}\).
- cycle \(\langle e, f, e\rangle\) has negative weight:
\(3+(-6)=-3\)
- paths from \(s\) to e with arbitrarily large negative weights
\(-\delta(\mathrm{s}, \mathrm{e})=-\infty \Rightarrow\) no shortest path exists between s and e

- Similarly: \(\delta(\mathrm{s}, \mathrm{f})=-\infty, \delta(\mathrm{s}, \mathrm{g})=-\infty\)

\section*{Removing cycles from shortest paths}
- If \(\mathrm{p}=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle\) is a path and \(\mathrm{c}=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle\) is a positive weight cycle on this path then the path \(\mathrm{p}^{\prime}=\left\langle v_{0}, v_{1}, \ldots, v_{i}, v_{j+1}, v_{j+2}, \ldots, v_{k}\right\rangle\) has weight \(\mathrm{w}\left(\mathrm{p}^{\prime}\right)=\mathrm{w}(\mathrm{p})-\mathrm{w}(\mathrm{c})<\mathrm{w}(\mathrm{p})\), and so \(p\) cannot be a shortest path from \(\mathrm{v}_{0}\) to \(\mathrm{v}_{\mathrm{k}}\)
- As long as a shortest path has 0 -weight cycles, we can repeatedly remove these cycles from path until a cycle-free shortest path is obtained.

\section*{When is no shortest path?}
- There may be edges with negative weight.
- A cycle \(p=v_{0}, v_{1}, \ldots, v_{k}, v_{0}\) is a negative cycle such that \(w(p)<0\)
- If a graph \(G=(V, E)\) contains no negative weight cycle reachable from the source \(s\), then for all \(v \in \mathrm{~V}\), shortest path \(\delta(\mathrm{s}, \mathrm{v})\) remains well defined.
- If there is a negative weight cycles reachable from s , then shortest path weight is not well defined.
- If there is a path from \(u\) to \(v\) that contains a negative cycle, then shortest path is defined as \(\delta(u, v)=-\infty\)

\section*{Summary of cycles in SPP}
- Can shortest paths contain cycles?
- Negative-weight cycles:
- Positive-weight cycles:
- By removing the cycle we can get a shorter path
- Zero-weight cycles
- No reason to use them
- Can remove them to obtain a path with similar weight

Note
- We will assume that when we are finding shortest paths, the paths will have no cycles

\section*{Representing Shortest Paths}
- For a graph \(G=(V, E)\), a predecessor \(\pi[v]\) is maintained for each vertex \(v \in V\)
- Either vertex or NIL
- We are interested in predecessor subgraph \(G_{\pi}=\left(V_{\pi}, E_{\pi}\right)\) induced by \(\pi\) values, such that
\[
\begin{aligned}
& V_{\pi}=\{v \in V: \pi[v] \neq N I L\} \square\{s\} \\
& E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}
\end{aligned}
\]

\section*{Shortest Path Rooted Tree}
- Let \(G=(V, E)\) be a weighted, directed graph with weight function w: \(\mathrm{E} \nearrow \mathrm{R}\) and assume that \(G\) contains no negative weight cycles reachable from the source vertex \(s \in V\), so that shortest paths are well defined.
- A shortest path tree rooted at \(s\) is a directed subgraph \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\), where \(V^{\prime} \square V\) and \(E^{\prime}\) E
- Shortest path are not necessarily unique and neither are shortest path trees.

\section*{Shortest path not unique}
- Shortest path are neither necessarily
- unique and
- nor shortest path trees


\section*{Initialization and Relaxation}

Initialization
- All the shortest-paths algorithms start with initialization of vertices.

Relaxation
- For each vertex \(v \in V\), an attribute \(d[v]\) is defined and called a shortest path estimate, maintained
- which is in fact, an upper bound on the weight of a shortest path from source s to v
- Process of relaxing an edge ( \(u, v\) ) consists of testing whether we can improve shortest path to \(v\) found so far, through \(u\), if so update \(d[v]\) and \(\pi[v]\).

\section*{Relaxation}
- Relaxing edge ( \(u, v\) ), testing whether we can improve shortest path to \(v\) found so far through u
\(-\quad\) If \(d[v]>d[u]+w(u, v)\)
- we can improve the shortest path to \(v\)
\(-\quad \Rightarrow\) update \(\mathrm{d}[\mathrm{v}]\) and \(\pi[\mathrm{v}]\)


\section*{Initialization and Relaxation}

INITIALIZE-SINGLE-SOURCE (G, s)
1 for each vertex \(v \in \mathrm{~V}[\mathrm{G}]\)
\(2 d \mathrm{do} \mathrm{d}[\mathrm{v}] \leftarrow \infty\)
\(3 \quad \pi[\mathrm{v}] \leftarrow \mathrm{NIL}\)
\(4 \mathrm{~d}[\mathrm{~s}] \equiv 0\)

Running time \(=(\mathrm{V})\)
Note:
All the single-source shortest-paths algorithms, start by calling INIT-SINGLE-SOURCE then relax edges. The algorithms differ in the order and how many times they relax each edge

\section*{The Bellman-Ford Algorithm}

Input:
- Weighted, directed graph \(G\), edges may be negative with weight function \(w: E \rightarrow R\),

Output
- it returns boolean value indicating whether or not there is a negative-weight cycle reachable from source.
- If there is such a cycle, it indicates no solution exists
- Else it produces shortest paths and their weights.

Note:
- It uses relaxation progressively decreasing estimate \(\mathrm{d}[\mathrm{v}]\) on weight of a shortest path from source \(s\) to each vertex \(v \square \mathrm{~V}\) until it achieves actual SP weight \(\delta(\mathrm{s}, \mathrm{v})\).

BELLMAN-FORD (G, w, s)
\begin{tabular}{|c|c|c|}
\hline & INITIALIZE-SINGLE-SOURCE (G, s) & \\
\hline & for \(\mathrm{i} \leftarrow 1\) to |V [G]|-1 & \multirow[t]{3}{*}{* (E)} \\
\hline 3 & do for each edge ( \(u, v\) ) \(\in E[G]\) & \\
\hline 4 & do RELAX (u, v, w) & \\
\hline & for each edge ( \(u, v\) ) \(\in E[G]\) & \multirow[t]{4}{*}{} \\
\hline 6 & do if \(d[v]>d[u]+w(u, v)\) & \\
\hline 7 & then return FALSE & \\
\hline & return TRUE & \\
\hline
\end{tabular}

Total Running Time \(=\mathrm{O}(\mathrm{E})\)


For each vertex \(v \in \mathrm{~V}(\mathrm{G})\)
\[
\mathrm{d}[\mathrm{v}] \leftarrow \infty
\]
\[
\pi[\mathrm{v}] \leftarrow \mathrm{NIL}
\]

Considering s as root node \(\mathrm{d}[\mathrm{s}] \equiv 0\)


Considering edge ( \(\mathrm{s}, \mathrm{t}\) )
\(\mathrm{d}[\mathrm{t}]>\mathrm{d}[\mathrm{s}]+\mathrm{w}(\mathrm{s}, \mathrm{t})(\mathrm{m}>0+6)\)
\[
\begin{aligned}
& \mathrm{d}[\mathrm{t}] \leftarrow \mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{t}) \\
& \mathrm{d}[\mathrm{t}] \leftarrow 0+6=6 \\
& \pi[\mathrm{t}] \leftarrow \mathrm{s}
\end{aligned}
\]

Considering edge ( \(\mathrm{s}, \mathrm{y}\) )
\(\mathrm{d}[\mathrm{y}]>\mathrm{d}[\mathrm{s}]+\mathrm{w}(\mathrm{s}, \mathrm{y})(\infty>0+7)\)
\[
\begin{aligned}
& \mathrm{d}[\mathrm{y}] \leftarrow \mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{t}) \\
& \mathrm{d}[\mathrm{y}] \leftarrow 0+7=7 \\
& \mathrm{~m}[\mathrm{y}] \leftarrow \mathrm{s}
\end{aligned}
\]

Considering edge ( \(\mathrm{t}, \mathrm{y}\) )
\(\mathrm{d}[\mathrm{y}]>\mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{y})\)
But \((7<6+8)\)
Considering edge ( \(\mathrm{t}, \mathrm{z}\) )
\(\mathrm{d}[\mathrm{z}]>\mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{z})(\infty>6+(-4))\)
\(\mathrm{d}[\mathrm{z}] \leftarrow \mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{z})\)
\(\mathrm{d}[\mathrm{z}] \leftarrow 6+(-4)=2\)
\(\pi[z] \leftarrow t\)
Considering edge ( \(y, x\) )
\(d[x]>d[y]+w(y, x)(\infty>7+(-3))\)
\(\mathrm{d}[\mathrm{x}] \leftarrow \mathrm{d}[\mathrm{y}]+\mathrm{w}(\mathrm{y}, \mathrm{x})\)
\(\mathrm{d}[\mathrm{x}] \leftarrow 7+(-3)=4\)
\(m[x] \leftarrow y\)

Considering edge ( \(\mathrm{x}, \mathrm{t}\) )
\(d[t]>d[x]+w(x, t)(6>4+(-2))\)
\[
\begin{aligned}
& \mathrm{d}[\mathrm{t}] \leftarrow \mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{t}) \\
& \mathrm{d}[\mathrm{t}] \leftarrow 4+(-2)=2
\end{aligned}
\]
\[
\pi[t] \leftarrow x
\]

Considering edge ( \(\mathrm{y}, \mathrm{z}\) )
\(\mathrm{d}[\mathrm{z}]>\mathrm{d}[\mathrm{y}]+\mathrm{w}(\mathrm{y}, \mathrm{z})\) but \((2<7+9)\)
Considering edge ( \(z, x\) )
\(\mathrm{d}[\mathrm{x}]>\mathrm{d}[\mathrm{z}]+\mathrm{w}(\mathrm{z}, \mathrm{x})\) but \((4<2+7)\)
Considering (z, s)
\(\mathrm{d}[\mathrm{s}]>\mathrm{d}[\mathrm{z}]+\mathrm{w}(\mathrm{z}, \mathrm{s})\)
but \((0<2+2)\)

\section*{Lemma 1}

Let \(G=(V, E)\) be a weighted, directed graph with source \(s\) and weight function \(w: E \rightarrow R\), and assume that G contains no negative-weight cycles that are reachable from s. Then, after the \(|\mathrm{V}|\) - 1 iterations of the for loop of lines 2-4 of BELLMAN-FORD, we have \(d[v]=\delta(s, v)\) for all vertices \(v\) that are reachable from \(s\).

\section*{Proof}
- We prove the lemma by appealing to the path-relaxation property.
- Consider any vertex \(v\) that is reachable from \(s\), and let \(p=\Sigma v_{0}, v_{1}, \ldots, v_{k} \uparrow\), where \(v_{0}=s\) and \(v_{k}=v\), be any acyclic shortest path from \(s\) to \(v\).
- Path p has at most \(|\mathrm{V}|-1\) edges, and so \(\mathrm{k} \leq|\mathrm{V}|-1\).
- Each of the \(|\mathrm{V}|-1\) iterations of the for loop of lines 2-4 relaxes all E edges.
- Among the edges relaxed in the ith iteration, for \(i=1,2, \ldots, k\), is \(\left(v_{i-1}, v_{i}\right)\).
- By the path-relaxation property, therefore, \(\mathrm{d}[\mathrm{v}]=\mathrm{d}\left[\mathrm{v}_{\mathrm{k}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)=\delta(\mathrm{s}, \mathrm{v})\).

\section*{Theorem : Correctness of Bellman-Ford algorithm}

Let BELLMAN-FORD be run on weighted, directed graph \(G=(V, E)\), with source vertex \(s\), and weight function \(w: E \rightarrow R\).
- If \(G\) contains no negative-weight cycles that are reachable from \(s\), then
\(-\quad d[v]=\delta(s, v)\) for all vertices \(v \in V\), and
- the algorithm returns TRUE
- the predecessor subgraph \(G \pi\) is shortest-paths tree rooted at s.
- If \(G\) does contain a negative weight cycle reachable from \(s\), then the algorithm returns FALSE.

Proof:
Case 1
Suppose graph G contains no negative-weight cycles that are reachable from the source s.
- We first prove the claim that at termination, \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all vertices \(\mathrm{v} \square \mathrm{V}\).
- If \(v\) is reachable from \(s\), Lemma above proves it.
- If \(v\) is not reachable from \(s\), then the claim follows from the no-path property. Thus, the claim is proven.
- The predecessor subgraph property, along with the claim, implies that \(G_{\pi}\) is a shortestpaths tree.
- Now we use the claim to show that BELLMAN-FORD returns TRUE.
- At termination, for all edges ( \(u, v\) )
\(-\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\),
- It therefore returns TRUE

Case 2,
- Suppose that graph G contains a negative-weight cycle that is reachable from the source s
- Let this cycle be \(\mathrm{c}=\nwarrow \mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \uparrow\), where \(\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}\),

Then, \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0\)
- Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE.
- Thus, \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)\) for \(\mathrm{i}=1,2, \ldots, \mathrm{k}\).
- Summing the inequalities around cycle c gives us
\[
\begin{aligned}
\sum_{i=1}^{k} d\left[v_{i}\right] & \leq \sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)\right.
\end{aligned}
\]
- Since \(v_{0}=v_{k}\), each vertex in \(c\) appears exactly once in each of the summations and, and so
\[
\sum_{i=1}^{k} d\left[v_{i}\right]=\sum_{i=1}^{k} d\left[v_{i-1}\right]
\]
- Of course \(d\left[v_{i}\right]\) is finite for \(i=1,2, \ldots, k\). Thus,
\[
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\]
- Which contradicts inequality (A). And hence it proves the theorem

\section*{Applications}

Different applications of shortest path
- Transportation problems
- finding the cheapest way to travel between two locations
- Motion planning
- what is the most natural way for a cartoon character to move about a simulated environment
- Communications problems
- how look will it take for a message to get between two places which two locations are furthest apart i.e.
- what is the diameter of network

Lecture No. 34
Proof: Bellman-Ford Algorithm \&

\section*{Shortest Paths in Directed Acyclic Graphs}

\section*{Today Covered}
- Bellman-Ford Algorithm
- Analysis
- Assumptions
- Proof
- Shortest path in Directed Acyclic Graphs
- Algorithm
- Analysis
- Proof of correctness

\section*{Analysis: The Bellman-Ford Algorithm}

BELLMAN-FORD (G, w, s)
```

INITIALIZE-SINGLE-SOURCE (G, s) 潻(V)
fori\leftarrow1 to |V [G]| - 1
do for each edge (u,v) E E[G] (V.E)
do RELAX (u,v, w)
for each edge (u,v) \inE[G]
do if d[v] > d[u] + w(u,v)
then return FALSE
return TRUE

```

Total Running Time \(=\mathrm{O}(\) V.E)

\section*{Lemma 1}

Statement: Let \(G=(V, E)\) be
- directed, with source s,
- a weighted, with weight function \(w: E \rightarrow R\), and
- Contains no negative-weight cycle reachable from \(s\). Then, after the \(|\mathrm{V}|-1\) iterations of the for loop of lines 2-4 of BELLMAN-FORD, we have \(d[v]=\delta(s, v)\) for all vertices \(v\) that are reachable from s .

Path relaxation property
- If \(p=\kappa v_{0}, v_{1}, \ldots, v_{k} \uparrow\), be a shortest path from \(s=v_{0}\) to \(v_{k}\) and edges of \(p\) are relaxed in the order \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right) \ldots\left(v_{k-1}, v_{k}\right)\), then \(d\left(v_{k}\right)=\delta\left(s, v_{k}\right)\)

\section*{Proof}
- We prove it using path-relaxation property.
- Consider any vertex \(v\) that is reachable from \(s\)
- And let \(p=\nwarrow v_{0}, v_{1}, \ldots, v_{k} \uparrow\), be any acyclic shortest path from \(s\) to \(v\), where \(v_{0}=s\) and \(v_{k}\) \(=\mathrm{v}\),
- As there are \(k+1\) vertices in the path \(p\), hence there must be \(k\) edges in \(p\).
- Because Graph has \(|V|\) vertices and path \(p\) contains no cycle, hence path \(p\) has at most \(|\mathrm{V}|-1\) edges, and therefore, \(\mathrm{k} \leq|\mathrm{V}|-1\).
- Each of the \(|\mathrm{V}|-1\) iterations of the for loop of lines 2-4 relaxes all E edges.
- At \(i=1\), edge \(\left(v_{0}, v_{1}\right)\) is relaxed, and \(d\left[v_{1}\right]=\delta\left(s, v_{1}\right)\)
- At \(\mathrm{i}=2\), edge \(\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\) is relaxed, and \(\mathrm{d}\left[\mathrm{v}_{2}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{2}\right)\)
- By mathematical induction we can prove that
- At \(i=k\), edge \(\left(v_{k-1}, v_{k}\right)\) is relaxed, \(d\left[v_{k}\right]=\delta\left(s, v_{k}\right)\)
- Hence all the edges ( \(v_{i-1}, v_{i}\) ) will be relaxed after the iterations, \(i=1,2, \ldots, k\).
- By the path-relaxation property, after \(k^{\text {th }}\) iteration, \(d[v]=d\left[v_{k}\right]=\delta\left(s, v_{k}\right)=\delta(s, v)\).
- Hence we have proved the required result using path relaxation property.

\section*{Theorem : Correctness of Bellman-Ford algorithm}

Let BELLMAN-FORD be run on weighted, directed graph \(G=(V, E)\), with source vertex \(s\), and weight function w: \(E \rightarrow R\).
- If \(G\) contains no negative-weight cycles that are reachable from \(s\), then
\(-\quad d[v]=\delta(s, v)\) for all vertices \(v \in V\), and
- The algorithm returns TRUE
- The predecessor subgraph GT is shortest-paths tree rooted at s.
- If \(G\) does contain a negative weight cycle reachable from s , then the algorithm returns FALSE.

\section*{Proof}

Case 1
Suppose graph G contains no negative-weight cycles that are reachable from the source s.
- We first prove the claim that at termination, \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all vertices \(\mathrm{v} \square \mathrm{V}\).
- If \(v\) is reachable from \(s\), Lemma above proves it.
- If \(v\) is not reachable from \(s\), then claim follows from no-path property.
- The predecessor subgraph property, along with the claim, implies that \(\mathrm{G}_{\pi}\) is a shortestpaths tree.
(Once \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}\), the predecessor sub-graph is a shortest paths tree rooted at s)
- Now we use the claim to show that BELLMAN-FORD returns TRUE.
- At termination, for all edges (u, v)
\(-\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\),
- It therefore returns TRUE

Case 2,
- Suppose that graph G contains a negative-weight cycle that is reachable from the source s
- Let this cycle be \(\mathrm{c}=\uparrow \mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \uparrow\), where \(\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}\),

Then, \(\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0\)
- Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE.
- Thus, \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leq \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)\) for \(\mathrm{i}=1,2, \ldots, \mathrm{k}\).
- Summing the inequalities around cycle c gives us
\[
\begin{aligned}
\sum_{i=1}^{k} d\left[v_{i}\right] \leq & \sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)\right.
\end{aligned}
\]
- Since \(\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{\mathrm{k}}\), each vertex in c appears exactly once in each of the summations and, and so
\[
\sum_{i=1}^{k} d\left[v_{i}\right]=\sum_{i=1}^{k} d\left[v_{i-1}\right]
\]
- Of course \(d\left[v_{i}\right]\) is finite for \(i=1,2, \ldots, k\). Thus,
\[
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\]
- Which contradicts inequality (A). And hence it proves the theorem

\section*{Shortest Paths in Directed Acyclic Graphs}
- By relaxing edges of Directed Acyclic Graph (dag) \(G=(V, E)\) according to topological sort of vertices single source shortest path can be computed in 漛 ( \(V+E\) ) time
- Shortest paths are always well defined in a dag
- Since even if there are negative-weight edges no negative weight cycle exists.
- It starts topologically sorting dag, to impose linear ordering of vertices.
- If there is path from \(u\) to \(v\) then \(u\) precedes \(v\).
- Each vertex and each edge that leaves the vertex is processed that is why this approach is well defined

\section*{Algorithm : Topological Sort}

TOPOLOGICAL-SORT (G)
1. Call \(\operatorname{DFS}(G)\) to compute \(f[v]\) of each vertex \(v \in V\).
2. Set an empty linked list \(L=\varnothing\).
3. When a vertex \(v\) is colored black, assign it \(f(v)\).
4. Insert \(v\) onto the front of the linked list, \(L=\{v\}\). \(L\).
5. Return the linked list.
6. The rank of each node is its position in the linked list started from the head of the list.

Total Running Time \(=\mathrm{O}(\mathrm{V}+\mathrm{E})\)
Algorithm : Shortest Path (dag)
DAG-SHORTEST-PATHS (G, w, s)
1 topologically sort the vertices of \(G\)
\(\mathrm{O}(\mathrm{V}+\mathrm{E})\)
2 INITIALIZE-SINGLE-SOURCE (G, s)
\(\mathrm{O}(\mathrm{V})\)
3 for each vertex u, taken in topologically sorted order
\(\Theta(\mathrm{V})\) do for each vertex \(v \in \operatorname{Adj}[u]\)
do RELAX (u, v, w)
(3 to 5) takes \(\Theta\) ( E )

Each iteration of for loop takes \(\mathrm{O}(1)\)
Total Running Time \(=\mathrm{O}(\mathrm{V}+\mathrm{E})\)

\section*{SSSP in Directed Acyclic Graphs}


Considering vertex r


Considering vertex s
Adj[s] \(=\mathrm{t}, \mathrm{x}\)
\(d[t]>d[s]+w(s, t)\)


For each vertex \(v \in \mathrm{~V}(\mathrm{G})\)
\(\mathrm{d}[\mathrm{v}] \leftarrow \infty\)
\(\pi[\mathrm{V}] \leftarrow \mathrm{NIL}\)
Considering s as root node \(\mathrm{d}[\mathrm{s}] \equiv 0\)
The vertices are taken in topologically sorted order

Adj[r] \(=\mathrm{s}, \mathrm{t}\)
\(\mathrm{d}[\mathrm{s}]>\mathrm{d}[\mathrm{r}]+\mathrm{w}(\mathrm{r}, \mathrm{s})\)
But \((0<\infty+5)\)
\(d[t]>d[r]+w(r, t)\)
But \((\infty<\infty+3)\)
\[
\begin{gathered}
(\infty>0+2) \\
d[t] \leftarrow d[s]+w(s, t) \\
0+2=2 \\
\pi[t] \leftarrow s \quad \\
d[x]>d[s]+w(s, x) \\
(\infty>0+6) \\
d[x] \leftarrow d[s]+w(s, x) \\
0+6=6 \\
\pi[x] \leftarrow s
\end{gathered}
\]

Considering vertex \(t\)
\(\operatorname{Adj}[t]=x, y, z\)
\(\mathrm{d}[\mathrm{x}]>\mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{x})\)
But \((6<9)\)
\(\mathrm{d}[\mathrm{y}]>\mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{y})\)
( \(\infty>2+4\) )
\[
\begin{gathered}
\mathrm{d}[\mathrm{y}] \leftarrow \mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{y}) \\
2+4=6 \\
\mathrm{~m}[\mathrm{y}] \leftarrow \mathrm{t}
\end{gathered}
\]


Considering vertex y

\[
\begin{aligned}
& \mathrm{d}[\mathrm{z}] \leftarrow \mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{z}) \\
& 2+2=4 \\
& \mathrm{~m}[\mathrm{z}] \leftarrow \mathrm{t}
\end{aligned}
\]

Considering vertex \(x\)
\(\operatorname{Adj}[x]=y, z\)
\(\mathrm{d}[\mathrm{y}]>\mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{y})\)
( \(6>6+(-1)\) )
\(\mathrm{d}[\mathrm{y}] \leftarrow \mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{y})\) \(6+(-1)=5\)
\(\pi[y] \leftarrow x\)
\(\mathrm{d}[\mathrm{z}]>\mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{z})\)
But \((4<6+1)\)
\[
\begin{aligned}
& \begin{array}{l}
\operatorname{Adj}[y]=z \\
d[z]>d[y]+w(y, z) \\
(4>5+(-2)) \\
d[z]
\end{array} \leftarrow d[y]+w(y, z) \\
& \quad 5+(-2)=3 \\
& \quad \pi[z] \leftarrow y
\end{aligned}
\]

Considering vertex z
\[
\operatorname{Adj}[\mathrm{z}]=\square
\]

\section*{Theorem: Proof of Correctness}

If a weighted, directed graph \(G=(V, E)\) has source vertex \(s\) and no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure, \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all vertices \(\mathrm{v} \in \mathrm{V}\), and the predecessor subgraph \(G_{\pi}\) is a shortest-paths tree.

Proof
- We first show that \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all vertices \(\mathrm{v} \in \mathrm{V}\) at termination.

\section*{Case 1}
- If \(v\) is not reachable from \(s\), then \(d[v]=\delta(s, v)=\infty\) by the no-path property.

\section*{Case 2}
- Now, suppose that \(v\) is reachable from \(s\), so that there is a shortest path \(p=\leqslant v_{0}\), \(v_{1}, \ldots . ., v_{k} \uparrow\), where \(v_{0}=s\) and \(v_{k}=v\).
- Because we process the vertices in topologically sorted order, the edges on \(p\) are relaxed in the order \(\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \ldots \ldots,\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)\).
- The path-relaxation property implies that \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]=\delta\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right)\) at termination for \(\mathrm{i}=0,1, \ldots, \mathrm{k}\).
- Hence it proves the theorem

\section*{Lecture No. 35 \\ Dijkstra's Algorithm}

\section*{Problem Statement}
- Given a graph \(G=(V, E)\) with a source vertex \(s\), weight function \(w\), edges are nonnegative, i.e., \(w(u, v) \geq 0, \forall(u, v) \in E\)
- The graph is directed, i.e., if \((u, v) \in E\) then \((v, u)\) may or may not be in \(E\).
- The objective is to find shortest path from s to every vertex \(u \in V\).

\section*{Approach}
- A "cloud S" of vertices, beginning with s, will be constructed, finally covering all vertices of graph
- For each vertex v , a label \(\mathrm{d}(\mathrm{v})\) is stored, representing distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex \(u\) outside the cloud with the smallest distance label, d(u)
- We update labels of the vertices adjacent to u

\section*{Mathematical Statement of Problem}

Input: A graph \(G(V, E)\) with source \(s\), weight w

Assumption:
Edges non-negative, \(w(u, v) \geq 0, \forall(u, v) \in\) E
Directed, if \((u, v) \in E\) then \((v, u)\) may be in \(E\)
Objective:
Find shortest paths from s to every \(\mathrm{u} \in \mathrm{V}\)

\section*{Approach}

Maintain a set \(S\) of vertices whose final shortest-path weights from s have been determined

Repeatedly select, \(u \in \mathrm{~V}-\mathrm{S}\) with minimum shortest path estimate, add \(u\) to \(S\), relax all edges leaving u.

Greedy, always choose light vertex in V-S, add to \(S\)

\section*{Edge Relaxation}

Consider edge \(e=(u, z)\) such that
\(u\) is vertex most recently added to the cloud S
\(z\) is not in the cloud

Relaxation of edge e updates distance \(d(z)\) as
\[
\mathrm{d}(\mathrm{z})=\min \{\mathrm{d}(\mathrm{z}), \mathrm{d}(\mathrm{u})+\text { weight }(\mathrm{e})\}
\]

V-S


V-S

\section*{Dijkstra's Algorithm}

DIJKSTRA(G, w, s)
```

INITIALIZE-SINGLE-SOURCE(G, s)
$S \leftarrow \varnothing$
$\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}]$
while $Q \neq \varnothing$
do $u \leftarrow$ EXTRACT-MIN(Q)
$S \leftarrow S \subseteq\{u\}$
for each vertex $v \in \operatorname{Adj}[u]$
do RELAX (u, v, w)

```

\section*{Example: Dijkstra's Algorithm}

\begin{tabular}{l|l|l|l|l|}
\hline\(s\) & \(t\) & \(x\) & \(y\) & \(z\) \\
\hline 0 & & & \\
\hline
\end{tabular}


Q \begin{tabular}{|c|c|c|c|}
\hline\(t\) & \(x\) & \(y\) & \(z\) \\
\hline 10 & \multicolumn{2}{|c|}{5}
\end{tabular}

For each vertex \(v \in \mathrm{~V}(\mathrm{G})\)
\(\mathrm{d}[\mathrm{v}] \leftarrow \infty\)
\(\pi[\mathrm{v}] \leftarrow \mathrm{NIL}\)

Considering s as root node \(\mathrm{d}[\mathrm{s}] \equiv 0\)
S \(\equiv\)
\[
\begin{aligned}
& s \text { is extracted form queue } \\
& \mathrm{S} \equiv \mathrm{~S}{ }_{\xi}\{\mathrm{s}\} \\
& \text { Adj[s] = t, y } \\
& \mathrm{d}[\mathrm{t}]>\mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{t}) \\
& (\infty>0+10) \\
& \mathrm{d}[\mathrm{t}] \leftarrow \mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{t}) \\
& 0+10=10 \\
& \pi[t] \leftarrow s \\
& \mathrm{~d}[\mathrm{y}]>\mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{y}) \\
& (\infty>0+5) \\
& \mathrm{d}[\mathrm{y}] \leftarrow \mathrm{d}[\mathrm{~s}]+\mathrm{w}(\mathrm{~s}, \mathrm{y}) \\
& 0+5=5 \\
& m[y] \leftarrow s
\end{aligned}
\]


y is extracted form queue
\(S \equiv S{ }^{\beta}\{y\}\)
\(\operatorname{Adj}[y]=t, x, z\)
\(d[t]>d[y]+w(y, t)\)
( \(10>5+3\) )

\begin{tabular}{|l|l|}
\hline\(t\) & \(x\) \\
\hline 8 & 13
\end{tabular}

\(\frac{2}{13}\)
\[
\mathrm{d}[\mathrm{t}] \leftarrow \mathrm{d}[\mathrm{y}]+\mathrm{w}(\mathrm{y}, \mathrm{t})
\]
\[
5+3=8
\]
\(\pi[t] \leftarrow y\)
\(d[x]>d[y]+w(y, x)\)
\((\infty>5+9)\)
\(d[x] \leftarrow d[y]+w(y, x)\) \(5+9=14\)
\(m[x] \leftarrow y\)
\(d[z]>d[y]+w(y, z)\)
\((\infty>5+2)\)
\(\mathrm{d}[\mathrm{z}] \leftarrow \mathrm{d}[\mathrm{y}]+\mathrm{w}(\mathrm{y}, \mathrm{z})\) \(5+2=7\)
\(m[z] \leftarrow y\)
\(z\) is extracted form queue
\(\mathrm{S} \equiv \mathrm{S} \xi^{\sharp}\{\mathrm{z}\}\)
\(\operatorname{Adj}[z]=s, x\)
\(\mathrm{d}[\mathrm{s}]>\mathrm{d}[\mathrm{z}]+\mathrm{w}(\mathrm{s}, \mathrm{z})\)
But \((0<7+7)\)
\(d[x]>d[z]+w(z, x)\)
\((14>7+6)\)
\[
\begin{aligned}
& \mathrm{d}[\mathrm{x}] \leftarrow \mathrm{d}[\mathrm{z}]+\mathrm{w}(\mathrm{z}, \mathrm{x}) \\
& 7+6=13 \\
& \mathrm{~m}[\mathrm{x}]
\end{aligned} \mathrm{\leftarrow z} \mathrm{~F} .
\]
\(t\) is extracted form queue
\[
\mathrm{S} \equiv \mathrm{~S} t^{3}\{\mathrm{t}\}
\]
\[
\operatorname{Adj}[t]=x, y
\]
\[
d[x]>d[t]+w(t, x)
\]
\[
(13>8+1)
\]
\[
\mathrm{d}[\mathrm{x}] \leftarrow \mathrm{d}[\mathrm{t}]+\mathrm{w}(\mathrm{t}, \mathrm{x})
\]
\[
8+1=9
\]
\(\pi[x] \leftarrow t\)
\(d[y]>d[t]+w(t, y)\)
But \((5<8+3)\)

\(x\) is extracted form queue
\(S \equiv S\) 解 \(\}\)
\(\operatorname{Adj}[\mathrm{x}]=\mathrm{z}\)
\(\mathrm{d}[\mathrm{z}]>\mathrm{d}[\mathrm{x}]+\mathrm{w}(\mathrm{x}, \mathrm{z})\)
But \((7<9+4)\)

\section*{Analysis: Dijkstra's Algorithm}

Cost depends on implementation of min-priority queue
Case 1: \(\quad\) Vertices being numbered 1 to |V|
- INSERT, DECREASE-KEY operations takes O(1)
- EXTRACT-MIN operation takes \(\mathrm{O}(\mathrm{V})\) time
- Sub cost is \(\mathrm{O}\left(\mathrm{V}^{2}\right)\)
- Total number of edges in all adjacency list is \(|E|\)
- Total Running time \(=\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)=\mathrm{O}\left(\mathrm{V}^{2}\right)\)

Case 2: Graph is sufficiently spare, e.g., \(\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{2} / \lg \mathrm{V}\right)\) Implement min-priority queue with binary min heap Vertices being numbered 1 to \(|\mathrm{V}|\)
- Each EXTRACT-MIN operation takes O(lgV)
- There \(|\mathrm{V}|\) operations, time to build min heap \(\mathrm{O}(\mathrm{V})\)
- Sub cost is \(\mathrm{O}(\mathrm{VIgV})\)
- Each DECREASE-KEY operation takes time \(\mathrm{O}(\mathrm{lgV})\), and there are \(|\mathrm{E}|\) such operation.
- Sub cost is \(O(E \lg V)\)

Hence Total Running time \(=O(V+E) \lg V=E \lg V\)
Case 3: Implement min-priority queue with Fibonacci heap
Vertices being numbered 1 to |V|
- Each EXTRACT-MIN operation takes O(lgV)
- There |V| operations, time to build min heap \(\mathrm{O}(\mathrm{V})\)
- Sub cost is \(\mathrm{O}(\mathrm{VIgV})\)
- Each DECREASE-KEY operation takes time O(1), and there are |E| such operation.
- Sub cost is O(E)

Hence Total Running time \(=\mathrm{O}(\mathrm{V} . \lg \mathrm{V}+\mathrm{E})=\mathrm{V} \lg \mathrm{V}\)

\section*{Case 1: Computation Time}
1. INITIALIZE-SINGLE-SOURCE(V,s) \(\leftarrow \Theta(\mathrm{V})\)
2. \(S \leftarrow \varnothing\)
3. \(\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}] \quad \mathrm{O}(\mathrm{V})\) build min-heap
4. while \(Q \neq \varnothing\)
5. do u \(\leftarrow\) EXTRACT-MIN(Q) \(\quad \leftarrow \mathrm{O}(\mathrm{V})\)
6. \(\quad S \leftarrow S \cup\{u\}\)
7. for each vertex \(v \in \operatorname{Adj}[u] \quad \leftarrow \quad \mathrm{O}\) ( E )
8. do RELAX(u, v, w)

Running time: \(\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)=\mathrm{O}\left(\left(\mathrm{V}^{2}\right)\right.\)
Note: Running time depends on Impl. Of min-priority (Q)

\section*{Case 2: Binary min Heap}
1. INITIALIZE-SINGLE-SOURCE (V, s) \(\leftarrow \Theta(\mathrm{V})\)
2. \(S \leftarrow \varnothing\)
3. \(\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}]\)
4. while \(Q \neq \varnothing\)
5. do u EXTRACT-MIN(Q)
\(\leftarrow \quad \mathrm{O}(\mathrm{V})\) build min-heap
6. \(\quad S \leftarrow S \cup\{u\}\)
7. for each vertex \(v \in \operatorname{Adj}[u]\)
8. do RELAX(u, v, w) \(\quad \leftarrow\) (E) times O(lgV)

Running time: \(\mathrm{O}(\mathrm{Vlg} \mathrm{V}+\mathrm{Elg} \mathrm{V})=\mathrm{O}(\mathrm{Elg} \mathrm{V})\)
Case 3: Fibonacci Heap
1. INITIALIZE-SINGLE-SOURCE \((\mathrm{V}, \mathrm{s}) \quad \leftarrow \Theta(\mathrm{V})\)
2. \(S \leftarrow \varnothing\)
3. \(\mathrm{Q} \leftarrow \mathrm{V}[\mathrm{G}]\)
\(\leftarrow \quad \mathrm{O}(\mathrm{V})\) build min-heap
4. while \(Q \neq \varnothing\)
\(\leftarrow \quad\) Executed \(\mathrm{O}(\mathrm{V})\) times
5. do \(\mathrm{u} \leftarrow\) EXTRACT-MIN \((\mathrm{Q}) \quad \leftarrow \mathrm{O}(\lg \mathrm{V})\)
6. \(\quad S \leftarrow S \cup\{u\}\)
7. for each vertex \(v \in \operatorname{Adj}[u]\)
8. do RELAX(u, v, w) \(\quad \leftarrow \quad \mathrm{O}(\mathrm{E})\) times O(1)

Running time: \(\mathrm{O}(\mathrm{Vlg} \mathrm{V}+\mathrm{E})=\mathrm{O}(\mathrm{Vlg} \mathrm{V})\)

Theorem: Correctness of Dijkstra's Algorithm
Dijkstra's algorithm, runs on a weighted, directed graph \(G=(\mathrm{V}, \mathrm{E})\) with non-negative weight function \(w\) and source s, terminates with \(d[u]=\delta(s, u)\) for all vertices \(u \square V\).

Proof
- We use the following loop invariant:
- At start each iteration of the while loop of lines \(4-8, d[v]=\delta(s, v)\) for each vertex \(v\) \(\in S\).
- It suffices to show for each vertex \(u \in V\), we have \(d[u]=\delta(s, u)\) at time when \(u\) is added to set S .
- Once we show that \(\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\), we rely on the upper-bound property to show that the equality holds at all times thereafter.

Initialization:
- Initially, \(S=\varnothing\), and so the invariant is trivially true

\section*{Maintenance:}
- We wish to show that in each iteration, \(d[u]=\delta(s, u)\), for the vertex added to set \(S\).
- On contrary suppose that \(d[u] \neq \delta(s, u)\) when \(u\) is added to set \(S\). Also suppose that \(u\) is the first vertex for which the equality does not hold.
- We focus on situation at beginning of while loop in which \(u\) is added to \(S\) and derive a contradiction.
- First of all, \(u \neq s\) because \(s\) is the first vertex added to set \(S\) and \(d[s]=\delta(s, s)=0\) at that time.
- Secondly \(S \neq \varnothing\) just before \(u\) is added to \(S\), this is because \(s\) is at least in \(S\).
- There must be some path from \(s\) to \(u\), otherwise \(d[u]=\delta(s, u)=\infty\) by no-path property, which would violate our assumption that \(\mathrm{d}[\mathrm{u}] \neq \delta(\mathrm{s}, \mathrm{u})\).
- Because there is at least one path, there must be a shortest path \(p\) from \(s\) to \(u\).
- Prior to adding \(u\) to \(S\), path \(p\) connects a vertex in \(S\), namely \(s\), to a vertex in \(V-S\), namely u.

- Let us consider the first vertex \(y\) along \(p\) such that \(y \in V-S\), and let \(x \in S\) be \(y\) 's predecessor.
- Thus, path \(p\) can be decomposed: \(s . S^{p 1} x \rightarrow y . 夕^{p 2} u\) (either of paths p1 or p2 may have no edges.)
- We claim that \(d[y]=\delta(s, y)\) when \(u\) is added to \(S\).

Proof of Claim: observe that \(x \in S\).
- Because \(u\) is chosen as the first vertex for which \(d[u] \neq \delta(s, u)\) when it is added to \(S\), we had \(\mathrm{d}[\mathrm{x}]=\delta(\mathrm{s}, \mathrm{x})\) when x was added to S .
- Edge ( \(\mathrm{x}, \mathrm{y}\) ) was relaxed at that time, and hence \(\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})\) (convergence property).
- Because y occurs before \(u\) on a shortest path from \(s\) to \(u\) and all edge weights are nonnegative (on path p2), we have \(\delta(\mathrm{s}, \mathrm{y}) \leq \delta(\mathrm{s}, \mathrm{u})\),
- Now \(\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y}) \leq \delta(\mathrm{s}, \mathrm{u}) \leq \mathrm{d}[\mathrm{u}] \Rightarrow \mathrm{d}[\mathrm{y}] \leq \mathrm{d}[\mathrm{u}]\)
(1)
- But because both vertices \(u\) and \(y\) were in \(V-S\) when \(u\) was chosen, we have \(d[u] \leq\) \(\mathrm{d}[\mathrm{y}]\).
- From (1) and (2), d[u] = d[y]
- Now, \(d[y]=\delta(s, y) \leq \delta(s, u)=d[u]=d[y] \quad \Rightarrow \delta(s, y)=\delta(s, u)\).
- Finally, \(\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\), it contradicts choice of \(u\)
- Hence, \(\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\) when u is added to S , and this equality is maintained at all times after that

\section*{Termination:}
- At termination, \(\mathrm{Q}=\varnothing\) which, along with our earlier invariant that \(\mathrm{Q}=\mathrm{V}-\mathrm{S}\), implies that \(S=V\).
- Thus, \(\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\) for all vertices \(\mathrm{u} \in \mathrm{V}\).

\section*{Lemma 1}

\section*{Statement}
- Let \(G=(V, E)\) be a weighted, directed graph with weight function \(w: E \rightarrow R\), let \(s \in V\) be a source vertex. Assume that \(G\) contains no negative-weight cycles reachable from \(s\). Then, after the graph is initialized by INITIALIZE-SINGLE-SOURCE(G, s), the predecessor sub-graph \(G_{\pi}\) forms a rooted tree with root \(s\), and any sequence of relaxation steps on edges of \(G\) maintains this property as an invariant.

\section*{Proof}
- Initially, the only vertex in \(\mathrm{G}_{\pi}\) is the source vertex, and the lemma is trivially true.
- Let \(G \pi\) be a predecessor subgraph that arises after a sequence of relaxation steps.
a. First we prove that \(\mathrm{G} \pi\) is a rooted tree.
1. \(G_{\pi}\) is acyclic
- On contrary suppose that some relaxation step creates a cycle in the graph \(G \pi\).
- Let \(\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}>\right.\) be cycle, where \(\mathrm{v}_{\mathrm{k}}=\mathrm{v}_{\mathrm{o}}\).
- Then, \(\pi\left[v_{i}\right]=v_{i-1}\) for \(i=1,2, \ldots, k\)
- Now, without loss of generality, we can assume that it was the relaxation of edge ( \(\mathrm{v}_{\mathrm{k}-1}\), \(v_{k}\) ) that created the cycle in \(G_{T}\).

Claim: all vertices on cycle c reachable from s.
- Because each vertex has non-NIL predecessor, and it was assigned a finite shortestpath estimate when it was assigned non-NIL \(\pi\) value
- By upper-bound property, each vertex on c has a finite shortest-path weight, and reachable from s.

Shortest-path on c just prior RELAX \(\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}, \mathrm{w}\right)\)
- Just before call, \(\pi\left[v_{i}\right]=v_{i-1}\) for \(i=1,2, \ldots, k-1\).
- Thus, for \(\mathrm{i}=1,2, \ldots, \mathrm{k}-1\), last update to \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right]\) was \(\mathrm{d}\left[\mathrm{v}_{\mathrm{i}}\right] \leftarrow \mathrm{d}\left[\mathrm{v}_{\mathrm{i}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)\).
- It is obvious that, \(\mathrm{d}\left[\mathrm{v}_{\mathrm{k}}\right]>\mathrm{d}\left[\mathrm{v}_{\mathrm{k}-1}\right]+\mathrm{w}\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)\).
- Summing it with \(\mathrm{k}-1\) inequalities,
\[
\begin{aligned}
\sum_{i=1}^{k} d\left[v_{i}\right] & >\sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} d\left[v_{i-1}\right]+\sum_{\mathrm{l}=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
\]

But, \(\sum_{i=1}^{k} d\left[v_{i}\right]=\sum_{i=1}^{k} d\left[v_{i-1}\right]\)
Hence, \(0>\sum_{\mathrm{l}=1}^{k} w\left(v_{i-1}, v_{i}\right)\)
- Thus, sum of weights around cycle c is negative, which provides the contradiction.
- We have proved that \(\mathrm{G} \pi\) is a directed, acyclic.
2. To show that it forms a rooted tree with root s
- Sufficient to prove that \(\forall v \in V_{\pi}\), there is a unique path from \(s\) to \(v\) in \(G \pi\).
- On contrary, suppose there are two simple paths from s to some vertex \(v\), and ( \(x \neq y\) )
\(p_{1}: \quad s \& u \& x \rightarrow z \& v\)
\(p_{2}: \quad\) \& \& \(\& y \rightarrow z \& v\)
- \(m[z]=x\) and \(\pi[z]=y, \Rightarrow x=y\), a contradiction.
- Hence there exists unique path in \(G \pi\) from \(s\) to \(v\). Thus \(G \pi\) forms a rooted tree with root s.
b. Now by predecessor subgraph property
- \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all vertices \(\mathrm{v} \in \mathrm{V}\). Proved

\section*{Lemma 2}
- If we run Dijkstra's algorithm on weighted, directed graph \(G=(V, E)\) with nonnegative weight function w and source s, then at termination, predecessor subgraph \(G \pi\) is a shortest paths tree rooted at s.
Proof: Immediate from the above lemma.

\title{
Lecture No. 36 \\ All Pairs Shortest Paths
}

\section*{Today Covered}
- All Pairs Shortest Paths
- Algorithms
- Matrix Multiplication
- The Floyd-Warshall Algorithm
- Time Complexity
- Conclusion

\section*{All-Pairs Shortest Path (APSP): Approach}
- In all-pair shortest path problems, graph G given as
- Directed, weighted with weight function w: EフR
- where w is a function from edge set to real-valued weights
- Our objective is to find shortest paths, for all pair of vertices \(u, v \in V\),

\section*{Approach}
- All-pair shortest path problem can be solved by running single source shortest path in |V| times, by taking each vertex as a source vertex.
- Now there are two cases.

\section*{Edges are non-negative}

\section*{Case 1}
- Then use Dijkstra's algorithm
- Linear array of min-priority queue takes \(\mathrm{O}\left(\mathrm{V}^{3}\right)\)
- Binary min-heap of min-priority queue, \(\mathrm{O}(\mathrm{VE} \lg \mathrm{V}\) )
- Fibonacci heap of min-priority queue takes \(\mathrm{O}\left(\mathrm{V}^{2} \lg \mathrm{~V}+\mathrm{VE}\right)\)

\section*{Negative weight edges are allowed}

\section*{Case 2}
- Bellman-Ford algorithm can be used when negative weight edges are present
- In this case, the running time is \(O\left(V^{2} E\right)\)
- However if the graph is dense then the running time is \(\mathrm{O}\left(\mathrm{V}^{4}\right)\)

Note
- Unlike single-source shortest path algorithms, most algorithms of all pair shortest problems use an adjacency-matrix representation
- Let us define adjacency matrix representation.

\section*{Adjacency Matrix Representation}

Assumptions
- Vertices are numbered from \(1,2, \ldots,|\mathrm{~V}|\)
- In this way input is an \(\mathrm{n} \times \mathrm{n}\) matrix
- W represents edges weights of \(n\)-vertex directed weighted graph \(G\) i.e.,
\[
w_{i j}= \begin{cases}\mathrm{W}=\left(\mathrm{w}_{\mathrm{ij}}\right), \text { where } & \text { if } i=j \\ \text { the weight of directed edge }(i, j) & \text { if } i \neq j \text { and }(i, j) \in E, \\ \infty & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
\]

\section*{Shortest Path and Solution Representation}
- For a moment we assume that negative-weight edges are allowed, but input graph contains no negative-weight cycle
- The tabular output of all-pairs shortest-paths algorithms will be presented an \(\mathrm{n} \times \mathrm{n}\) matrix \(D=\left(d_{i j}\right)\), where entry \(d_{i j}\) contains the weight of a shortest path from vertex \(i\) to vertex \(j\). And the
- A Predecessor Matrix \(\Pi=\left(\pi_{\mathrm{ij}}\right)\), where
\(\Pi_{i j}=\) NIL, \(\quad\) if either \(\mathrm{i}=\mathrm{j}\) or no path from i to j
\(\Pi_{i j}=\) predecessor of \(j\) on some shortest path from \(i\), otherwise

\section*{Example: All-Pairs Shortest Path}

Given:
Directed graph \(G=(V, E)\)
Weight function w: \(E \rightarrow R\)

\section*{Compute:}

The shortest paths between all pairs of vertices in a graph Representation of result:
\(5 \times 5\) matrix of shortest-path distances \(\delta(u\),
v)

\(5 \times 5\) matrix of predecessor sub-graph

\section*{Structure of Output: Sub-graph for each row}
- For each vertex \(i \in V\) the Predecessor Subgraph of \(G\) for \(i\) is defined as \(G_{\pi, i}=\left(V_{\pi, i}\right.\), \(\left.\mathrm{E}_{\pi \mathrm{i}}\right)\), where
\(V_{\pi . i}=\left\{j \in \mathrm{~V}: \pi_{\mathrm{ij}} \neq \mathrm{NIL}\right\}{ }^{\sharp}\{i\}\) and
\(\mathrm{E}_{\pi \mathrm{i} .}=\left\{(\mathrm{i}, \mathrm{j}): \mathrm{j} \in \mathrm{V}_{\pi . \mathrm{i}}-\{i\}\right\}\)
- \(\mathrm{G}_{\pi, \mathrm{i}}\) is shortest pat tree as was in single source shortest path problem

\section*{Printing Output}

PRINT-ALL-PAIRS-SHORTEST-PATH ( \(\Pi, i, j\) )
1 if \(\mathrm{i}=\mathrm{j}\)
2 then print i
3 else if \(\pi_{i j}=\) NIL
4 then print "no path from" i "to" j "exists"
5 else PRINT-ALL-PAIRS-SHORTEST-PATH ( \(\Pi, \mathrm{i}, \pi_{\mathrm{ij}}\) )
6
print j

\section*{Shortest Paths and Matrix Multiplication}
- Here we present a dynamic-programming algorithm for all-pairs shortest paths on a directed graph \(G=(\mathrm{V}, \mathrm{E})\).
- Each major loop of dynamic program will invoke an operation very similar to multiplication of two matrices, and algorithm looks like repeated matrix multiplication
- At first we will develop \(\Theta\left(\mathrm{V}^{4}\right)\)-time algorithm and then improve its running time to \(\Theta\left(\mathrm{V}^{3} \mathrm{Ig}\right.\) V ).
- Before we go for dynamic solution, let us have a review of steps involved in dynamicprogramming algorithms.

\section*{Steps in Dynamic Programming}

Steps on dynamic-programming algorithm are
- Characterize the structure of an optimal solution.
- Recursively define value of an optimal solution
- Computing value of an optimal solution in bottom-up
- Constructing optimal solution from computed information

Note:
Steps 1-3 are for optimal value while step 4 is for computing optimal solution
1. Structure of an Optimal Solution
- Consider shortest path \(p\) from vertex i to \(j\), and suppose that \(p\) contains at most \(m\) edges
- If \(\mathrm{i}=\mathrm{j}\), then p has weight 0 and no edges
- If \(i\) and \(j\) are distinct, then decompose path \(p\) into \(i p^{p^{\prime}} k \nearrow j\), where path \(p^{\prime}\) contains at most \(m-1\) edges and it is a shortest path from vertex \(i\) to vertex \(k\), and
\(-\quad\) Hence \(\delta(\mathrm{i}, \mathrm{j})=\delta(\mathrm{i}, \mathrm{k})+\mathrm{w}_{\mathrm{kj}}\).

\section*{2. A Recursive Solution}
- Let \(l_{i j}^{(m)}=\) minimum weight of path i to j at most m edges
- \(m=0\), there is shortest path \(i\) to \(j\) with no edges \(\Leftrightarrow i=j\), thus
\[
l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}
\]
- \(m \geq 1\), compute using and adjacency matrix w
\[
\begin{aligned}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
\end{aligned}
\]
- The actual shortest-path weights are therefore given by
\[
\delta(i, j)=l_{i j}^{(n-1)}=l_{i j}^{(n)}=l_{i j}^{(n+1)}=\ldots
\]

\section*{3. Compute Shortest Path Weights Bottom-up}
- Input matrix \(\mathrm{W}=\left(\mathrm{w}_{\mathrm{ij}}\right)\),
- Suppose that, \(L^{(m)}=\left(l_{i j}^{(m)}\right)\), where, \(m=1,2, \ldots, n-1\)
- Compute series of matrices \(\mathrm{L}^{(1)}, \mathrm{L}^{(2)}\) \(L^{(n-1)}\),
- Objective function, \(\mathrm{L}^{(\mathrm{n}-1)}\), at most \(\mathrm{n}-1\) edges in each path

Note
- Observe that \(l_{i j}{ }^{(1)},=w_{i j}\), for all \(i, j \in V\), and so \(L^{(1)}=W\)
- Heart of the algorithm is : given matrices \(L^{(m-1)}\) and \(W\), and compute the matrix \(L^{(m)}\)
- That is, it extends shortest paths computed so far by one more edge.

\section*{Algorithm: Extension from \(L^{(m-1)}\) to \(L^{(m)}\)}

EXTEND-SHORTEST-PATHS (L, W)
```

$\mathrm{n} \leftarrow$ rows[L]

```
2 let L' = be an \(\mathrm{n} \times \mathrm{n}\) matrix
3 for \(\mathrm{i} \leftarrow 1\) to n
\(4 \quad\) do for \(\mathrm{j} \leftarrow 1\) to n
5 do \(\leftarrow \infty\)
\[
\text { for } \mathrm{k} \leftarrow 1 \text { to } \mathrm{n}
\]
do

8 return L'
\(l_{i j}^{\prime} \leftarrow \min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)\)
Total Running Time \(=\) 乘 \(\left(n^{3}\right)\)

\section*{Complete but Slow Algorithm}

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)
\(1 \mathrm{n} \leftarrow\) rows [W]
\(2 \mathrm{~L}^{(1)} \leftarrow \mathrm{W}\)
3 for \(\mathrm{m} \leftarrow 2\) to \(\mathrm{n}-1\)
4 do \(L^{(m)} \leftarrow\) EXTEND-SHORTEST-PATHS \(\left.\quad L^{(m-1)}, W\right)\)
5 return \(\mathrm{L}^{(n-1)}\)

Total Running Time \(=\) 黍 \(\left(n^{4}\right)\)

\section*{Example}
\[
\begin{aligned}
& L^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
& L^{(2)}=\left(\begin{array}{ccrrr}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0
\end{array}\right)
\end{aligned}
\]


The reader may verify that \(\mathrm{L}^{(4)}=\mathrm{L}^{(5)}=\mathrm{L}^{(6)=}=\ldots\)
\[
\begin{aligned}
& L^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \\
& L^{(4)}=\left(\begin{array}{ccccr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right)
\end{aligned}
\]


\section*{Improving Running Time}
- Running time of previous algorithm is very high and needs improvement.
- The goal is not to compute all the \(\mathrm{L}^{(m)}\) matrices but only computation of matrix \(\mathrm{L}^{(n-1)}\) is of interest
- As Matrix multiplication associative, \(\mathrm{L}^{(\mathrm{n}-1)}\) can be calculated with only \(\lceil\mathrm{lg}(\mathrm{n}-1)\rceil\) matrix products as.
\(L^{(1)}=W\),
\(L^{(2)}=W^{2}=W \cdot W\),
\(L^{(4)}=W^{4}=W^{2} \cdot W^{2}\),
\(L^{(8)}=W^{8}=W^{4} \cdot W^{4}\),
\(L^{n-1}=L^{2^{[\lg (n-1)]}}=W^{2^{[\lg (n-1)]}}\)
```

Improved Algorithm
FASTER-ALL-PAIRS-SHORTEST-PATHS (W)
$1 \mathrm{n} \leftarrow$ rows[W]
$2 \mathrm{~L}^{(1)} \leftarrow \mathrm{W}$
$3 \mathrm{~m} \leftarrow 1$
4 while $m<n-1$
5 do $\mathrm{L}^{(2 \mathrm{~m})} \leftarrow$ EXTEND-SHORTEST-PATHS $\left(\mathrm{L}^{(m)}, \mathrm{L}^{(m)}\right)$
$6 \quad \mathrm{~m} \leftarrow 2 \mathrm{~m}$
return $L^{(m)}$

```
Total Running Time \(=O\left(n^{3} \lg n\right)\)

Lecture No. 37
The Floyd-Warshall Algorithm

\section*{\& Johnson's Algorithm}

\section*{Intermediate Vertices}
- Vertices in \(G\) are given by: \(V=\{1,2, \ldots, n\}\)
- Consider a path \(p=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathbf{1}}\right\rangle\)
- An intermediate vertex of \(p\) is any vertex in set \(\left\{v_{2}, v_{3}, \ldots, v_{1-1}\right\}\)

Example 1
If \(p=\langle 1,2,4,5\rangle\) then
I.V. \(=\{2,4\}\)

\section*{Example 2}

If \(p=\langle 2,4,5\rangle\) then
I.V. \(=\{4\}\)

\section*{The Floyd Warshall Algorithm}
1. Structure of a Shortest Path
- Let \(V=\{1,2, \ldots, n\}\) be a set of vertices of \(G\)
- Consider subset \(\{1,2, \ldots, k\}\) of vertices for some \(k\)
- Let p be a shortest paths from i to j with all intermediate vertices in the set \(\{1,2, \ldots, \mathrm{k}\}\).
- It exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set \(\{1,2, \ldots, k-1\}\).
- The relationship depends on whether or not \(k\) is an intermediate vertex of path \(p\).
- For both cases optimal structure is constructed
2. \(k\) not an I. vertex. of path \(p\)
- Shortest path i to j with I.V. from \(\{1,2, \ldots, k\}\) is shortest path i to j with I.V. from \(\{1,2, \ldots\), k-1\}
1. \(k\) an intermediate vertex of path \(p\)
- p 1 is a shortest path from \(i\) to \(k\)
- p2 is a shortest path from \(k\) to \(j\)
- k is neither intermediate vertex of p 1 nor of p 2
- p1, p2 shortest paths i to k with I.V. from: \(\{1,2, \ldots, k-1\}\)

\(p\) : all intermediate vertices in \(\{1, \ldots, \mathrm{k}\}\)
2. A Recursive Solution
- Let \(d_{i j}^{(k)}=\) be the weight of a shortest path from vertex \(i\) to vertex \(j\) for which all intermediate vertices are in the set \(\{1,2, \ldots, k\}\).
- Now \(D^{(n)}=\left(\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{n})}\right)\),
- Base case \(\left.\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(0)}\right)=\mathrm{w}_{\mathrm{i}, \mathrm{j}}\)
- \(D^{(0)}=\left(\mathrm{w}_{\mathrm{i}, \mathrm{j}}\right)=W\)
- The recursive definition is given below
\(d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}\)

\section*{3. The Floyd Warshall Algorithm}

FLOYD-WARSHALL (W)
\(1 \mathrm{n} \leftarrow \operatorname{rows}[\mathrm{W}]\)
\(2 \mathrm{D}^{(0)} \leftarrow \mathrm{W}\)
3 fork \(\leftarrow 1\) to \(n\)
\(4 \quad\) do for \(\mathrm{i} \leftarrow 1\) to n
\(5 \quad\) do for \(\mathrm{j} \leftarrow 1\) to n
\(6 \quad\) do \(d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
7 return \(\mathrm{D}^{(\mathrm{n})}\)
Total Running Time \(=\mathrm{O}\left(\mathrm{n}^{3}\right)\)

\section*{Constructing a Shortest Path}
- One way is to compute matrix D of SP weights and then construct predecessor matrix \(\Pi\) from D matrix.
- It takes \(\mathrm{O}\left(\mathrm{n}^{3}\right)\)
- A recursive formulation of: \(\pi_{i j}^{(k)}\)
- \(\mathrm{k}=0\), shortest path from i to j has no intermediate vertex
\[
\pi_{i j}^{(0)}= \begin{cases}N I L & \text { if } i=j \text { or } w_{i j}=\infty \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}
\]
- For \(\mathrm{k} \geq 1\)
\[
\pi_{i j}^{(k)}= \begin{cases}\pi_{i k}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
\]

\section*{Example: Floyd Warshall Algorithm}

\[
D^{(0)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right)
\]

Adjacency Matrix of given Graph

For \(\mathrm{k}=\mathbf{0}\)
\[
D^{(0)}=\left(\begin{array}{ccccc}
\mathbf{0} & \mathbf{3} & \mathbf{8} & \infty & \mathbf{- 4} \\
\hline \infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
\mathbf{2} & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & N I L & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & N I L & N I L \\
4 & N I L & 4 & N I L & N I L \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\]

\section*{For \(k=1\)}
\[
\begin{aligned}
& d_{3,4}{ }^{(1)}=\min \left(d_{3,4}{ }^{(0)}, d_{3,1}{ }^{(0)}+d_{1,4}{ }^{(0)}\right) \\
& =\min (\infty, \infty+\infty)=\infty
\end{aligned}
\]
\[
\begin{aligned}
& D^{(0)}=\left(\begin{array}{ccccc}
\mathbf{0} & \mathbf{3} & \mathbf{8} & \infty & -\mathbf{4} \\
\hline \infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
\mathbf{2} & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \square D^{(1)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \mathbf{5} & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
& d_{4,2}{ }^{(1)}=\min \left(d_{4,2}{ }^{(0)}, d_{4,1}{ }^{(0)}+d_{1,2}{ }^{(0)}\right) \\
& =\min (\infty, 2+3)=5
\end{aligned}
\]
\(D^{(1)}=\left(\begin{array}{cc|ccc}0 & \mathbf{3} & 8 & \infty & -4 \\ \mathbf{0} & \infty & \mathbf{8} & \infty & -4 \\ \infty & \infty & 0 & \infty & \infty \\ 2 & 2 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}N I L & 1 & 1 & N I L & 1 \\ N I L & N I L & N I L & 2 & 2 \\ N I L & 3 & N I L & N I L & N I L \\ 4 & 1 & 4 & N I L & 1 \\ N I L & N I L & N I L & 5 & N I L\end{array}\right)\)
For \(\mathrm{k}=\mathbf{2}\)

For \(\mathrm{k}=3\)
\[
\begin{aligned}
& D^{(2)}=\left(\begin{array}{cc|c|cc}
0 & 3 & \mathbf{8} & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\hline \mathbf{0} & \mathbf{4} & \mathbf{0} & \mathbf{5} & \mathbf{1 1} \\
\hline \mathbf{2} & \mathbf{5} & \mathbf{- 5} & 0 & -2 \\
\infty & \infty & \begin{array}{cc}
0 \\
\infty
\end{array} & 6 & 0
\end{array}\right) \quad D^{(3)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & \mathbf{- 1} & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
& d_{4,2^{(3)}=\min \left(d_{4,2}(2), d_{4,3}^{(2)}+d_{3,2}^{(2)}\right)}
\end{aligned}
\]
\[
D^{(3)}=\left(\begin{array}{ccc|c|c}
0 & 3 & 8 & \mathbf{4} & -4 \\
\infty & 0 & \infty & \mathbf{1} & 7 \\
\infty & 4 & 0 & \mathbf{5} & 11 \\
\mathbf{2} & \mathbf{- 1} & \mathbf{- 5} & \mathbf{0} & \mathbf{- 2} \\
\infty & \infty & \infty & \mathbf{6} & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 3 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\]

For \(k=4\)
\[
\begin{aligned}
& d_{4,3^{(2)}}=\min \left(d_{4,3}{ }^{(1)}, d_{4,2^{(1)}}+d_{2,3}{ }^{(1)}\right) \\
& =\min (-5,5+\infty)=-5 \\
& D^{(1)}=\left(\begin{array}{cc|ccc}
0 & \mathbf{3} & 8 & \infty & -4 \\
\mathbf{0} & \infty & \mathbf{8} & \infty & -\mathbf{4} \\
\infty & \infty & 0 & \infty & \infty \\
2 & 2 & -5 & 0 & -2 \\
\infty & \infty & 6 & 0
\end{array}\right) \quad \square \quad D^{(2)}=\left(\begin{array}{ccccc}
0 & 3 & 8 & \mathbf{4} & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \mathbf{5} & \mathbf{1 1} \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \\
& \begin{array}{l}
d_{1,4}{ }^{(2)}=\min \left(d_{1,4}{ }^{(1)}, d_{1,2}{ }^{(1)}+d_{2,4}{ }^{(1)}\right) \\
=\min (\infty, 3+1)=4
\end{array} \\
& D^{(2)}=\left(\begin{array}{cc|c|cc}
0 & 3 & \mathbf{8} & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\mathbf{0} & \mathbf{4} & \mathbf{0} & \mathbf{5} & \mathbf{1 1} \\
& 5 & \mathbf{- 5} & \begin{array}{cc}
0 & -2 \\
\infty & \infty \\
\infty & 6
\end{array} & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
N I L & 1 & 1 & 2 & 1 \\
N I L & N I L & N I L & 2 & 2 \\
N I L & 3 & N I L & 2 & 2 \\
4 & 1 & 4 & N I L & 1 \\
N I L & N I L & N I L & 5 & N I L
\end{array}\right)
\end{aligned}
\]
\[
\begin{aligned}
& D^{(3)}=\left(\begin{array}{cccc|c}
0 & 3 & 8 & \mathbf{4} & -4 \\
\infty & 0 & \infty & \mathbf{1} & 7 \\
\infty & 4 & 0 & \mathbf{5} & 11 \\
2 & -\mathbf{1} & \mathbf{- 5} & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \square \quad D^{(4)}=\left(\begin{array}{ccccc}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \\
& \begin{array}{l}
d_{5,2}{ }^{(4)}=\min \left(d_{5,2}{ }^{(3)}, d_{5,4}{ }^{(3)}+d_{4,2}{ }^{(3)}\right) \\
=\min (\infty, 6+(-1))=5
\end{array} \\
& D^{(4)}=\left(\begin{array}{cccc|c}
0 & 3 & -1 & 4 & \mathbf{- 4} \\
3 & 0 & -4 & 1 & \mathbf{- 1} \\
7 & 4 & 0 & 5 & \mathbf{3} \\
2 & -1 & -5 & 0 & \mathbf{- 2} \\
\mathbf{8} & \mathbf{5} & \mathbf{1} & \mathbf{6} & \mathbf{0}
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{ccccc}
N I L & 1 & 4 & 2 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
\]

For \(\mathrm{k}=5\)
\[
\begin{aligned}
& \left.D^{(4)}=\left(\begin{array}{cccc|c}
0 & \mathbf{3} & -1 & 4 & -\mathbf{4} \\
3 & 0 & -4 & 1 & \mathbf{- 1} \\
7 & 4 & 0 & 5 & \mathbf{3} \\
2 & -1 & -5 & 0 & \mathbf{- 2} \\
\mathbf{8} & \mathbf{5} & \mathbf{1} & \mathbf{6} & \mathbf{0}
\end{array}\right) \quad \square\right) \quad D^{(5)}=\left(\begin{array}{ccccc}
0 & \mathbf{1} & \mathbf{- 3} & \mathbf{2} & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \\
& d_{1,2}{ }^{(5)}=\min \left(d_{1,2}{ }^{(4)}, d_{1,5}{ }^{(4)}+d_{5,2}{ }^{(4)}\right) \\
& =\min (3,(-4)+(5))=1
\end{aligned}
\]
\[
D^{(5)}=\left(\begin{array}{ccccc}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \Pi^{(5)}=\left(\begin{array}{ccccc}
N I L & 3 & 4 & 5 & 1 \\
4 & N I L & 4 & 2 & 1 \\
4 & 3 & N I L & 2 & 1 \\
4 & 3 & 4 & N I L & 1 \\
4 & 3 & 4 & 5 & N I L
\end{array}\right)
\]

\section*{Existence of Shortest Paths Between any Pair}

Transitive Closure
- Given a directed graph \(G=(V, E)\) with vertex set \(V=\{1,2, \ldots, n\}\), we may wish to find out whether there is a path in \(G\) from \(i\) to \(j\) for all vertex pairs \(i, j \in V\).
- The transitive closure of \(G\) is defined as the graph \(G^{*}=\left(V, E^{*}\right)\), where \(E^{*}=\{(i, j)\) : there is a path from vertex \(i\) to vertex \(j\) in \(G\) \}.
- One way is to assign a weight of 1 to each edge of \(E\) and run the Floyd-Warshall algorithm.
- If there is a path from vertex \(i\) to \(j\), then \(d_{i j}<n\)
- Otherwise, we get \(\mathrm{d}_{\mathrm{ij}}=\infty\).
- The running time is \(\Theta\left(\mathrm{n}^{3}\right)\) time

\section*{Substitution}
- Substitute logical operators, \(\square\) (for \(\min\) ) and \(\square\) (for +) in the Floyd-Warshall algorithm
- Running time: \(\Theta\left(n^{3}\right)\) which saves time and space
- A recursive definition is given by
\(-\mathrm{K}=0 \quad t_{i j}^{(0)}= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \notin E \\ 1 & \text { if } i=j \text { or }(i, j) \in E\end{cases}\)
- For \(\mathrm{k} \geq 1 \quad t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge d_{k j}^{(k-1)}\right)\)

\section*{Transitive Closure}

TRANSITIVE-CLOSURE(G)
```

 \(\mathrm{n} \leftarrow|\mathrm{V}[\mathrm{G}]|\)
 for \(\mathrm{i} \leftarrow 1\) to n
 do for \(\mathrm{j} \leftarrow 1\) to n
 do if \(\mathrm{i}=\mathrm{j}\) or \((\mathrm{i}, \mathrm{j}) \in \mathrm{E}[\mathrm{G}]\)
 then \(t_{i j}^{(0)} \leftarrow 1\)
 else \(t_{i j}^{(0)} \leftarrow 0\)
 for \(k \leftarrow 1\) to \(n\)
 $$
\text { do for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{n}
$$

 do for \(\mathrm{i} \leftarrow 1\) to n
 do for \(\mathrm{j} \leftarrow 1\) to \(n\)
    ```
10
\(t_{i j}^{(k)} \leftarrow t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge d_{k j}^{(k-1)}\right)\)
11 return \(\mathrm{T}^{(\mathrm{n})}\)

Total Running Time \(=\mathrm{O}\left(\mathrm{n}^{3}\right)\)
\[
\begin{aligned}
& T^{(0)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right) T^{(1)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right) \\
& T^{(2)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) T^{(3)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \\
& T^{(4)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
\]


\section*{Johnson's Algorithm}
- For sparse graphs, Johnson's Algorithm is asymptotically better than
- Repeated squaring of matrices and
- The Floyd-Warshall algorithm.
- It uses as subroutines both
- Dijkstra's algorithm and
- The Bellman-Ford algorithm.
- It returns a matrix of shortest-path weights for all pairs of vertices OR
- Reports that the input graph contains a negative-weight cycle.
- This algorithm uses a technique of reweighting.

\section*{Re-weighting}
- The technique of reweighting works as follows.
- If all edge weights are nonnegative, find shortest paths by running Dijkstra's algorithm, with Fibonacci heap priority queue, once for each vertex.
- If \(G\) has negative-weight edges, we simply compute a new set of nonnegative edges weights that allows us to use the same method.
- New set of edge weights must satisfy the following
- For all pairs of vertices \(u, v \in V\), a shortest path from \(u\) to \(v\) using weight function \(w\) is also a shortest path from \(u\) to \(v\) using weight function \(w\) '.
- For all ( \(u, v\) ), new weight \(w^{\prime}(u, v)\) is nonnegative
\(\delta, \delta ’\) Preserving Shortest Paths by Re-weighting
- From the lemma given in the next slide shows, it is easy to come up with a re-weighting of the edges that satisfies the first property above.
- We use \(\delta\) to denote shortest-path weights derived from weight function w
- And \(\delta\) ' to denote shortest-path weights derived from weight function w'.
- And then we will show that, for all \((u, v)\), new weight \(w^{\prime}(u, v)\) is nonnegative.

\section*{Re-weighting does not change shortest paths}

Lemma Statement
- Given a weighted, directed graph \(G=(\mathrm{V}, \mathrm{E})\) with weight function \(\mathrm{w}: \mathrm{E} \rightarrow \mathrm{R}\), let \(\mathrm{h}: \mathrm{V} \rightarrow\) \(R\) be any function mapping vertices to real numbers.
- For each edge ( \(u, v\) ) \(E\), define
\[
w^{\prime}(u, v)=w(u, v)+h(u)-h(v)
\]
- Let \(p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle\) be any path from vertex \(v_{0}\) to vertex \(v_{k}\). Then \(p\) is a shortest path from \(v_{0}\) to \(v_{k}\) with weight function \(w\) if and only if it is a shortest path with weight function w'.
- That is, \(w(p)=\delta\left(v_{0}, v_{k}\right)\) if and only if \(w^{\prime}(p)=\delta^{\prime}\left(v_{0}, v_{k}\right)\).
- Also, \(G\) has a negative-weight cycle using weight function \(w\) if and only if \(G\) has a negative-weight cycle using weight function w'.

\section*{Proof: Lemma}

We start by showing that
\[
\mathrm{w}^{\prime}(\mathrm{p})=\mathrm{w}(\mathrm{p})+\mathrm{h}\left(\mathrm{v}_{0}\right)-h\left(v_{k}\right)
\]

We have
\[
\begin{aligned}
\mathrm{w}^{\prime}(\mathrm{p}) & =\sum_{i=1}^{k} \mathrm{w}^{\prime}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right) \\
& =\sum_{i=1}^{k} \mathrm{w}(\mathrm{p})+\mathrm{h}\left(\mathrm{v}_{\mathrm{i}-1}\right)-h\left(v_{i}\right) \\
& =\sum_{i=1}^{k} \mathrm{w}(\mathrm{p})+\sum_{i=1}^{k}\left(\mathrm{~h}\left(\mathrm{v}_{\mathrm{i}-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} \mathrm{w}(\mathrm{p})+\mathrm{h}\left(\mathrm{v}_{0}\right)-h\left(v_{k}\right)
\end{aligned}
\]
- Therefore, any path \(p\) from \(v_{0}\) to \(v_{k}\) has \(w^{\prime}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)\).
- If one path from \(v_{0}\) to \(v_{k}\) is shorter than another using weight function \(w\), then it is also shorter using w'.
- Thus, \(w(p)=\delta\left(v_{0}, v_{k},\right) \Leftrightarrow w^{\prime}(p)=\delta^{\prime}\left(v_{0}, v_{k}\right)\).
- Finally, we show that \(G\) has a negative-weight cycle using weight function w if and only if \(G\) has a negative-weight cycle using weight function w'.
- Consider any cycle \(\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle\), where \(\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}\).
- Now w' \((\mathrm{c})=\mathrm{w}(\mathrm{c})+\mathrm{h}\left(\mathrm{v}_{0}\right)-\mathrm{h}\left(\mathrm{v}_{\mathrm{k}}\right)=\mathrm{w}(\mathrm{c})\),
- And thus \(c\) has negative weight using \(w\) if and only if it has negative weight using w'.
- It completes the proof of the theorem

\section*{Producing nonnegative weights by re-weighting}
- Next we ensure that second property holds i.e. w'(u,v) to be nonnegative for all edges (u, v) \(\in E\)
- Given a weighted, directed graph \(G=(V, E)\) with weight function \(w: E \rightarrow R\), we make a new graph \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\), where \(\mathrm{V}^{\prime}=\mathrm{V} \cup\{s\}\) for some new vertex \(\mathrm{s} \notin \mathrm{V}\) and
- \(\mathrm{E}^{\prime}=\mathrm{E} \cup\{(\mathrm{s}, \mathrm{v}): \mathrm{v} \in \mathrm{V}\}\).
- Extend weight function \(w\) so that \(w(s, v)=0\) for all \(v \in \mathrm{~V}\).
- Note that because s has no edges that enter it, no shortest paths in \(\mathrm{G}^{\prime}\), other than those with source s, contain s.
- Moreover, \(G^{\prime}\) has no negative-weight cycles if and only if \(G\) has no negative-weight cycles.
- Now suppose that \(G\) and \(G^{\prime}\) have no negative-weight cycles.
- Let us define \(h(v)=\delta(s, v)\) for all \(v \in V^{\prime}\).
- By triangle inequality, we have
\[
\begin{equation*}
h(v) \leq h(u)+w(u, v), \quad \forall(u, v) \in E^{\prime} . \tag{1}
\end{equation*}
\]
- Thus, if we define the new weights \(w^{\prime}\), we have \(w^{\prime}(u, v)=w(u, v)+h(u)-h(v) \geq 0\). by (1)
- And the second property is satisfied.

\section*{Johnson's Algorithm}

JOHNSON (G)
1 compute \(\mathrm{G}^{\prime}\), where \(\mathrm{V}\left[\mathrm{G}^{\prime}\right]=\mathrm{V}[\mathrm{G}]\) § \(\{\mathrm{s}\}\),
\(E[G]=E[G]\) § \(\{(s, v): v \in V[G]\}\), and
\(\mathrm{w}(\mathrm{s}, \mathrm{v})=0\) for all \(\mathrm{v} \in \mathrm{V}\) [G]
if BELLMAN-FORD(G', w, s) = FALSE
then print "the input graph contains a negative-weight cycle"
else for each vertex \(v \in \mathrm{~V}\) [ \(\left.\mathrm{G}^{\prime}\right]\)
do set \(h(v)\) to the value of \(\delta(\mathrm{s}, \mathrm{v})\)
computed by the Bellman-Ford algorithm
for each edge \((u, v) \in E\left[G^{\prime}\right]\)
do \(w(u, v) \equiv w(u, v)+h(u)-h(v)\)
for each vertex \(u \in V[G]\)
do run DIJKSTRA(G, w, u) to compute \(\delta(u, v)\) for all \(v \in V[G]\)
for each vertex \(v \in V[G]\)
\[
\text { do } d_{u v} \equiv \delta(u, v)+h(v)-h(u)
\]
return D
Total Running Time \(=\mathrm{O}\left(\mathrm{V}^{2} \mathrm{Ig} \mathrm{V}+\mathrm{VE}\right)\)


Bellman-Ford algorithm is used to determine \(\delta(\mathrm{s}, \mathrm{v})\) for all \(\mathrm{v} \in \mathrm{V}\) e.g., \(\delta(\mathrm{s}, 3)=-5\) path: <s, 4, 3>

- \(\quad \hat{w}(0,1) \equiv w(0,1)+\mathrm{h}(0)-\mathrm{h}(1)=(0+0-(-0))=5\)
- \(\hat{w}(0,2) \equiv w(0,2)+h(0)-h(2)=(0+0-(-1))=1\)
- \(\hat{w}(0,3) \equiv w(0,3)+h(0)-h(3)=(0+0-(-5))=5\)
- \(\hat{w}(0,4) \equiv w(0,4)+\mathrm{h}(0)-\mathrm{h}(4)=(0+0-(-0))=0\)
- \(\hat{w}(0,5) \equiv w(0,5)+h(0)-h(5)=(0+0-(-4))=4\)
- \(\hat{w}(1,2) \equiv \mathrm{w}(1,2)+\mathrm{h}(1)-\mathrm{h}(2)=(3+0-(-1))=4\)
- \(\hat{w}(1,3) \equiv \mathrm{w}(1,3)+\mathrm{h}(1)-\mathrm{h}(3)=(8+0-(-5))=13\)
- \(\hat{w}(1,5) \equiv w(1,5)+h(1)-h(5)=(-4+0-(-4))=0\)
- \(\hat{w}(2,4) \equiv w(2,4)+h(2)-h(4)=(1+(-1)-0)=0\)
- \(\quad \hat{w}(2,5) \equiv \mathrm{w}(2,5)+\mathrm{h}(2)-\mathrm{h}(5)=(7+(-1)-(-4))=10\)
- \(\quad \hat{w}(3,2) \equiv w(3,2)+h(3)-h(2)=(4+(-5)-(-1))=0\)
- \(\hat{w}(4,1) \equiv w(4,1)+h(4)-h(1)=(2+0-0)=2\)
- \(\hat{w}(4,3) \equiv \mathrm{w}(4,3)+\mathrm{h}(4)-\mathrm{h}(3)=(-5+0-(-5))=0\)
- \(\hat{w}(5,4) \equiv w(5,4)+h(5)-h(4)=(6+(-4)-0)=2\)

\section*{aplying Dijkstra's Algorithm on vertex 1}

\[
\begin{aligned}
& \hat{\delta}(1,5) \equiv 0, \\
& \delta(1,5) \equiv-4 \\
& \mathrm{~d}(1,5) \equiv \delta(1,5)=-4 \\
& \hat{\delta}(5,4) \equiv 2, \\
& \delta(5,4) \equiv 2 \\
& \mathrm{~d}(5,4) \equiv \delta(5,4)=2
\end{aligned}
\]
\[
\begin{aligned}
& \hat{\delta}(4,3) \equiv 2, \\
& \delta(4,3) \equiv-3 \\
& \mathrm{~d}(4,3) \equiv \delta(4,3)=-3 \\
& \hat{\delta}(3,2) \equiv 2, \\
& \delta(3,2) \equiv 1 \\
& \mathrm{~d}(3,2) \equiv \delta(3,2)=1
\end{aligned}
\]

\section*{Applying Dijkstra's Algorithm on vertex 2}

\[
\hat{\delta}(2,4) \equiv 0
\]
\[
\hat{\delta}(4,3) \equiv 0
\]
\[
\delta(2,4) \equiv 1
\]
\[
\delta(4,3) \equiv-4
\]
\[
d(2,4) \equiv \delta(2,4)=1
\]
\[
d(4,3) \equiv \delta(4,3)=-4
\]
\[
\hat{\delta}(4,1) \equiv 2
\]
\[
\hat{\delta}(1,5) \equiv 2
\]
\[
\delta(4,1) \equiv 3
\]
\[
\delta(1,5) \equiv-1
\]
\[
d(4,1) \equiv \delta(4,1)=3
\]
\[
d(1,5) \equiv \delta(1,5)=-1
\]

\section*{Applying Dijkstra's Algorithm on vertex 3}

\[
\begin{array}{ll}
\hat{\delta}(3,2) \equiv 0, & \hat{\delta}(4,1) \equiv 2, \\
\delta(3,2) \equiv 4 & (4,1) \equiv 7 \\
\mathrm{~d}(3,2) \equiv \delta(3,2)=4 & \mathrm{~d}(4,1) \equiv \delta(4,1)=7 \\
\hat{\delta}(2,4) \equiv 0, & \hat{\delta}(1,5) \equiv 2, \\
\delta(2,4) \equiv 5 & \delta(1,5) \equiv 3 \\
\mathrm{~d}(2,4) \equiv \delta(2,4)=5 & \mathrm{~d}(1,5) \equiv \delta(1,5)=3
\end{array}
\]

\section*{Applying Dijkstra's Algorithm on vertex 4}

\[
\begin{array}{ll}
\hat{\delta}(4,1) \equiv 2, & \hat{\delta}(1,5) \equiv 2, \\
\delta(4,1) \equiv 2 & \delta(1,5) \equiv-2 \\
\mathrm{~d}(4,1) \equiv \delta(4,1)=2 & \mathrm{~d}(1,5) \equiv \delta(1,5)=-2 \\
\hat{\delta}(4,3) \equiv 0, & \hat{\delta}(3,2) \equiv 0, \\
\delta(4,3) \equiv-5 & \delta(3,2) \equiv-1 \\
\mathrm{~d}(4,3) \equiv \delta(4,3)=-5 & \mathrm{~d}(3,2) \equiv \delta(3,2)=-1
\end{array}
\]

\section*{Applying Dijkstra's Algorithm on vertex 5}

\(\hat{\delta}(5,4) \equiv 2\),
\(\delta(5,4) \equiv 6\)
d \((5,4) \equiv \delta(5,4)=6\)
\(\hat{\delta}(4,1) \equiv 4\),
\(\delta(4,1) \equiv 8\)
\(d(4,1) \equiv \delta(4,1)=8\)
\(\hat{\delta}(4,3) \equiv 2\),
\(\delta(4,3) \equiv 1\)
\(d(4,3) \equiv \delta(4,3)=1\)
\(\hat{\delta}(3,2) \equiv 2\),
\(\delta(3,2) \equiv 5\)
\(d(3,2) \equiv \delta(3,2)=5\)

\section*{Lecture No. 38}

Number Theoretic Algorithms
(Definitions and Some Important Results)

\section*{Today Covered}
- Applications of Number Theory
- Divisibility
- Numbers
- Prime Numbers
- Relatively Prime Numbers
- GCD
- Partitioning of Integers
- Congruency classes
- Proofs of some results

\section*{Applications of number theoretic algorithms}

\section*{Electronic commerce}
- Electronic commerce enables goods and services to be negotiated and exchanged electronically.
- The ability to keep information such as credit card numbers, passwords, bank statements private is essential if electronic commerce is used widely.
- Public-key cryptography and digital signatures are among the core technologies used and are based on numerical algorithms and number theory.

Congruency equations modulo \(n\)
- For example, if we are given an equation \(a x \equiv b(\bmod n)\), where \(a, b\), and \(n\) are integers, and we wish to find all the integers \(x\), modulo \(n\), that satisfy the equation.
- There may be zero, one, or more solution.
- Using brute force approach, we can simply try \(x=0,1, \ldots, n-1\) in order, and can find the solution
- But our objective is not to find a solution only, in fact we want an efficient, of course this problem can be solved using number theory.

\section*{Numbers}
- \(Z=\) set of all integers \(=\ldots,-3,-2,-1,0,+1,+2+3, \ldots\)
- Set of all even integers \(=\{2 k \mid k \in Z\}\)
- Set of all odd integers \(=\{2 k+1 \mid k \in Z\}\)
- \(\mathrm{Q}=\) Set of all rational numbers
- p/q
\(-p, q \in Z\)
- \(q \neq 0\)
- I = set of all irrational numbers: which are not irrationals i.e.
- ~p/q OR
\(-\quad \sim(p, q \in Z) \quad O R\)
- \(\sim(q \neq 0)\)

\section*{Divisibility}

Let \(\mathrm{a}, \mathrm{b} \in \mathrm{Z}\) with \(\mathrm{a} \neq 0\) then we say that
\(\mathrm{a} \mid \mathrm{b} \equiv \mathrm{a}\) divides \(\mathrm{b} \square \exists \mathrm{c} \in \mathrm{Z}: \mathrm{b}=\mathrm{ac}\)
It means that \(a \mid b\) if and only if there exists an integer \(c\) such that \(c\) times a equals \(b\).

Example 1: \(3 \mid(-12)\), because if we assume that \(a=3, b=-12\) then there exists \(c=-4\) such that \(\mathrm{b}=\mathrm{ac}\)

Example 2: 3 does not divide 7, because if we assume that \(\mathrm{a}=3, \mathrm{~b}=7\) then there does not exists any integer \(c\) such that \(b=a c\)

\section*{Some Facts}

Statement: Prove that if \(a \mid b\) then \(a \mid(-b)\)

\section*{Proof:}
- Since \(a \mid b\) hence there exist an integer \(x\) such that \(b=a x\),
- Now -b \(=-\mathrm{ax}=\mathrm{a}(-\mathrm{x})\)
- Since if \(x \in Z\) then \((-x) \in Z\), Hence, \(a \mid(-b)\)

Note:
- Because of the above lemma why not choose divisors as only positive.
- Hence if \(d\) is a divisor of \(b\), then \(1 \leq d \leq|b|\),

\section*{Example:}

Only divisors of 24 are: \(1,2,3,4,6,8,12\),and 24 .
Statement: \(\quad\) Prove that \(a \mid 0 \forall a \in Z\)

Proof:
- As we know that \(a \mid b\) means there is an integer \(s\) such that \(b=a s\), and
- Since \(0=a .0\), where 0 is an integer, hence a|0

Statement: If \(\mathrm{a}|\mathrm{b}, \mathrm{a}| \mathrm{c}\) then \(\mathrm{a} \mid(\mathrm{b}+\mathrm{c}) \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\)

\section*{Proof:}
- As we know that \(a \mid b\) means there is an integer \(s\) such that \(b=a s\), and
- a|c means that there is a t such that \(\mathrm{c}=\mathrm{at}\),
- Now \(b+c=a s+a t=a(s+t)\), and hence \(a \mid(b+c)\).

Statement: If a|b, a|c then \(\mathrm{a} \mid(\mathrm{b}-\mathrm{c}) \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\)

\section*{Proof:}
- If \(a \mid b\) means then there is an integer s such that \(b=a s\), and
- If \(a \mid c\) then there is an integer \(t\) such that \(c=a t\),
- Now b-c = as - at \(=a(s-t)\),
- Since if \(s, t \in Z \Rightarrow s-t \in Z\)
- Hence \(a \mid(b-c)\).

Statement: If \(\mathrm{a} \mid \mathrm{b}\) and \(\mathrm{b} \mid \mathrm{a}\) then prove that \(\mathrm{a}= \pm \mathrm{b}\)

Proof:
- Since \(a \mid b\) hence there is an integer \(x\) such that \(b=a x\),
- Since we are given that b|a therefore there is an integer \(t\) such that \(a=b t\), (2)
- From (1) and (2), \(a=a x t \Rightarrow x t=1\)
- Since \(x\) and \(t\) are both integers hence \(x=t= \pm 1\)
- Hence \(a= \pm b\)

\section*{Generalized Result}

Statement: \(\quad\) Prove that if \(a \mid b\) then \(a \mid b c \forall a, b, c \in Z\)
Proof:
- As we know that a|b means there is an integer \(s\) such that \(b=a s\), and
- Now bc = asc =a(sc) and hence a|bc

Statement: \(\quad\) Prove that if \(\mathrm{a}|\mathrm{b}, \mathrm{b}| \mathrm{c}\) then \(\mathrm{a} \mid \mathrm{c}, \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\)

Proof:
- Since \(a \mid b\), it means \(\exists s \in Z\) such that \(b=a s\), and
- Since b|c, it means \(\exists t \in Z\) such that \(c=b t\)
- Now c = bt = ast =a(st) and hence a|c

Statement:
- \(\quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\), if \(\mathrm{a} \mid \mathrm{b}\) and \(\mathrm{a} \mid \mathrm{c}\) then
- \(a \mid(b x+c y), \forall x, y \in Z\)

Proof:
- As we know that \(a \mid b\) means there is an integer s such that \(b=a s \Rightarrow b x=a s x\), and
- And if a|c means that there is a \(t\) such that \(c=a t \Rightarrow c y=\) aty
- Now \(b x+c y=a s x+a t y=a(s x+t y)\), and hence \(a \mid(b x+c y)\), this is because \((s x+t y) \in Z\)

Statement:
- \(\quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\), if \(\mathrm{a} \mid \mathrm{b}\) and \(\mathrm{a} \mid \mathrm{c}\) then
- \(a \mid(b x-c y), \forall x, y \in Z\)

\section*{Proof:}
- As we know that a|b therefore there is an integer s such that \(b=a s \Rightarrow b x=a s x\), and
- Since a|c therefore there is an integer \(t\) such that
\[
c=a t \Rightarrow c y=a t y
\]
- Now bx - cy = asx - aty =a(sx-ty), and hence a|(bx-cy), this is because (sx-ty) \(\in \mathbf{Z}\)

\section*{Prime Numbers}

\section*{Definition:}
- A number \(p\) is prime if and only if it is divisible 1 and itself. OR
- A number \(p\) is prime if it can not be written as
\(p=x\). \(y\) where \(x, y \in Z\) and \(x, y>1\).
Note:
1 is prime, but is generally not of interest so we do not include it in set of primes

\section*{Examples}
- \(2,3,5,7\) etc. are all prime

\section*{Examples}
- \(4,6,8,9,10\) are not primes
- Prime numbers are central to number theory
- We will study some algorithms on prime numbers
- List of prime number less than 200
- \(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97\), 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
- There are infinitely many primes.
- Any positive integer that is not prime is composite.
- 1 is the "unit" for multiplication and we assume that it is neither prime nor composite.

\section*{The Division Algorithm}

\section*{Statement:}
- For any integer dividend a and divisor \(\mathrm{d} \neq 0\), there is a unique quotient q and remainder r \(\in \mathbf{N}\) such that
\[
a=d q+r \text {, where } 0 \leq r<|d|
\]
- In other way: \(\forall a, d \in \mathbf{Z}, \mathrm{~d}>0, \exists \mathrm{q}, \mathrm{r} \in \mathbf{Z}\) such that \(0 \leq r<|\mathrm{d}|\), and \(\mathrm{a}=\mathrm{d} . \mathrm{q}+\mathrm{r}\)
- We can find \(q\) by: \(q=\lfloor a / d\rfloor\), and
- We can find \(r\) by: \(r=(a \bmod d)=a-d q\)

\section*{Example:}
- \(a=21 ; d=4\) then
\(\mathrm{q}=\lfloor\mathrm{a} / \mathrm{d}\rfloor=\lfloor 21 / 4\rfloor=5\), and \(\mathrm{r}=\mathrm{a}-\mathrm{dq}=21-4.5=1\)

\section*{Classification of Integers}

When an integer is divided by 2 remainder is 0 or 1
1. \(\mathrm{C}_{1}=\{2 \mathrm{k} \mid \mathrm{k} \in \mathrm{Z}\}\) and
2. \(C_{2}=\{2 k+1 \mid k \in Z\}\)

When an integer is divided by 3 remainder is 0,1 or 2
1. \(\mathrm{C}_{1}=\{3 \mathrm{k} \mid \mathrm{k} \in \mathrm{Z}\}\),
2. \(\mathrm{C}_{2}=\{3 \mathrm{k}+1 \mid \mathrm{k} \in \mathrm{Z}\}\) and
3. \(C_{3}=\{3 k+2 \mid k \in Z\}\)

When an integer divided by 4 remainder, 0, 1, 2 or 3
1. \(\mathrm{C}_{1}=\{4 \mathrm{k} \mid \mathrm{k} \in \mathrm{Z}\}\),
2. \(C_{2}=\{4 k+1 \mid k \in Z\}\)
3. \(C_{3}=\{4 k+2 \mid k \in Z\}\)
4. \(C_{4}=\{4 k+3 \mid k \in Z\}\)

\section*{Congruencies and Remainder}

\section*{Remainder}
- When a is divided by \(n\) then we can write ( \(a \bmod n\) ) as remainder of this division.
- If, remainder when \(a\) is divisible by \(n=\) remainder when \(b\) is divisible by \(n\) then \((a \bmod n)=(b \bmod n)\) e.g. \((8 \bmod 3)=(11 \bmod 3)\)
Congruency
- If \((a \bmod n)=(b \bmod n)\) we write it as \(a \equiv b(\bmod n)\)
" \(a\) is equivalent to \(b\) modulo \(n\)."
- Thus, \(a\) and \(b\) have same remainder, w.r.t. \(n\) then
\[
\begin{array}{lr}
a=q_{a} n+r, & \text { for some } q_{a} \in Z \\
b=q_{b} n+r, & \text { for some } q_{b} \in Z
\end{array}
\]

Lemma: If \(\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})\) then prove that \(\mathrm{n} \mid(\mathrm{b}-\mathrm{a})\)
Proof:
- Since \(a \equiv b(\bmod n)\) hence \((a \bmod n)=(b \bmod n)\)
- Let \((a \bmod n)=(b \bmod n)=r\)
- By division theorem, \(\exists \mathrm{q}_{1}, \mathrm{q}_{2} \in \mathrm{Z}\) such that
\(\circ \quad a=q_{1} n+r\),
\[
0 \square r<n
\]
- \(b=q_{2} n+r\),
\(0 \square r<n\)
- Now, \(b-a=\left(q_{2}-q_{1}\right) n+r-r=\left(q_{2}-q_{1}\right) n\)
- Hence, \(n \mid(b-a)\) because \(\left(q_{2}-q_{1}\right) \in Z\)
- The equivalence of b class modulo \(\mathrm{n}:[b]_{n}=\{b+k n: k \in Z\}\), e. \(g\).
\([3]_{7}=\{\ldots,-11,-4,3,10,17, \ldots\}\)
\([-4]_{7}=\)
\([17]_{7}=\ldots\)
- \(Z_{n}=\left\{[a]_{n}: 0 \leq a \leq n-1\right\}\) and we often write

\section*{Example}
\(\mathrm{Z}_{4}=\left\{[0]_{4},[1]_{4},[2]_{4},[3]_{4}\right\}\)
Usually we write Z4 \(=\{0,1,2,3\}\)
\(Z_{n}=\{0,1,2,3, \ldots, n-1\}\), we associate a with \([a]_{n}\).

\section*{Prime Factorization}
- By factorization of a number \(n\), we mean that \(n=a \times b \times c\), where \(a, b, c \in \mathbf{Z}\)
- By a prime factorization of a number \(n\), we mean that \(n=a \times b \times c\), where \(a, b, c \in \mathbf{Z}\) and all factors are prime number
Example:
- \(3600=24 \times 32 \times 52\) factorization
- \(3600=2^{10} \times 3^{1} \times 13^{1}\) prime factorization
- \(91=7 \times 13\) prime factorization
\[
n=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}=\prod_{i=1}^{k} p_{i}^{m_{i}}
\]

\section*{Relatively Prime Numbers}

Definition
- Two numbers \(a, b\) are relatively prime if they have no common divisors except 1

\section*{Example}

15,23 are relatively prime, this is because
- Factors of 15 are 1, 3, 5, 15 and
- Factors of 23 are 1, 23 and
- Common factor is only 1
- Hence 15 and 23 are relatively prime

\section*{Some More Results}

Definition: The greatest common divisor of a and \(b\), not both zero, is the largest common divisor of a and b

Some elementary gcd properties
- \(\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a), \operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)\)
- \(\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|), \quad \operatorname{gcd}(a, 0)=|a|\)

\section*{Examples}
- \(\operatorname{gcd}(24,30)=6, \operatorname{gcd}(5,7)=1\)
- \(\operatorname{gcd}(0,9)=9, \operatorname{gcd}(0,0)=0\) by definition
- \(\quad \operatorname{gcd}(a, k a)=|a|\) for any \(k \in Z\).

Note: \(1 \leq \operatorname{gcd}(a, b) \leq \min (|a|,|b|)\)

\section*{Example: Greatest Common Divisor}
- GCD of two integers can be obtained by comparing their prime factorizations and using least powers

\section*{Example}
- \(600=2 \times 2 \times 2 \times 3 \times 5 \times 5=2^{3} \times 3^{1} \times 5^{2}\)
- \(36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}\)
- Rearrange the factorization of 600 and 36
- \(600=2 \times 2 \times 2 \times 3 \times 5 \times 5=2^{3} \times 3^{1} \times 5^{2}\)
- \(36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2} \times 5^{0}\)
- \(\operatorname{GCD}(36,600)=2^{\min (3,2)} \times 3^{\min (1,2)} \times 5^{\min (2,0)}=2^{2} \times 3^{1} \times 5^{0}=4 \times 3=12\)

\section*{Brute Force Approach Finding GCD}

\section*{Statement:}
- Given two integers a and b. Find their greatest common divisor

Method:
- Compute prime factorization of a
\(a=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}=\prod_{i=1}^{k} p_{i}^{m_{i}}\)
- Compute prime factorization of b
\(b=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{l}^{p_{i}}=\prod_{i=1}^{i} p_{i}^{n_{i}}\)
- Let \(p_{1}, p_{2}, \ldots, p_{t}\) be the set of all prime numbers both in the factorization of \(a\) and \(b\)
- Now the prime factorization of a is rearranged as
\(a=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \ldots p_{t}^{m_{t}}=\prod_{i=1}^{t} p_{i}^{m_{i}}\), where \(p_{1}<p_{2}<\ldots<p_{t}\)
- Similarly the prime factorization of b is rearranged as
\(b=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \ldots p_{t}^{n_{t}}=\prod_{i=1}^{i} p_{i}^{n_{i}}\), where \(\mathrm{p}_{1}<p_{2}<\ldots<p_{t}\)
- Finally GCD of \(a\) and \(b\) can be computed as
\(\operatorname{gcd}(a, b)=p_{1}^{\min \left(m_{1}, m_{1}\right)} \cdot p_{2}^{\min \left(m_{2}, n_{2}\right)} \ldots . p_{t}^{\min \left(m_{l}, n_{t}\right)}\)
\(\operatorname{gcd}(a, b)=\prod_{i=1}^{i} p_{i}^{\min \left(m_{i}, w_{i}\right)}\).

\section*{Methods of Proof}

Direct Method:
- Express the statement to be proved in the form:
\(\forall x \in \mathrm{D}, \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{Q}(\mathrm{x})\)
- Suppose that \(P(x)\) is true for an arbitrary element \(x\) of \(D\)
- Prove that \(Q(x)\) is true for the supposed above value \(x\) of \(D\).

\section*{Parity:}

Two integers have same parity if both are either odd or even, otherwise opposite parity.

\section*{Direct Proof}

Lemma:
- Prove that \(m+n\) and \(m-n\) have same parity, for all \(m, n \in Z\)

Proof: There are three cases
Case 1:
- Both \(m, n\) are even i.e.,
- \(m=2 k_{1}\) and \(n=2 k_{2}\) for some \(k_{1}, k_{2} \in Z\)
- Now, \(m+n=2 k_{1}+2 \mathrm{k}_{2}=2\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\) an even
- And, \(\mathrm{m}-\mathrm{n}=2 \mathrm{k}_{1}-2 \mathrm{k}_{2}=2\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)\) an even

\section*{Case 2:}
- Both \(m, n\) are odd i.e.,
- \(m=2 k_{1}+1\) and \(n=2 k_{2}+1\) for some \(k_{1}, k_{2} \in Z\)
- Now, \(m+n=2 k_{1}+1+2 \mathrm{k}_{2}+1=2\left(\mathrm{k}_{1}+\mathrm{k}_{2}+1\right)=2 \mathrm{k}^{\prime}\)
- And, \(m-n=2 k_{1}+1-2 \mathrm{k}_{2}-1=2\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)=2 \mathrm{k}^{\prime \prime}\)
- Hence \(m+n\) and \(m-n\) both are even

\section*{Case 3:}
- \(m\) is even and \(n\) is odd i.e.,
- \(m=2 k_{1}\) and \(n=2 k_{2}+1\) for some \(k_{1}, k_{2} \in Z\)
- Now, \(m+n=2 k_{1}+2 k_{2}+1=2\left(k_{1}+k_{2}\right)+1=2 k^{\prime}+1\), odd
- And, \(m-n=2 k_{1}-2 k_{2}-1=2\left(k_{1}-k_{2}-1\right)+1=2 k^{\prime \prime}+1\), odd
- Hence \(m+n\) and \(m-n\) both have the same parity.

\section*{An Alternate Method of Direct Proof}

We can formulate the same problem as

\section*{Notations}
- Let S-EVEN \((m, n) \equiv m+n\) is even
- Let S-ODD \((m, n) \equiv m+n\) is odd
- Let D-EVEN \((m, n) \equiv m-n\) is even
- Let D-ODD \((m, n) \equiv m-n\) is odd

Mathematical Statement of the problem
- S-EVEN \((\mathrm{m}, \mathrm{n}) \Leftrightarrow \operatorname{D-EVEN}(\mathrm{m}, \mathrm{n}), \forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- \(\operatorname{S-ODD}(\mathrm{m}, \mathrm{n}) \Leftrightarrow \operatorname{D-ODD}(\mathrm{m}, \mathrm{n}), \forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

\section*{Proof}

\section*{Case 1}
- Suppose that S-EVEN \((\mathrm{m}, \mathrm{n}), \forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- Now, \(m-n=m+n-2 n=\) even - even \(=\) even integer
- Hence D-EVEN (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

\section*{Case 2}
- Suppose that D-EVEN (m,n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- Now, \(\mathrm{m}+\mathrm{n}=\mathrm{m}-\mathrm{n}+2 \mathrm{n}=\) even + even \(=\) an even integer, \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- Hence S-EVEN (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

Case 3
- Suppose that S-ODD (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- Now, \(m-n=m+n-2 n=\) odd - even = odd
- D-ODD (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

\section*{Case 4}
- Suppose that D-ODD (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- Now, \(m+n=m-n+2 n=\) odd + even = odd
- S-ODD (m, n), \(\forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

\section*{Hence}
- S-EVEN \((\mathrm{m}, \mathrm{n}) \Leftrightarrow \operatorname{D-EVEN}(\mathrm{m}, \mathrm{n}), \forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)
- S-ODD \((\mathrm{m}, \mathrm{n}) \Leftrightarrow \operatorname{D-ODD}(\mathrm{m}, \mathrm{n}), \forall \mathrm{m}, \mathrm{n} \in \mathrm{Z}\)

\section*{Disproof by Counter Example}

To disprove a statement of the form:
\(\forall \mathrm{x} \in \mathrm{D}, \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{Q}(\mathrm{x})\)
- Find a value of \(x\) in \(D\) for which \(P(x)\) is true and \(Q(x)\) is false.
- Such an example is called counter example.

Example : Prove or disprove
\[
\forall a, b \in Z, a^{2}=b^{2} \Rightarrow a=b
\]

Disproof:
Let \(\mathrm{P}(\mathrm{a}, \mathrm{b}) \equiv \mathrm{a}^{2}=\mathrm{b}^{2}, \mathrm{Q}(\mathrm{a}, \mathrm{b}) \equiv \mathrm{a}=\mathrm{b}\),
Now \(P(1,-1) \equiv(1)^{2}=(-1)^{2}\) true but \(Q(1,-1) \equiv 1 \neq-1\)

\section*{Method of Proof by Contradiction}

Steps in proving by contradiction
- Suppose the statement to be proved is false
- Show that this supposition leads logically to a contradiction
- Conclude that the statement to be proved is true

\section*{Example:}
- Prove that sum of an irrational and a rational number is irrational

\section*{Proof}
- Suppose \(a\) is a rational, \(b\) is an irrational number and their sum is also rational
- Since \(a\) is rational, \(a=p / q, p, q \in Z\) and \(q \neq 0\)
- Now according to our supposition \(a+b\) is rational and hence it can be written as
\[
\mathrm{a}+\mathrm{b}=\mathrm{m} / \mathrm{n} \text {, where } \mathrm{m}, \mathrm{n} \in \mathrm{Z} \text { and } \mathrm{n} \neq 0
\]
- Now consider
\[
a+b=m / n
\]
\(\Rightarrow b=m / n-a=m / n-p / q=(m p-n q) / n q=r / s\),
where \(r, s \in Z\) and \(s \neq 0\)
\(\Rightarrow \mathrm{b}\) is a rational number, which is contradiction.
\(\Rightarrow\) Hence sum of an irrational and a rational number is always irrational.

\section*{Proof by Contradiction}

Lemma
- For any integer n and any prime number p , if p divides n then p does not divide \(\mathrm{n}+1\) Proof
- Express the statement in the form:
\[
\forall x \in \mathrm{D}, \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{Q}(\mathrm{x})
\]
- Let, \(Z=\) set of all integers, and
- \(P=\) set of all primes
- \(D(p, n) \equiv p\) divides \(n\)
- \(D N(p, n) \equiv p\) does not divide \(n\)
- Now our problem becomes
\[
\forall \mathrm{n} \in \mathrm{Z}, \mathrm{p} \in \mathrm{P}, \mathrm{D}(\mathrm{p}, \mathrm{n}) \Rightarrow \mathrm{DN}(\mathrm{p}, \mathrm{n}+1)
\]
- Suppose that for some integer \(n\) and prime \(p, p\) divides \(n \equiv D(p, n)\)
- Now we have to prove that p does not divide \(\mathrm{n}+1\)
- On contrary we suppose that \(p\) divide \(n+1\)
- It means that there exists an integer \(q_{1}\) such that \(n+1=p q_{1}\)
- Since \(p\) divides \(n\). Hence there exists an integer \(q_{2}\) such that \(n=p q_{2}\)
- Now, \(\mathrm{n}+1-\mathrm{n}=\mathrm{pq}_{1}-\mathrm{pq} q_{2}\)
\(1=p q_{1}-p q_{2}=p\left(q_{1}-q_{2}\right) \Rightarrow p=1\) or -1 contradiction
- Hence \(p\) does not divide \(n+1 \equiv D N(p, n)\)

\section*{Lecture No. 39}

\section*{Number Theoretic Algorithms}
(Theorems and Algorithms)

\section*{Today Covered}
- Some More Proofs
- GCD as a Linear Combination
- Finding GCD, a Recursive Theorem
- Euclid's Algorithm
- Extended Euclid's Algorithm
- Time Complexity of Euclid's Algorithm
- Residues and Reduced set of Residues
- Groups and Rings

\section*{Method of Proof by Contraposition}

Steps in proving by contraposition
- Express the statement to be proved in the form:
\(\forall \mathrm{x} \in \mathrm{D}, \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{Q}(\mathrm{x})\)
- Rewrite the statement in the contrapositive form
\[
\forall x \in \mathrm{D}, \neg \mathrm{Q}(\mathrm{x}) \Rightarrow \neg \mathrm{P}(\mathrm{x})
\]
- Prove the contrapositive by direct proof
- Suppose that \(x\) is an arbitrary but particular element of \(D\) such that \(Q(x)\) is false
- Show that \(P(x)\) is false

\section*{Examples: Proof by Contraposition}

\section*{Example 1}

Prove that for all integers \(n\), if \(n^{2}\) is even then \(n\) is also even
Proof
- Express the above statement in the form:
\[
\forall x \in \mathrm{D}, \mathrm{P}(\mathrm{x}) \Rightarrow \mathrm{Q}(\mathrm{x})
\]
- Suppose that
\[
D=Z,
\]

Even \((n, 2) \equiv n^{2}\) is even
\(\operatorname{Even}(\mathrm{n}) \equiv \mathrm{n}\) is even
- We have to prove that
\[
\forall \mathrm{n} \in \mathrm{Z}, \operatorname{Even}(\mathrm{n}, 2) \Rightarrow \operatorname{Even}(\mathrm{n})
\]
- Contraposition of the above statement
\(\forall \mathrm{n} \in \mathrm{Z}, \neg \operatorname{Even}(\mathrm{n}) \Rightarrow \neg \operatorname{Even}(\mathrm{n}, 2)\) is even
- Now we prove above contrapositive by direct proof
- Suppose that n is an arbitrary element of Z such that, \(\neg \operatorname{Even}(\mathrm{n})(\mathrm{n}\) is not even) i.e., n is odd
- \(\mathrm{n}^{2}=\mathrm{n} . \mathrm{n}=\) odd. odd = odd
- \(\mathrm{n}^{2}\) is odd
- \(\neg \operatorname{Even}(\mathrm{n}, 2)\) is even
- Hence, \(\forall \mathrm{n} \in \mathrm{Z}, \neg \operatorname{Even}(\mathrm{n}) \Rightarrow \neg \operatorname{Even}(\mathrm{n}, 2)\) is even
- Therefore, \(\forall \mathrm{n} \in \mathrm{Z}\), \(\operatorname{Even}(\mathrm{n}, 2) \Rightarrow \operatorname{Even}(\mathrm{n})\) is even
- Hence \(\forall n \in Z\), if \(n^{2}\) is even then \(n\) is even

\section*{Example 2}

Prove that for all integers \(n\), if \(n^{2}\) is divisible by 7 then \(n\) is divisible by 7 .
Proof
- Express the above statement in the form:
\[
\forall x \in D, P(x) \Rightarrow Q(x)
\]
- Suppose that

D = Z,
\(\operatorname{Div}(n, 2,7) \equiv n^{2}\) is divisible by 7
\(\operatorname{Div}(\mathrm{n}, 7) \equiv \mathrm{n}\) is divisible by 7
- We have to prove that
\[
\forall \mathrm{n} \in \mathrm{Z}, \operatorname{Div}(\mathrm{n}, 2,7) \Rightarrow \operatorname{Div}(\mathrm{n}, 7)
\]
- Contraposition of the above statement
\[
\forall \mathrm{n} \in \mathrm{Z}, \neg \operatorname{Div}(\mathrm{n}, 7) \Rightarrow \neg \operatorname{Div}(\mathrm{n}, 2,7)
\]
- Now we prove above contrapositive by direct proof
- Suppose that \(n\) is an arbitrary element of \(Z\) such that, \(\neg \operatorname{Div}(n, 7)(n\) is not divisible by 7 )
- n does contain any factor of 7
- \(\mathrm{n}^{2}\) does contain any factor of 7
- Hence, \(\forall \mathrm{n} \in \mathrm{Z}, \neg \operatorname{Div}(\mathrm{n}, 7) \Rightarrow \neg \operatorname{Div}(\mathrm{n}, 2,7)\)
- Therefore, \(\forall \mathrm{n} \in \mathrm{Z}\), \(\operatorname{Div}(\mathrm{n}, 2,7) \Rightarrow \operatorname{Div}(\mathrm{n}, 7)\)
- Hence, \(\forall \mathrm{n} \in \mathrm{Z}\), if \(\mathrm{n}^{2}\) is divisible by 7 then n is divisible by 7 .

\section*{Lemma 1}

Statement : The square of an odd integer is of the form \(8 \mathrm{~m}+1\) for some integer m .
Proof:
- Suppose n is an arbitrary odd integer.
- By quotient remainder theorem any integer has the form
\[
4 m, 4 m+1,4 m+2 \text { OR } 4 m+3
\]
- Now since \(n\) is an odd integer, hence \(n\) can be represented as
\[
4 m+1 \text { OR } 4 m+3
\]
- Now we have to prove that squares of \(4 m+1\) and \(4 m+3\) are of the form \(8 m+1\).

Case 1
Square of \(4 m+1\)
\[
\begin{aligned}
& (4 m+1)^{2}=16 m^{2}+8 m+1=8\left(2 m^{2}+m\right)+1 \\
& =8 \mathrm{~m}^{\prime}+1 \text {, where } \mathrm{m}^{\prime}=\left(2 \mathrm{~m}^{2}+\mathrm{m}\right)
\end{aligned}
\]

\section*{Case 2}

Square of \(4 m+3\)
\[
(4 m+3)^{2}=16 m^{2}+24 m+9=8\left(2 m^{2}+3 m+1\right)+1
\]
\[
=8 m^{\prime \prime}+1, \text { where } m^{\prime \prime}=\left(2 m^{2}+3 m+1\right)
\]
- Hence any odd integer has the form \(8 m+1\) for some \(m\)

\section*{Theorem 1}

\section*{Statement:}
- If \(a\) and \(b\) are any integers, not both zero, then \(\operatorname{gcd}(a, b)\) is the smallest positive element of the set \(\{a x+b y: x, y \in \mathbf{Z}\}\) of linear combinations of \(a\) and \(b\).

\section*{Proof}

Let \(s\) be the smallest positive such linear combination of \(a\) and \(b\), i.e.
\(s=a x+b y\), for some \(x, y \in Z\)
By quotient remainder theorem
\(a=q s+r=q s+a \bmod s\), where \(q=\lfloor a / s\rfloor\).
\(a \bmod s=a-q s=a-q(a x+b y)=a(1-q x)+b(-q y)\)
- Hence a mod \(s\) is a linear combination of \(a\) and \(b\).
- But, since a mod \(\mathrm{s}<\mathrm{s}\), therefore, a mod \(\mathrm{s}=0\)
- Now a mod \(s=0 \Rightarrow s \mid a\)
- Similarly we can prove that, \(\mathrm{s} \mid \mathrm{b}\).
- Thus, \(s\) is a common divisor of both \(a\) and \(b\),
- Therefore, \(\mathrm{s} \leq \operatorname{gcd}(\mathrm{a}, \mathrm{b})\)
- We know that if \(d \mid a\) and \(d \mid b\) then \(d \mid a x+b y\) for all \(x, y\) integers.
- Since \(\operatorname{gcd}(a, b) \mid a\) and \(\operatorname{gcd}(a, b) \mid b\), hence \(\operatorname{gcd}(a, b) \mid s\) and \(s>0\) imply that \(\operatorname{gcd}(a, b) \leq s\).
- \(\quad B y(1)\) and \((2), \operatorname{gcd}(a, b)=s\)

\section*{Corollary}

Statement;
- For all integers \(a\) and \(b\) and any nonnegative integer \(n, \operatorname{gcd}(a n, b n)=n \operatorname{gcd}(a, b)\).

Proof
- If \(\mathrm{n}=0\), the corollary is trivial.
- If \(n>0\), then \(\operatorname{gcd}(a n, b n)\) is the smallest positive element of the set \(\{a n x+b n y\}\), i.e. \(\operatorname{gcd}(a n, b n)=\min \{a n x+b n y\}=\min \{n .\{a x+b y\}\}=n . \min \{a x+b y\}\) \(n\) times smallest positive element of set \(\{a x+b y\}\).
- Hence \(\operatorname{gcd}(a n, b n)=n . \operatorname{gcd}(x, y)\)

\section*{Relatively Prime Integers}
- Two integers \(a, b\) are said to be relatively prime if their only common divisor is 1 , i. e, if \(\operatorname{gcd}(a, b)=1\).

\section*{Generalized Form of Relatively Prime Integers}
- We say that integers \(n_{1}, n_{2}, \ldots, n_{k}\) are pairwise relatively prime if, whenever \(i \neq j\), we have \(\operatorname{gcd}\left(n_{i}, n_{j}\right)=1\).

\section*{Lemma 2}
- For any integers \(a, b\), and \(p\), if both \(\operatorname{gcd}(a, p)=1\) and \(\operatorname{gcd}(b, p)=1\), then \(\operatorname{gcd}(a b, p)=1\).

\section*{Proof}
- As, \(\operatorname{gcd}(a, p)=1\), there exist integers \(x, y\) such that
\[
\begin{equation*}
a x+p y=1 \tag{1}
\end{equation*}
\]
- \(\operatorname{gcd}(b, p)=1\), there exist integers \(x^{\prime}, y^{\prime}\) such that \(b x^{\prime}+p y^{\prime}=1\)
- Multiplying equations (1) and (2) and rearranging, \(a b\left(x x^{\prime}\right)+p\left(y b x x^{\prime}+y^{\prime} a x+p y y^{\prime}\right)=1\), \(a b x^{\prime \prime}+\) py" \(^{\prime \prime} 1\)
- Since 1 is a positive linear combination of ab and \(p\),
- Hence \(\operatorname{gcd}(a b, p)=1\), which completes the proof

\section*{Lemma 3}
- For all primes \(p\) and all integers \(a, b\), if \(p \mid a b\), then \(p \mid a\) or \(p \mid b\) (or \(p\) divides both and \(b\) ).

\section*{Proof}
- Let \(P=\) set of all primes; \(Z=\) set of all integers
- \(P(p, a b) \equiv p|a b ; Q(p, a, b) \equiv p| a\) or \(p \mid b\)
- Express above statement to be proved in the form:
\[
\forall a, b, p, P(p, a b) \Rightarrow Q(p, a, b)
\]
- \(\quad \forall p \in P, a, b \in Z, p \mid a b \Rightarrow(p \mid a\) or \(p \mid b)\)
- Assume for the purpose of contradiction that \(p \mid a b\) but that \(p \nmid a\) and \(p \nmid b\).
- Now \(p \nmid \mathrm{a} \Rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{p})=1\)
- And, \(p \nmid b \Rightarrow \operatorname{gcd}(b, p)=1\)
- Since only divisors of \(p\) are 1 and \(p\), and by assumption \(p\) divides neither a nor \(b\).
- Above Lemma 2, states that for any integers \(a, b\), and \(p\), if both \(\operatorname{gcd}(a, p)=1\) and \(\operatorname{gcd}(b\), \(p)=1\), then \(\operatorname{gcd}(a b, p)=1\).
- Now, \(\operatorname{gcd}(a b, p)=1\), contradicts our assumption that \(p \mid a b\), since \(p \mid a b \leftrightarrow \operatorname{gcd}(a b, p)=p\)
- This contradiction completes the proof.

\section*{Theorem 2: GCD Recursion Theorem}
- For any nonnegative integer \(a\) and any positive integer \(b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)\).

\section*{Proof}
- If we will be able to prove that \(\operatorname{gcd}(a, b)\) and \(\operatorname{gcd}(b, a \bmod b)\) divide each other, It will complete the proof of the theorem. This is because both are nonnegative.

\section*{Case 1}
- We first show that \(\operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, a \bmod b)\).
- If we let \(d=\operatorname{gcd}(a, b)\).
- By quotient remainder theorem:
\((\mathrm{a} \bmod \mathrm{b})=\mathrm{a}-\mathrm{qb}, \quad\) where \(\mathrm{q}=\lfloor\mathrm{a} / \mathrm{b}\rfloor\).
- Now d \(=\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \Rightarrow\)
- d|a and
- d|b,
- Hence, \(d \mid(a-q b)\),
(this is because, \(a-q b\) is a linear combination of \(a\) and \(b\), where \(x=1, y=-q\) )
- And consequently d|(a mod b), this is because ( \(a \bmod b=a-q b\) )
- Now, d | b and d | (a mod b), implies that: \(d \mid \operatorname{gcd}(b, a \bmod b)\)
- Hence \(\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a, a \bmod b)\).

\section*{Case 2}
- We now show that: \(\operatorname{gcd}(a, a \bmod b) \mid \operatorname{gcd}(a, b)\).
- If we let, \(d=\operatorname{gcd}(b, a \bmod b)\), then
\[
\begin{aligned}
& d \mid b \text { and } \\
& d \mid(a \bmod b) .
\end{aligned}
\]
- By quotient remainder theorem
\(a=q b+(a \bmod b)\), where \(q=\lfloor a / b\rfloor\),
- \(a\) is a linear combination of \(b\) and \(a \bmod b, \Rightarrow d \mid a\)
- Now, d|a and d|b \(\Rightarrow d \mid \operatorname{gcd}(a, b)\)
- Hence, \(\operatorname{gcd}(a, a \bmod b) \mid \operatorname{gcd}(a, b)\)
- \(\quad \mathrm{By}(\mathrm{A})\) and (B):
\[
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b) .
\]

\section*{Example: Compute gcd \((1970,1066)\)}
\(a=1970, b=1066\)
- \(1970=1 \times 1066+904=\operatorname{gcd}(1066,904), R=904\)
- \(1066=1 \times 904+162=\operatorname{gcd}(904,162), R=162\)
- \(904=5 \times 162+94=\operatorname{gcd}(162,94), \quad R=94\)
- \(162=1 \times 94+68 \quad=\operatorname{gcd}(94,68), \quad R=68\)
- \(94=1 \times 68+26 \quad=\operatorname{gcd}(68,26), \quad R=26\)
- \(68=2 \times 26+16 \quad=\operatorname{gcd}(26,16), \quad R=16\)
- \(26=1 \times 16+10 \quad=\operatorname{gcd}(16,10), \quad R=10\)
- \(16=1 \times 10+6 \quad=\operatorname{gcd}(10,6), \quad R=6\)
- \(10=1 \times 6+4 \quad=\operatorname{gcd}(6,4), \quad R=4\)
- \(6=1 \times 4+2 \quad=\operatorname{gcd}(4,2), \quad R=2\)
- \(4=2 \times 2+0 \quad=\operatorname{gcd}(2,0), \quad R=0\)

Hence \(\operatorname{gcd}(1970,1066)=2\)

\section*{Euclid's Algorithm}

EUCLID(a, b)
\(1 \quad\) if \(b=0\)
2 then return a
3 else return EUCLID(b, a mod b)

\section*{Example}
- Compute the gcd of 30 and 21

\section*{Solution}
- \(\operatorname{EUCLID}(30,21)=\operatorname{EUCLID}(21,9)=\operatorname{EUCLID}(9,3)\)
\[
=\operatorname{EUCLID}(3,0)=3
\]
- Here, there are three recursive invocations of EUCLID.
- The correctness of EUCLID follows from Theorem 2
- And the fact that if the algorithm returns \(a\) in line 2 , then \(b=0\), and so \(\operatorname{gcd}(a, b)=\operatorname{gcd}(a\), \(0)=a\)

\section*{Note:}
- The algorithm cannot recurse indefinitely
- This is because the second argument strictly decreases in each recursive call
- And this second argument is also always nonnegative.
- Hence it must be 0 after some number of calls
- Therefore, EUCLID always terminates with the correct answer.

\section*{Running Time of Euclid's Algorithm}
- We analyze the worst-case running time of EUCLID as a function of the size of a and b .
- We assume without loss of generality that \(a>b \geq 0\).
- This assumption justified because if \(b>a \geq 0\), then \(\operatorname{EUCLID}(a, b)\) makes recursive call EUCLID(b, a).
- That is, if first argument is less than second one, EUCLID spends one recursive call swapping \(a, b\)
- Similarly, if \(b=a>0\), the procedure terminates after one recursive call, since a mod \(b=\) 0.
- The overall running time of EUCLID is proportional to the number of recursive calls it makes.
- Our analysis makes use of the Fibonacci numbers \(F_{k}\), defined earlier in the first part of our course

\section*{Statement}
- If \(a>b \geq 1\) and the invocation \(\operatorname{EUCLID}(a, b)\) takes \(k \geq 1\) recursive calls, then \(a \geq F_{k+2}\) and \(\mathrm{b} \geq \mathrm{F}_{\mathrm{k}+1}\).

\section*{Proof}

The proof is by induction on k .

Case 1
- For base case, let \(k=1\). Then, \(b \geq 1=F 2\), and since \(a>b\), we must have \(a \geq 2=F 3\).
- Hence the statement is true for \(k=1\)
- Please note that, \(b>(a \bmod b)\), in each recursive call, i.e., first argument is strictly larger than the second and hence the assumption that \(a>b\) therefore holds for each recursive call.
Case 2
- Now suppose that the lemma is true for \(k-1\) i.e., if \(a>b \geq 1\) and invocation \(\operatorname{EUCLID(a,~}\) b) takes \(k-1 \geq 1\) recursive calls, then \(a \geq F_{k+1}\) and \(b \geq F_{k}\).

\section*{Case 3}
- Now we have to prove that statement is true for \(k\) i.e. if \(a>b \geq 1\) and invocation EUCLID( \(a, b\) ) takes \(k \geq 1\) recursive calls, then \(a \geq F_{k+2}\) and \(b \geq F_{k+1}\).
- Since \(k>0\), and \(b>0\), and \(\operatorname{EUCLID}(a, b)\) calls \(\operatorname{EUCLID}(b, a \bmod b)\) recursively, which in turn makes k-1 recursive calls.
- Since we know that statement is true for \(k-1\), hence \(b \geq F_{k+1}\), and \((a \bmod b) \geq F k\).
- Now we have
\[
\begin{equation*}
b+(a \bmod b)=b+(a-\lfloor a / b\rfloor b) \tag{1}
\end{equation*}
\]
- Since, \(a>b>0\), therefore, \([a / b] \geq 1\)
\[
\begin{array}{ll}
\Rightarrow & {[a / b] b \geq b} \\
\Rightarrow & b-[a / b] b \leq 0 \\
\Rightarrow & a+b-[a / b] b \leq 0+a \\
\Rightarrow & b+(a-[a / b] b) \leq a
\end{array}
\]
- By (1), b+(a mod b) \(=b+(a-\lfloor a / b\rfloor b) \leq a\)
- \(\quad b+(a \bmod b) \leq a\)
- Thus, \(a \geq b+(a \bmod b) \geq F_{k+1}+F_{k}=F_{k+2}\).
- Hence, \(a \geq F_{k+2}\), It completes proof of the theorem

\section*{Extended Euclid's Algorithm}

EXTENDED-EUCLID( \(a, b\) )
1 if \(b=0\)
2 then return ( \(a, 1,0\) )
\(3\left(d^{\prime}, x^{\prime}, y^{\prime}\right) \leftarrow\) EXTENDED-EUCLID \((b, a \bmod b)\)
\(4(d, x, y) \leftarrow\left(d^{\prime}, y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)\)
5 return (d, \(x, y)\)
Proof of Correctness
\(d^{\prime}=b x^{\prime}+(a \bmod b) y^{\prime}\)
\(\left.d=b x^{\prime}+(a-L a / b\rfloor b\right) y^{\prime} \quad \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)\)
\(d=a y^{\prime}+b\left(x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)\)

\section*{Reduced set of residues mod \(\mathbf{n}\)}
- Complete set of residues is: \(0 \ldots \mathrm{n}\)-1
- Reduced set of residues consists of all those numbers (residues) which are relatively prime to \(n\)
- And it is denoted by \(Z_{n^{*}}=\{k: \operatorname{gcd}(k, n)=1,0 \leq k<n\}\)
- The number of elements in reduced set of residues is called the Euler Totient Function \(\varphi(\mathrm{n})\)

\section*{Example}
- For \(\mathrm{n}=10\), find reduced list of residues of n
- All residues: \(\{0,1,2,3,4,5,6,7,8,9\}\)
- Reduced residues (primes) \(=\{1,3,7,9\}, \varphi(n)=4\)

\section*{Group}

Definition of a Group: Group is a set, \(G\), together with a binary operation : \(G\) * \(G \rightarrow G\), usually denoted by a*b, such that the following properties are satisfied :
- Associativity :
(a*b) \({ }^{*} c=a^{*}\left(b^{*} c\right)\) for all \(a, b, c \in G\)
- Identity :
\(\exists \mathrm{e} \in \mathrm{G}\), such that \(\mathrm{e}^{*} \mathrm{~g}=\mathrm{g}=\mathrm{g}^{*} \mathrm{e}\) for all \(\mathrm{g} \in \mathrm{G}\).
- Inverse :

For each \(g \in G\), there exists the \(g^{\prime}\), inverse of \(g\), such that \(g^{\prime *} g=g^{*} g^{\prime}=e\)
The Multiplicative Group \(Z_{n}^{*}\)
\(\mathrm{Zn}^{*}=\{\mathrm{k}: \operatorname{gcd}(\mathrm{k}, \mathrm{n})=1,1 \square \mathrm{k}<\mathrm{n}\}\)
For any positive integer \(\mathrm{n}, \mathrm{Zn}\) * forms a group under multiplication modulo n .
Proof:
- Binary Operation

Let \(a, b \in Z n^{*}, \operatorname{gcd}(a, n)=1 ; \operatorname{gcd}(b, n)=1\)
\(\operatorname{gcd}(a b, n)=\operatorname{gcd}(a, n)^{*} \operatorname{gcd}(b, n)=1 * 1=1\)
- Associativity holds,
- 1 is the identity element.
- inverse of each element exits

Hence ( \(\mathrm{Zn} \mathrm{n}^{*}\), \({ }^{*}\) ) forms a group.

\section*{Rings}

Definition: A ring is a set \(R\) with two binary operations \(+: R \times R \rightarrow R\) and \(\cdot: R \times R \rightarrow R\) (where \(\times\) denotes the Cartesian product), called addition and multiplication, such that:
- \((R,+)\) is an abelian group with identity element 0
1. \((a+b)+c=a+(b+c)\)
2. \(0+a=a+0=a\)
3. For every \(a\) in \(R\), there exists an element denoted \(-a\), such that \(a+-a=-a+a=0\)
4. \(a+b=b+a\)

Definition (Contd..)
- \(\quad(R, \cdot)\) is a monoid with identity element 1 :
1. \((a \cdot b) \cdot c=a \cdot(b \cdot c)\)
2. \(1 \cdot a=a \cdot 1=a\)
- Multiplication distributes over addition:
1. \(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
2. \((a+b) \cdot c=(a \cdot c)+(b \cdot c)\)

Note
- Ring addition is commutative so that \(\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}\)
- But ring with multiplication is not required to be commutative i.e. \(a \cdot b\) need not equal \(b \cdot a\).
- Rings that satisfy commutative property for multiplication are called commutative rings.
- Not all rings are commutative.
- Rings need not have multiplicative inverses either.
- An element a in a ring is called a unit if it is invertible with respect to multiplication
- An element \(a\) is called invertible under multiplication if there is an element \(b\) in the ring such that \(a \cdot b=b \cdot a=1\),
- This b is uniquely determined by a and we write \(\mathrm{a}^{-1}=\mathrm{b}\).

\section*{Lemma}
- The set of all units in R forms a group under ring multiplication

\section*{Example}

Prove that \(\mathrm{Z}\left(+,{ }^{*}\right)\) ( the set of integers) is a ring.

\section*{Solution}
+ and * are binary operation on \(Z\) because sum and product of two integers are also an integer
- Now, \(\square a, b, c \in Z\)
1. \((a+b)+c=a+(b+c)\),
2. \(0+a=a+0=a\)
3. \(a+(-a)=(-a)+a=0\)
4. \(a+b=b+a\)

Hence \((Z,+)\) is an abelian group with identity element 0
- Since, \(\square a, b, c \in Z\)
1. \((a \cdot b) \cdot c=a \cdot(b \cdot c)\)
2. \(1 \cdot a=a \cdot 1=a\)

Hence \((Z, \cdot)\) is a monoid with identity element 1
- Finally \(\square a, b, c \in Z\)
1. \(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
2. \((a+b) \cdot c=(a \cdot c)+(b \cdot c)\)
i.e., multiplication is distributive over addition

Hence we can conclude that \(Z\left(+,{ }^{*}\right)\) is a ring

Lecture No. 40
Chinese Remainder Theorem
RSA Cryptosystem
Addition: Modulo 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 0 \\
\hline 2 & 2 & 3 & 4 & 5 & 6 & 7 & 0 & 1 \\
\hline 3 & 3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 \\
\hline 4 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 \\
\hline 5 & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 \\
\hline 6 & 6 & 7 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 7 & 7 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2 & 0 & 2 & 4 & 6 & 0 & 2 & 4 & 6 \\
\hline 3 & 0 & 3 & 6 & 1 & 4 & 7 & 2 & 5 \\
\hline 4 & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4 \\
\hline 5 & 0 & 5 & 2 & 7 & 4 & 1 & 6 & 3 \\
\hline 6 & 0 & 6 & 4 & 2 & 0 & 6 & 4 & 2 \\
\hline 7 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{tabular}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

\section*{Reduced set of residues mod \(\mathbf{n}\)}
- Complete set of residues is \(Z_{n}=\{0,1, \ldots, n-1\}\)
- Reduced set of residues consists of all those numbers (residues) which are relatively prime to \(n\)
- And it is denoted by \(Z_{n^{*}}=\{k: \operatorname{gcd}(k, n)=1,0 \leq k<n\}\)
- The number of elements in reduced set of residues is called the Euler Totient Function \(\varphi(\mathrm{n})\)

\section*{Example 1}
- For \(n=10\), find reduced list of residues of \(n\)
- All residues: \(\{0,1,2,3,4,5,6,7,8,9\}\)
- Reduced residues (primes) \(=\{1,3,7,9\}, \varphi(n)=4\)

\section*{Group}

Group is a set, \(G\), together with a binary operation : \(G * G \rightarrow G\), usually denoted by a*b, such that the following properties are satisfied :
- Associativity :
\[
\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right) \text { for all } a, b, c \in G
\]
- Identity :
\(\exists e \in G\), such that \(e^{*} g=g=g^{*} e\) for all \(g \in G\).
- Inverse :

For each \(g \in G\), there exists the \(g^{\prime}\), inverse of \(g\), such that \(g^{\prime *} g=g^{*} g^{\prime}=e\)

\section*{Result: The Multiplicative Group \(\mathbf{Z}_{\mathbf{n}}{ }^{*}\)}

Statement: \(\mathrm{Zn}^{*}=\{\mathrm{k}: \operatorname{gcd}(\mathrm{k}, \mathrm{n})=1,1 \square \mathrm{k}<\mathrm{n}\}\). For any positive integer \(\mathrm{n}, \mathrm{Zn}^{*}\) forms a group under multiplication modulo \(n\).
Proof:
- Binary Operation
- Let \(a, b \in Z n^{*}, \operatorname{gcd}(a, n)=1 ; \operatorname{gcd}(b, n)=1\)
\(-\operatorname{gcd}(a b, n)=\operatorname{gcd}(a, n)^{*} \operatorname{gcd}(b, n)=1^{*} 1=1\)
- Associativity holds,
- 1 is the identity element.
- inverse of each element exits
- Hence ( \(\mathrm{Zn}{ }^{*}\),*) forms a group.

\section*{Rings}

A ring is a set \(R\) with two binary operations \(+: R \times R \rightarrow R\) and \(\cdot: R \times R \rightarrow R\) (where \(\times\) denotes the Cartesian product), called addition and multiplication, such that:
- \(\quad(R,+)\) is an abelian group with identity element 0
1. \((a+b)+c=a+(b+c)\)
2. \(0+a=a+0=a\)
3. For every \(a\) in \(R\), there exists an element denoted \(-a\), such that \(a+-a=-a+a=0\)
4. \(a+b=b+a\)
- \(\quad(R, \cdot)\) is a monoid with identity element 1 :
1. \((a \cdot b) \cdot c=a \cdot(b \cdot c)\)
2. \(1 \cdot a=a \cdot 1=a\)
- Multiplication distributes over addition:
1. \(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
2. \((a+b) \cdot c=(a \cdot c)+(b \cdot c)\)

Definition: An element \(a\) in a ring \(R\) is called unit if there exists \(b\) in \(R\) such that \(a \cdot b=b \cdot a=1\)

Lemma
- Set of all units in R forms a group under ring multiplication

Example 2: Prove that \(\mathrm{Z}\left(+,{ }^{*}\right)\) ( the set of integers) is a ring.
Solution: + and * are binary operation on \(Z\) because sum and product of two integers are also an integer
- Now, \(\square a, b, c \in Z\)
1. \((a+b)+c=a+(b+c)\),
2. \(0+a=a+0=a\)
3. \(a+(-a)=(-a)+a=0\)
4. \(a+b=b+a\)

Hence \((Z,+)\) is an abelian group with identity element 0

\section*{Example 2: Rings}
- Since, \(\square a, b, c \in Z\)
1. \((a \cdot b) \cdot c=a \cdot(b \cdot c)\)
2. \(1 \cdot a=a \cdot 1=a\)

Hence \((Z, \cdot)\) is a monoid with identity element 1
- Finally \(\square a, b, c \in Z\)
1. \(a \cdot(b+c)=(a \cdot b)+(a \cdot c)\)
2. \((a+b) \cdot c=(a \cdot c)+(b \cdot c)\)
i.e., multiplication is distributive over addition

Hence we can conclude that \(Z\left(+,{ }^{*}\right)\) is a ring

\section*{Modular Arithmetic}
- Modular arithmetic for integer n :
\(Z_{n}=\{0,1, \ldots, n-1\}\)
forms a commutative ring for addition with a multiplicative identity

\section*{Lemma 1}

For \(a, b, c \in Z\)
If \((a+b) \equiv(a+c) \bmod n\) then \(b \equiv c \bmod n\)

\section*{Lemma 2}

For \(a, b, c \in Z\)
If \(\left(a^{*} b\right) \equiv\left(a^{*} c\right) \bmod n\) then \(b \equiv c \bmod n\) only if \(a\) is relatively prime to \(n\) i.e. \(\operatorname{gcd}(a, n)=1\).

\section*{Solving Modular Linear Equations}

Definition: A congruence of the form \(\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{m})\) is called a linear congruence.
Solving:
- To solve this congruence, objective is to find the \(x\) that satisfy the given equation.
- An inverse of \(a\), modulo \(m\) is any integer \(a^{\prime}\) such that, \(a^{\prime} a \equiv 1(\bmod m)\).
- If we can find such an \(a^{\prime}\), then we can solve \(a x \equiv b\) by multiplying throughout by it, giving \(a^{\prime} a x \equiv a^{\prime} b\),
- Thus, \(1 \cdot x \equiv a^{\prime} b, \Rightarrow x \equiv a^{\prime} b(\bmod m)\).

\section*{Theorem}
- If \(\operatorname{gcd}(a, m)=1\) and \(m>1\), then a has a unique inverse \(a^{\prime}\) (modulo \(m\) ).

Proof:
- Since \(\operatorname{gcd}(a, m)=1\),
hence \(\exists \mathrm{s}\), t such that, \(\mathrm{sa}+\mathrm{tm}=1\)
- So, sa \(+\mathrm{tm} \equiv 1(\bmod m)\).
- Since \(\mathrm{tm} \equiv 0(\bmod m)\), sa \(\equiv 1(\bmod m)\).
- Thus \(s\) is an inverse of a \((\bmod m)\).
- Hence this Theorem guarantees that if \(r a \equiv s a \equiv 1\) then \(r \equiv s\), thus this inverse is unique mod m.

\section*{Chinese Remainder Theorem}

Theorem:
- Let \(m_{1}, \ldots, m_{k}>0\) be relatively prime. Then the system of equations:
\(x \equiv a_{1}\left(\bmod m_{1}\right)\)
\(x \equiv a_{2}\left(\bmod m_{2}\right)\)
\(x \equiv a_{k}\left(\bmod m_{k}\right)\)
has a unique solution modulo \(m=m_{1} \cdot \ldots \cdot m_{k}\).
Proof:
- We are given that, \(\mathrm{m}=\mathrm{m}_{1} \cdot \ldots \cdot \mathrm{~m}_{\mathrm{k}}\).
- Let \(M_{i}=m / m_{i}\). for \(i=1, \ldots, k\)
- Since \(\operatorname{gcd}\left(m_{i}, M_{i}\right)=1\), hence by above Theorem, \(\exists y_{i}=M_{i}^{\prime}\) such that \(y_{i} M_{i} \equiv 1\left(\bmod m_{i}\right)\) for \(i=1, \ldots, k\)
- Let \(x=a_{1} y_{1} M_{1}+a_{2} y_{2} M_{2}+\ldots+a_{k} y_{k} M_{k}=\sum a_{i} y_{i} M_{i}\)
- Now \(m_{1}\) does don't divide \(\mathrm{M}_{1}\)
- But \(m_{2}\left|M_{1}, m_{3}\right| M_{1}, \ldots, m_{k} \mid M_{1}\)
- Similarly \(m_{2}\) does don't divide \(\mathrm{M}_{2}\)
- But \(m_{1}\left|M_{2}, m_{3}\right| M_{2}, m_{4}\left|M_{2}, \ldots, m_{k}\right| M_{2}\) and so on
- Hence \(m_{i}\) does don't divide \(M_{i}, \forall \mathrm{i} \in\{1,2, \ldots, \mathrm{k}\}\)
- But \(m_{i} \mid M_{j}, \forall i \neq j, i, j \in\{1,2, \ldots, k\}\)
- Therefore, \(\mathrm{M}_{\mathrm{j}} \equiv 0\left(\bmod \mathrm{~m}_{\mathrm{i}}\right) \quad \mathrm{j} \neq \mathrm{i}\),
- Now we show that x is simultaneous solution
- \(\quad \mathrm{x} \equiv \mathrm{a}_{1}\left(\bmod \mathrm{~m}_{1}\right)\)
- Since \(x=a_{1} y_{1} M_{1}+a_{2} y_{2} M_{2}+\ldots+a_{k} y_{k} M_{k}\)
- Hence \(x \equiv a_{1} y_{1} M_{1} \equiv 1 \cdot a_{1}=a_{1}\left(\bmod m_{1}\right)\).
- \(x \equiv \mathrm{a}_{2} \mathrm{y}_{2} \mathrm{M}_{2} \equiv 1 \cdot \mathrm{a}_{2}=\mathrm{a}_{2}\left(\bmod \mathrm{~m}_{2}\right)\).
- \(\quad\)..
- \(x \equiv a_{k} y_{k} M_{k} \equiv 1 . a_{k}=a_{k}\left(\bmod m_{k}\right)\).
- Thus, x is the solution

\section*{Application: Example 3}

Solve the given system of linear modular equations using Chinese Remainder Theorem.
\[
\begin{aligned}
& x \equiv 2(\bmod 3), \\
& x \equiv 3(\bmod 5), \\
& x=2 \\
& x \equiv 2(\bmod 7), \\
& x=3
\end{aligned}
\]

Solution
- As \(m_{1}=3, m_{2}=5, m_{3}=7\), hence \(m=3.5 .7=105\)
- Now \(M_{1}=m / m_{1}=105 / 3=35, M_{2}=m / m_{2}=105 / 5=21\) and \(M_{3}=m / m_{3}=105 / 7=15\)
- Inverse of \(M_{1}\) (modulo 3 ) \(=y_{1}=2\)
- Inverse of \(\mathrm{M}_{2}\) (modulo 5 ) \(=\mathrm{y}_{2}=1\)
- Inverse of \(\mathrm{M}_{3}\) (modulo 7\()=y_{3}=1\)
- Now, \(x\), solution to this systems is
\[
\begin{aligned}
x & \equiv a_{1} y_{1} M_{1}+a_{2} y_{2} M_{2}+a_{3} y_{3} M_{3} \\
& =2.35 .2+3.21 .1+2.15 .1=233(\bmod 105) \\
& \equiv 23(\bmod 105)
\end{aligned}
\]
- Thus 23 is the smallest positive integer that is a simultaneous solution.

\section*{Verification}
\[
\begin{aligned}
& 23 \equiv 2(\bmod 3) \\
& 23 \equiv 3(\bmod 5) \\
& 23 \equiv 2(\bmod 7)
\end{aligned}
\]

\section*{Unique Representation of a Number by CRT}
- Let \(m_{1}, \ldots, m_{k}\) are pair-wise relatively prime integers, let \(m=m_{1} \cdot \ldots \cdot m_{k}\). Then by CRT it can be proved that any integer \(a, 0 \leq a \leq m\) can be uniquely represented by \(n\)-tuple consisting of its remainders upon division by \(m_{i} \quad(i=1,2, \ldots, k)\). That is we can uniquely represent a by
\(\left(a \bmod m_{1}, a \bmod m_{2}, \ldots, a \bmod m_{k}\right)=\left(a_{1}, a_{2}, \ldots, a_{k}\right)\)

Example 4
- Pairs to represent non-negative integers < 12, first component is result of division by 3, second by 4
\(0=(0,0) ; 1=(1,1) ; 2=(2,2) ; 3=(0,3)\);
\(4=(1,0) ; 5=(2,1) ; 6=(0,2) ; 7=(1,3)\);
\(8=(2,0) ; 9=(0,1) ; 10=(1,2) ; 11=(2,3)\)

\section*{Example 5}
- Compute \((1,2)\) if \(m_{1}=3\) and \(m_{2}=4\)

Solution
- \(x \equiv 1(\bmod 3)\)
- \(x \equiv 2(\bmod 4)\)
- \(m_{1}=3, m_{2}=4\), hence \(m=12\)
- Now \(\mathrm{M}_{1}=\mathrm{m} / \mathrm{m}_{1}=4, \mathrm{M}_{2}=\mathrm{m} / \mathrm{m}_{2}=3\)
- Inverse of \(M_{1}\) (modulo 3\()=y_{1}=1\)
- Inverse of \(\mathrm{M}_{2}\) (modulo 4) \(=\mathrm{y}_{2}=3\)
- Now \(x \equiv \mathrm{a}_{1} \mathrm{y}_{1} \mathrm{M}_{1}+\mathrm{a}_{2} \mathrm{y}_{2} \mathrm{M}_{2}=1.1 .4+2.3 .3=22 \bmod 12=10\)

\section*{Example 6: Chinese Remainder Theorem}
- Let \(m_{1}=99, m_{2}=98, m_{3}=97\) and \(m_{4}=95\)
- Now any integer < 99.98.97.95 = 89,403,930 can be uniquely represented by its remainders when divided by 99, 98, 97 and 95 respectively.
- If \(a=123,684, b=413,456\) then compute \(a+b\).

\section*{Solution}
- Now 123,684 mod \(99=33 ; 123,684 \bmod 98=8\)
- \(123,684 \bmod 97=9 ; 123,684 \bmod 95=89\)
- Hence \(a=123,684=(33,8,9,89)\)
- Similarly
- \(413,456 \bmod 99=32 ; 413,456 \bmod 98=92\)
- \(413,456 \bmod 97=42 ; 413,456 \bmod 95=16\)
- Hence \(b=413,456=(32,92,42,16)\)
- Now \(a+b=123,684+413,456\)
\[
\begin{aligned}
& =(33,8,9,89)+(32,92,42,16) \\
& =(65 \bmod 99,100 \bmod 98,51 \bmod 97,105 \bmod 99)
\end{aligned}
\]

Now we want to find a number \(x\) satisfying following
\(x \equiv 65(\bmod 99) \quad x \equiv 2(\bmod 98) \quad x \equiv 51(\bmod 97) \quad x \equiv 10(\bmod 95)\)
This can be solved using CRT, Answer \(=537,140\)

\section*{The RSA Public Key Cryptosystem}
- RSA involves a public key and a private key.
- The public key can be known to everyone and is used for encrypting messages.
- Messages encrypted with the public key can only be decrypted using the private key.
- The keys for the RSA algorithm are generated by the following way:
1. Choose two distinct large random prime numbers \(p\) and \(q\) such that \(p \neq q\)
2. Compute n by the equation \(\mathrm{n}=\mathrm{pq}, \mathrm{n}\) is used as the modulus for both the public and private keys
3. Compute the totient function \(\varphi(\mathrm{n})\)
4. Choose an integer e such that \(1<\mathrm{e}<\varphi(\mathrm{n})\) and e and \(\varphi(\mathrm{n})\) share no factors other than 1 (co-prime), e is released as the public key exponent
5. Compute \(d\) to satisfy the congruence relation;
\(\mathrm{de} \equiv 1 \bmod \varphi(\mathrm{n})\) i.e.
\(d e=1+k \varphi(n)\) for some integer \(k\)
\(d\) is kept as the private key exponent
6. Publish the pair \(\mathrm{P}=(\mathrm{e}, \mathrm{n})\) as his RSA public Key
7. Keep secret pair \(S=(d, n)\) as his RSA secret Key

\section*{Property: Totient Function}

Prove that
- \(\quad \varphi(p . q)=(p-1) \cdot(q-1)\), where \(p\) and \(q\) are prime numbers

Proof
- If \(\mathrm{n}=\mathrm{p}\), a prime number, then \(\phi(\mathrm{p})=(\mathrm{p}-1)\); e.g., \((\varphi(7)=6\) because 7 is prime)
- If \(n=p^{*} q\) where \(p\) and \(q\) are both prime then \(\phi(n)=\phi\left(p^{*} q\right)\)
- As above \(\phi(p)=p-1\)
- Similarly \(\phi(\mathrm{q})=\mathrm{q}-1\)
- For \(\phi(n)=\phi\left(p^{*} q\right)\), the residues will beS \({ }_{1}=\{0,1,2, \ldots,(p q-1)\}\)
- Out of \(S_{1}\), residues that are not relatively prime to \(n\) :
\(S_{2}=\{p, 2 p, \ldots .(q-1) p\}, S_{3}=\{q, 2 q, \ldots \ldots(p-1) q\}, S_{4}=\{0\}\)
- The number of elements of \(S_{1}=p q\)
- The number of elements of \(S_{2}=q-1\)
- The number of elements of \(S_{3}=p-1\)
- The number of elements of \(S_{4}=1\)
- Hence number of relatively prime elements in S 1 is
- \(\quad \phi(\mathrm{n})=\mathrm{pq}-[(\mathrm{q}-1)+(\mathrm{p}-1)+1]\)
\(=p q-q+1-p+1-1\)
\[
=p q-q-p+1=(p-1)(q-1)=\phi(p)^{*} \phi(q)
\]

\section*{Lecture No. 41}

\section*{RSA Cryptosystem}

\section*{String Matching}

\section*{Fermat Theorem}
- If \(p\) is prime, a is positive integer not divisible by \(p\),
\(a^{p-1}=1 \bmod p O R a^{p}=a \bmod p\)
Proof
- Consider the set, \(Z_{p}=\{0,1, \ldots, p-1\}\)
- Multiplying each element of \(Z_{p}\) by "a mod p", the result is a set, \(A\), of all the elements of \(Z_{p}\) with a different sequence, where \(A=Z p\)
\(A=\{0, a \bmod p, 2 a \bmod p \ldots . .(p-1) a \bmod p\}\)
- \(\{0, a \bmod p, 2 a \bmod p \ldots \ldots(p-1) a \bmod p\}=\{0,1, \ldots, p-1\} \quad\) Since \(A=Z p\)
- If all the elements are multiplied together, except 0 , on both sides we should
- \(\{a \bmod p * 2 a \bmod p \ldots *(p-1) a \bmod p\} \bmod p=1.2 \ldots(p-1) \bmod p\)
\(a^{p-1}(p-1)!\bmod p=(p-1)!\bmod p\)
- Since ( \(p-1\) )! is relatively prime to \(p\). So It can be cancelled from both sides
- \(a^{p-1} \bmod p \equiv 1\)

OR
- \(a^{p-1} \equiv 1 \bmod p\) OR
- \(a^{p} \equiv a \bmod p\)

\section*{Euler's Theorem: Generalization of Fermat's}

Statement
- If a and n are relatively prime then
\(\mathrm{a}^{\varphi(n)+1}=\mathrm{amod} \mathrm{n}\) OR \(\mathrm{a}^{\varphi(n)}=1 \bmod n\)
Proof
- If \(\mathrm{n}=\) prime, then \(\phi(\mathrm{n})=\mathrm{n}-1\)
- By Fermat's Theorem \(a^{n-1}=a^{\phi(n)}=1 \bmod n\)
- If n is a positive integer, then \(\phi(\mathrm{n})=\) number of positive integers less than n , relatively prime to \(n\).
- Consider such positive integers as follows:
\(\mathrm{S}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\phi(\mathrm{n})}\right\}\)
- Now multiply each element with a mod \(n\)
\(S_{2}=\left\{a x_{1} \bmod n, a x_{2} \bmod n, \ldots, a x_{\phi(n)} \bmod n\right\}\)

\section*{Euler's Theorem}
- The set \(S_{2}\) is a permutation of \(S_{1}\) because:
1. \(a\) is relatively prime to \(n\).
2. \(x_{i}\) is relatively prime to \(n\).
3. Therefore \(a x_{i}\) is also relatively prime to \(n\).
- Hence each \(a x_{i}\) mod \(n\) has value less than \(n\)
- Hence every element of \(S_{2}\) is relatively prime to \(n\) and less than \(n\).
- The number of elements of \(S_{2}\) equal to that of \(S_{1}\)
- Moreover S2 contains no duplicates. It is because if \(a x_{i} \bmod n=a x_{j} \bmod n\), then \(x_{i}=x_{j}\)
- But S1 has no duplicates
- On multiplying the terms of S1 and S2
\(\Pi\left(a x_{i} \bmod n\right)=\Pi x_{i}\) OR
\[
\begin{aligned}
& \Pi\left(a x_{i}\right)=\left(\Pi x_{i}\right) \bmod n \quad O R \\
& \mathrm{a}=1 \bmod \mathrm{n} \text { OR } \mathrm{a}=\mathrm{a} \bmod \mathrm{n} \text {, Proved }
\end{aligned}
\]

Corollary:
- Given primes p and q . Let m and n are integers such that \(\mathrm{n}=\mathrm{p}^{*} \mathrm{q}\) and \(0<\mathrm{m}<\mathrm{n}\) then \(\mathrm{m}^{\phi(n)+1}=\mathrm{m} \bmod \mathrm{n} O R \mathrm{~m}^{\phi(n)}=1 \bmod \mathrm{n}\)

\section*{RSA Cryptosystem}

\section*{Encryption:}
- Any number \(m,(m<n)\), can be encrypted.
- ciphertext \(\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}\)

\section*{Decryption:}
- \(\quad c^{d} \bmod n\) gives us back \(m\).

Proof
- To prove that \(c^{d} \bmod n\) is equal to \(m\) :
- \(c^{d} \bmod n=\left(m^{e}\right)^{d} \bmod n\)
\[
=\mathrm{m}^{\mathrm{de}} \bmod \mathrm{n}
\]
- Since \(\mathrm{de}=1 \bmod \Phi(\mathrm{n}) \Rightarrow \mathrm{de}=\mathrm{k} \Phi(\mathrm{n})+1\)
\(c^{d}=m^{d e}=m^{k \Phi(n)+1}\)
- By the above corollary to Euler's theorem, \(c^{d}=m^{d e}=m^{k \Phi(n)+1}=m \bmod n=m\), since \(m<n\)

\section*{Example: RSA Cryptosystem}
- Encrypt message STOP using RSA cryptosystem with \(p=43, q=59\) and \(e=13, n=p q\) \(=2537\),
Solution
- \(\operatorname{gcd}(e,(p-1)(q-1))=1\), encryption can be done
- Translate STOP in numerical values, blocks of 4 1819 1415
- Encrypt \(\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod 2537=\mathrm{M}^{13} \bmod 2537\)
- After computing using fast modular multiplication
- \(1819^{13} \bmod 2537=2081 ; 1415^{13} \bmod 2537=2181\)
- The encrypted message is: 20812182

\section*{Example: RSA Cryptosystem}
- Decrypt 09810461 if encrypted using RSA
- Public key \(=(\mathrm{e}, \mathrm{n})=(13,43.59=2537)\)

\section*{Solution}
- \(p=43, p-1=42, q=59, q-1=58, e=13\)
- \(d=e^{-1} \bmod (p-1) \cdot(q-1)=13^{-1} \bmod 42 \cdot 58=937\)
- Decrypt
\(\mathrm{M}=\mathrm{C}^{937} \bmod 2537=\mathrm{C}^{937} \bmod 2537\)
- After computing using fast modular multiplication
- \(09811^{937} \bmod 2537=0704 ; 0461^{937} \bmod 2537=1115\)
- The decrypted message is: 07041115
- Translating back to English: HELP

\section*{String Matching Problem}
- We assume that the text is an array \(\mathrm{T}[1 . . \mathrm{n}]\) of length n and that the pattern is an array \(P[1 . . m]\) of length \(m \leq n\).
- We further assume that the elements of \(P\) and \(T\) are characters drawn from a finite alphabet \(\Sigma\).
- For example, we may have \(\Sigma=\{0,1\}\) or \(\Sigma=\{a, b, \ldots, z\}\).
- The character arrays \(P\) and \(T\) are often called strings of characters
- We say that pattern \(P\) occurs with shift \(\mathbf{s}\) in text \(T\) (or, equivalently, that pattern \(P\) occurs beginning at position \(\mathbf{s}+1\) in text T ) if \(0 \leq s \leq n-m\) and \(T[s+1 . . s+m]=P[1 . . m]\) i.e. T \([\mathrm{s}+\mathrm{j}]=\mathrm{P}[\mathrm{j}]\), for \(1 \leq \mathrm{j} \leq \mathrm{m}\) ).
- If \(P\) occurs with shift \(s\) in \(T\), we call \(s\) a valid shift;
- otherwise, we call \(s\) an invalid shift.

String Matching Problem
- The string-matching problem is "finding all valid shifts with which a given pattern P occurs in a given text T".
-


\section*{Definitions and Notations}
\begin{tabular}{|c|c|}
\hline Notation & Terminology \\
\hline 「* & The set of all finite-length strings formed using characters from the alphabet \(\Sigma\). \\
\hline \(\varepsilon\) & The zero-length empty string, also belongs to \(\Sigma^{*}\). \\
\hline |x| & The length of a string \(x\). \\
\hline xy & The concatenation of two strings \(x\) and \(y\) has length \(|x|+|y|\) and consists of the characters from \(x\) followed by the characters from y . \\
\hline \(\mathrm{w} \square \mathrm{x}\) & A string \(w\) is a prefix of a string \(x\), if \(x=w y\) for some string \(y \in \Sigma^{*}\). If \(w x\), then \(|w| \leq|x|\). \\
\hline w \x & String \(w\) is a suffix of a string \(x\), if \(x=y w\) for some \(y \in \Sigma^{*}\). If \(w \backslash x\) that \(|w| \leq|x|\). \\
\hline
\end{tabular}

\section*{Naive Approach}
- The idea is based on Brute Force Approach.
- The naive algorithm finds all valid shifts using a loop that checks the condition \(\mathrm{P}[1\).. m\(]=\) \(\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\) for each of the \(\mathrm{n}-\mathrm{m}+1\) possible values of s .
- It can be interpreted graphically as sliding a "template" containing the pattern over the text, noting for which shifts all of the characters on the template equal the corresponding characters in the text.

NAIVE-STRING-MATCHER(T, P)
\(\mathrm{n} \leftarrow\) length \([T]\)
\(2 \mathrm{~m} \leftarrow\) length \([\mathrm{P}]\)
3 for \(\mathrm{s} \leftarrow 0\) to \(\mathrm{n}-\mathrm{m}\)
do if \(\mathrm{P}[1 . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\)
then print "Pattern occurs with shift" \(s\)
- Worst case Running Time
- Outer loop: \(\mathrm{n}-\mathrm{m}+1\)
- Inner loop: m
- Total O((n-m+1)m)
- Best-case: n-m

Note
- Not an optimal procedure for String Matching problem.
- It has high running time for worst case.
- The naive string-matcher is inefficient because information gained about the text for one value of \(s\) is entirely ignored in considering other values of \(s\).

\section*{The Rabin-Karp Algorithm}
- Let us assume that \(\Sigma=\{0,1,2, \ldots, 9\}\), so that each character is a decimal digit.
- A string of \(k\) consecutive characters is viewed as representing a length-k decimal number.
- Given a pattern \(\mathrm{P}[1\).. m ], let p denote its corresponding decimal value and a text T [1 .. n ], we let \(\mathrm{t}_{\mathrm{s}}\) denotes the decimal value of the length- m substring \(\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\), for \(\mathrm{s}=\) \(0,1, \ldots, n-m\).
- Now, \(\mathrm{t}_{\mathrm{s}}=\mathrm{p}\) if and only if \(\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]=\mathrm{P}[1\).. m\(]\); thus, \(s\) is a valid shift if and only if \(t_{s}=p\).
- We can compute \(p\) in time \(\Theta(m)\) using Horner's rule
\[
p=P[m]+10(P[m-1]+10(P[m-2]+\cdots+10(P[2]+10 P[1]))) .
\]

Example: Horner's rule:
\[
" 345 "=5+10(4+10(3))=5+10(4+30)=5+340=345
\]
- The value \(\mathrm{t}_{0}\) can be similarly computed from \(\mathrm{T}[1\).. m\(]\) in time \(\Theta(\mathrm{m})\).
- To compute the remaining values \(t_{1}, t_{2}, \ldots, t_{n-m}\) in time \(\Theta(n-m)\), it suffices to observe that \(t_{s+1}\) can be computed from \(t_{s}\) in constant time.
- Subtracting \(10^{m-1} \mathrm{~T}[\mathrm{~s}+1]\) removes the high-order digit from \(\mathrm{t}_{\mathrm{s}}\), multiplying the result by 10 shifts the number left one position, and adding \(T[s+m+1]\) brings in the appropriate low-order digit.
\(\mathrm{t}_{\mathrm{s}+1}=\left(10\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 10^{\mathrm{m}-1}\right)+\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\right)\)
- The only difficulty with this procedure is that \(p\) and \(t_{s}\) may be too large to work with conveniently.
- Fortunately, there is a simple cure for this problem compute \(p\) and the \(t_{s}\) 's modulo a suitable modulus \(q\).

\section*{Lecture No. 42}

String Matching

\section*{String Matching Problem}
- Given a text T [1 .. \(n\) ] of length \(n\), a pattern \(\mathrm{P}[1\).. m\(]\) of length \(\mathrm{m} \leq \mathrm{n}\), both as arrays.
- Further assume that elements of \(P\) and \(T\) are characters drawn from a finite set of alphabets \(\Sigma\).
- Now for \(0 \leq \mathrm{s} \leq \mathrm{n}\) - m if
\(\mathrm{T}[\mathrm{s}+\mathrm{j}]=\mathrm{P}[\mathrm{j}], \forall \mathrm{j} \in\{1,2, \ldots, \mathrm{~m}\}\)
- then p occurs in T with shift \(s\), and we call \(s\) as a valid shift; otherwise, \(s\) an invalid shift.
- Now our objective is "finding all valid shifts with which a given pattern P occurs in a text T".

\section*{Naive String Matching Algorithm}

NAIVE-STRING-MATCHER(T, P)

\section*{\(\mathrm{n} \leftarrow\) length[T]}
\(\mathrm{m} \leftarrow\) length \([P]\)
for \(\mathrm{s} \leftarrow 0\) to \(\mathrm{n}-\mathrm{m}\)
do if \(\mathrm{P}[1 . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\)
then print "Pattern occurs with shift" \(s\)
- Worst case Running Time
- Outer loop: \(\mathrm{n}-\mathrm{m}+1\)
- Inner loop: m
- Total \(O((n-m+1) m)\)
- Best-case: n-m

\section*{Example: Naive String Matching Algorithm}

\[
\begin{aligned}
& \mathrm{n} \leftarrow \text { length }[T]=6 \\
& \mathrm{~m} \leftarrow \text { length }[P]=3 \\
& \text { for } \mathrm{s} \leftarrow 0 \text { to } \mathrm{n}-\mathrm{m}(6-3=3) \\
& \quad \mathrm{P}[1]=\mathrm{T}[\mathrm{~s}+1] \quad(\text { As } \mathrm{a}=\mathrm{a}) \\
& \\
& \mathrm{P}[1]=\mathrm{T}[1] \quad \\
& \\
& \\
& \\
& \mathrm{P}[2]=\mathrm{T}[\mathrm{~s}+2] \quad \\
& \text { But } \mathrm{P}[2] \ltimes \mathrm{T}[2] \quad(\text { As } \mathrm{a} \leqslant \mathrm{c})
\end{aligned}
\]

\[
\begin{aligned}
& \text { for } s \leftarrow 1 \\
& \quad P[1]=T[s+1] \quad \\
& \text { But } P[1] \ltimes T[2] \quad(\text { As a } \wedge c)
\end{aligned}
\]
for \(\mathrm{s} \leftarrow 2\)
\[
\begin{aligned}
& P[1]=T[s+1] \\
& P[1]=T[3] \quad(\text { As } a=a)
\end{aligned}
\]
\[
\mathrm{P}[2]=\mathrm{T}[\mathrm{~s}+2]
\]
\[
P[2]=T[4] \quad(\text { As } a=a)
\]
\[
\mathrm{P}[3]=\mathrm{T}[\mathrm{~s}+3]
\]
\[
P[3]=T[5] \quad(\text { As } b=b)
\]

for \(\mathrm{s} \leftarrow 3\)
\(P[1]=T[s+1]\)
\(\mathrm{P}[1]=\mathrm{T}[4] \quad(\) As \(\mathrm{a}=\mathrm{a})\)
\(P[2]=T[s+2]\)
But \(P[2] \wedge T[5] \quad(A s a \vee b)\)

\section*{The Rabin-Karp Algorithm}

Special Case
- Given a text \(\mathrm{T}[1\).. n ] of length n , a pattern \(\mathrm{P}[1\).. m\(]\) of length \(\mathrm{m} \leq \mathrm{n}\), both as arrays.
- Assume that elements of \(P\) and \(T\) are characters drawn from a finite set of alphabets \(\Sigma\).
- Where \(\Sigma=\{0,1,2, \ldots, 9\}\), so that each character is a decimal digit.
- Now our objective is "finding all valid shifts with which a given pattern P occurs in a text T".

\section*{Notations:}

Let us suppose that
- \(p\) denotes decimal value of given a pattern \(\mathrm{P}[1\).. m\(]\)
- \(t_{s}=\) decimal value of length-m substring \(T[s+1 . . s+m]\), of given text \(T[1 . . n]\), for \(s=0\), \(1, \ldots, n-m\).
- It is very obvious that, \(\mathrm{t}_{\mathrm{s}}=\mathrm{p}\) if and only if
\(\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]=\mathrm{P}[1 . . \mathrm{m}]\);
thus, \(s\) is a valid shift if and only if \(t_{s}=p\).
- Now the question is how to compute \(p\) and \(t_{s}\) efficiently
- Answer is Horner's rule

\section*{Horner's Rule}

Example: Horner's rule
\[
\begin{aligned}
& {[3,4,5]=5+10(4+10(3))=5+10(4+30)=5340=345} \\
& p=P[3]+10(P[3-1]+10(P[1])) .
\end{aligned}
\]

\section*{Formula}
- We can compute \(p\) in time \(\Theta(m)\) using this rule as
\[
p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10 P[1])))
\]
- Similarly \(\mathrm{t}_{0}\) can be computed from \(\mathrm{T}[1\).. m\(]\) in time \(\Theta(\mathrm{m})\).
- To compute \(t_{1}, t_{2}, \ldots, t_{n-m}\) in time \(\Theta(n-m)\), it suffices to observe that \(t_{s+1}\) can be computed from \(\mathrm{t}_{\mathrm{s}}\) in constant time.

Computing \(\mathrm{t}_{\mathrm{s}+1}\) from \(\mathrm{t}_{\mathrm{s}}\) in constant time
- Text \(=[3,1,4,1,5,2] ; \mathrm{t}_{0}=31415\)
- \(m=5\); Shift = 0
- Old higher-order digit \(=3\)
- New low-order digit = 2
- \(t_{1}=10 .\left(31415-10^{4} \cdot T(1)\right)+T(5+1)\)
\(=10 .\left(31415-10^{4} .3\right)+2\) \(=10(1415)+2=14152\)
- \(\left.t_{s+1}=10\left(t_{s}-T[s+1] 10^{m-1}\right)+T[s+m+1]\right)\)
- \(\left.t_{1}=10\left(t_{0}-T[1] 10^{4}\right)+T[0+5+1]\right)\)
- Now \(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}}\) can be computed in \(\Theta(\mathrm{n}-\mathrm{m})\)


Procedure: Computing \(t_{s+1}\) from \(t_{s}\)
1. Subtract \(\mathrm{T}[\mathrm{s}+1] 10^{\mathrm{m}-1}\) from \(\mathrm{t}_{\mathrm{s}}\), removes high-order digit
2. Multiply result by 10 , shifts the number left one position
3. Add \(\mathrm{T}[s+m+1]\), it brings appropriate low-order digit.
\[
t_{s+1}=\left(10\left(t_{s}-T[s+1] 10^{m-1}\right)+T[s+m+1]\right)
\]

Another issue and its treatment
- The only difficulty with the above procedure is that p and \(\mathrm{t}_{\mathrm{s}}\) may be too large to work with conveniently.
- Fortunately, there is a simple cure for this problem, compute \(p\) and the \(t_{s}\) modulo a suitable modulus \(q\).

Computing \(\mathrm{t}_{\mathrm{s}+1}\) from \(\mathrm{t}_{\mathrm{s}}\) Modulo \(\mathrm{q}=13\)
- A window of length 5 is shaded.
- The numerical value of window \(=31415\)
- \(31415 \bmod 13=7\)


Spurious Hits and their Elimination
- \(m=5\).
- \(\quad \mathrm{p}=31415\),
- Now, \(31415 \equiv 7(\bmod 13)\)
- Now, 67399 \(7(\bmod 13)\)
- Window beginning at position \(7=\) valid match; \(s=6\)
- Window beginning at position \(13=\) spurious hit; \(s=12\)
- After comparing decimal values, text comparison is needed


\section*{The Rabin-Karp Algorithm}

Generalization
- Given a text \(\mathrm{T}[1\).. n\(]\) of length n , a pattern \(\mathrm{P}[1\).. m\(]\) of length \(\mathrm{m} \leq \mathrm{n}\), both as arrays.
- Assume that elements of \(P\) and \(T\) are characters drawn from a finite set of alphabets \(\Sigma=\) \(\{0,1,2, \ldots, d-1\}\).
- Now our objective is "finding all valid shifts with which a given pattern \(P\) occurs in a text T".

\section*{Note}
- \(\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\right) \bmod \mathrm{q}\) where \(\mathrm{h}=\mathrm{d}^{\mathrm{m}-1}(\operatorname{modq})\) is the value of the digit " 1 " in the high-order position of an m-digit text window.

Sequence of Steps Designing Algorithm
1. Compute the lengths of pattern \(P\) and text \(T\)
2. Compute \(p\) and \(t_{s}\) under modulo \(q\) using Horner's Rule
3. For any shift \(s\) for which \(t_{s} \equiv p(\bmod q)\), must be tested further to see if \(s\) is really valid shift or a spurious hit.
4. This testing can be done by checking the condition: \(\mathrm{P}[1 . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\). If these strings are equal \(s\) is a valid shift otherwise spurious hit.
5. If for shift \(s, t_{s} \equiv p(\operatorname{modq})\) is false, compute \(t_{s+1}\) and replace it with \(t_{s}\) and repeat the step 3.

Note
- As \(t_{s} \equiv \mathrm{p}(\bmod \mathrm{q})\) does not imply that \(\mathrm{t}_{\mathrm{s}}=\mathrm{p}\), hence text comparison is required to find valid shift

RABIN-KARP-MATCHER(T, P, d, q)
```

 \(\mathrm{n} \leftarrow\) length \([\mathrm{T}]\)
 \(\mathrm{m} \leftarrow\) length \([P]\)
 \(h \leftarrow d^{m-1} \bmod q\)
 \(p \leftarrow 0\)
 \(\mathrm{t}_{0} \leftarrow 0\)
 for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{m} \quad \square\) Preprocessing.
 do \(p \leftarrow(d p+P[i]) \bmod q\)
 \(\mathrm{t}_{0} \leftarrow\left(\mathrm{dt}_{0}+\mathrm{T}[\mathrm{i}]\right) \bmod \mathrm{q}\)
 for \(\mathrm{s} \leftarrow 0\) to \(n-\mathrm{m}\)
 do if \(p=t_{s}\)
 then if \(\mathrm{P}[1 . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 . . \mathrm{s}+\mathrm{m}]\)
 then print "Pattern occurs with shift" s
 if \(\mathrm{s}<\mathrm{n}-\mathrm{m}\)
 then \(\mathrm{t}_{\mathrm{s}+1} \leftarrow\left(\mathrm{~d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\right) \bmod \mathrm{q}\)
    ```

Analysis: The Rabin-Karp Algorithm
- Worst case Running Time
- Preprocessing time: \(\Theta(m)\)
- Matching time is \(\Theta((n-m+1) m)\)
- If \(P=a^{m}, T=a^{n}\), verifications take time \(\Theta((n-m+1) m)\), since each of the \(n-m+1\) possible shifts is valid.
- In applications with few valid shifts, matching time of the algorithm is only \(\mathrm{O}((\mathrm{n}-\mathrm{m}+1)+\) \(\mathrm{cm})=\mathrm{O}(\mathrm{n}+\mathrm{m})\), plus the time required to process spurious hits.

\section*{String Matching with Finite Automata}
- A finite automaton \(M\) is a 5 -tuple \(\left(Q, q_{0}, A, \Sigma, \delta\right)\), where
- \(\quad Q\) is a finite set of states,
- \(q_{0} \in Q\) is the start state,
- \(\mathrm{A} \square \mathrm{Q}\) is a distinguished set of accepting states,
- \(\quad \Sigma\) is a finite input alphabet,
\(-\delta\) is a function from \(Q \times \Sigma\) into \(Q\), called the transition function of \(M\).
- String-matching automata are very efficient because it examines each character exactly once, taking constant time.
- The matching time used-after preprocessing the pattern to build the automaton-is therefore \(\Theta(n)\).

\section*{Some Results}
1. Empty string is both a suffix and a prefix of every string.
2. For any strings \(x\) and \(y\) and any character a, we have \(x \nwarrow y\) if and only if \(x a \nwarrow y a\).
3. Also it can be proved that \(\square\) and \(\nwarrow\) are transitive relations.

Proof :Property 3
- Suppose that \(x \square y\) and \(y ~ z, ~ w e ~ h a v e ~ t o ~ p r o v e ~ t h a t ~ x ~ z . ~\)
- \(x \square y \Rightarrow \exists w_{1} \in \Sigma^{*}\) such that \(y=x w_{1}\)
- \(y \square z \Rightarrow \exists w_{2} \in \Sigma^{*}\) such that \(z=y w_{2}\)
- From (A) and (B)
\[
\mathrm{z}=\mathrm{yw} \mathrm{w}_{2}=\mathrm{x} \mathrm{w}_{1} \mathrm{w}_{2}
\]

\section*{Example: Transition Table and Finite Automata}
- \(Q=\{0,1\}, \square=\{a, b\}\) and transition function is shown below
- A simple two-state finite automaton which accepts those strings that end in an odd number of a's.
\begin{tabular}{c|c|c|}
\multicolumn{1}{c}{} & \multicolumn{2}{c}{ input } \\
\cline { 2 - 3 } state & a & b \\
\cline { 2 - 3 } 0 & 1 & 0 \\
\cline { 2 - 3 } 1 & 0 & 0 \\
\cline { 2 - 3 } & &
\end{tabular}

A tabular representation of transition function \(\delta\)


State set \(\mathrm{Q}=\{0,1\}\)
Start state \(\mathrm{q}_{0}=0\)
Input alphabet \(\boldsymbol{K}=\{\mathrm{a}, \mathrm{b}\}\)

\section*{Final State Function \(\varphi\)}
- A finite automaton M induces a function \(\varphi\), called the final-state function, from \(\Sigma^{*}\) to \(Q\) such that \(\varphi(\mathrm{w})\) is the state of \(M\) that ends up in after scanning the string \(w\).
- Thus, M accepts a string w if and only if \(\varphi(\mathrm{w}) \in \mathrm{A}\).
- The function \(\varphi\) is defined by the recursive relation
\[
\begin{aligned}
& \varphi(\varepsilon)=q_{0} \\
& \varphi(w a)=\delta(\varphi(w), a) \quad \text { for } w \in \Sigma^{*}, a \in \Sigma .
\end{aligned}
\]
- There is a string-matching automaton for every pattern P ; constructed in a preprocessing step.

Suffix Function \(\sigma\)
- An auxiliary function \(\sigma\), called the suffix function is defined corresponding to given pattern \(P\).
- Function \(\sigma\) is a mapping from \(\Sigma^{*}\) to \(\{0,1, \ldots, m\}\) such that \(\sigma(x)\) is length of the longest prefix of \(P\) that is a suffix of \(x\) i.e. \(\sigma(x)=\max \left\{k: P_{k} \nwarrow x\right\}\).
- The suffix function \(\sigma\) is well defined since the empty string \(P_{0}=\varepsilon\) is a suffix of every string.
- For a pattern \(P\) of length \(m\), we have \(\sigma(x)=m\) if and only if \(P<x\).
- It follows from the definition of the suffix function that if \(x\ulcorner y\), then \(\sigma(x) \leq \sigma(y)\).

\section*{String Matching Automata}
- The string-matching automaton that corresponds to a given pattern \(\mathrm{P}[1 . . \mathrm{m}]\) is defined as
- The state set \(Q\) is \(\{0,1, \ldots, m\}\). The start state \(q 0\) is state 0 , and state \(m\) is the only accepting state.
- The transition function \(\delta\) is defined by the following equation, for any state \(q\) and character a : \(\delta(\mathrm{q}, \mathrm{a})=\sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{a}\right)\)
- The machine maintains as an invariant of its operation \(\varphi\left(\mathrm{T}_{\mathrm{i}}\right)=\sigma\left(\mathrm{T}_{\mathrm{i}}\right)\)

\section*{String Matching Automata for given Pattern}
- Pattern string \(\mathrm{P}=\) ababaca.
- Edge towards right shows matching
- Edge towards is fro failure
- No edge for some for state and some alphabet means that edge hits initial state


String Matching using Finite Automata
- Finite Automata for Pattern
- \(P=a b a b a c a\)
- Text T=abababacaba.


FINITE-AUTOMATON-MATCHER(T, \(\delta, m)\)
\(\mathrm{n} \leftarrow\) length \([\mathrm{T}]\)
\(q \leftarrow 0\)
for \(\mathrm{i} \leftarrow 1\) to n
\(\mathrm{do} \mathrm{q} \leftarrow \delta(\mathrm{q}, \mathrm{T}[\mathrm{i})\)
if \(q=m\)
then print "Pattern occurs with shift" i - m
- Matching time on a text string of length n is \(\Theta(\mathrm{n})\).
- Memory Usage: \(O(m|\Sigma|)\),
- Preprocessing Time: Best case: \(\mathrm{O}(\mathrm{m}|\Sigma|)\).

\section*{COMPUTE-TRANSITION-FUNCTION(P, \(\Sigma\) )}
\(\mathrm{m} \leftarrow\) length[ P\(]\)
for \(\mathrm{q} \leftarrow 0\) to m
3 do for each character \(a \in \Sigma\)
\(4 \quad\) do \(k \leftarrow \min (m+1, q+2)\)
\(5 \quad\) repeat \(k \leftarrow k-1\)
\(6 \quad\) until \(P_{k} \nwarrow P_{q} a\)
\(7 \quad \delta(q, a) \leftarrow k\)
8 return \(\delta\)
Running Time \(=O\left(m^{3}|\Sigma|\right)\)

\section*{Summary}
\begin{tabular}{|l|l|l|}
\hline Algorithm & Preprocessing Time & Matching Time \\
\hline Naïve & 0 & \(\mathrm{O}((n-m+1) \mathrm{m})\) \\
\hline Rabin-Karp & \(\mathrm{O}(\mathrm{m})\) & \(\mathrm{O}((\mathrm{n}-\mathrm{m}+1) \mathrm{m})\) \\
\hline Finite Automaton & \(\mathrm{O}(\mathrm{m}|\square|)\) & \(\mathrm{O}(\mathrm{n})\) \\
\hline
\end{tabular}

\section*{Lecture No. 43}

Polynomials and Fast Fourier Transform

\section*{Definitions}

A Field is a set \(F\) with two binary operations \(+: F \times F \rightarrow F\) and \({ }^{*}: F \times F \rightarrow F\) such that
1. \((F,+)\) is an abelian group with identity element 0
2. \(\left(F \backslash\{0\},{ }^{*}\right)\) is an abelian group with identity element 1
3. Multiplication distributes over addition
\[
\begin{aligned}
& -a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right) \\
& -\quad(a+b)^{*} c=\left(a^{*} c\right)+\left(b^{*} c\right)
\end{aligned}
\]

Polynomial
- A polynomial in the variable \(x\) over an algebraic field \(F\) is a representation of a function \(A(x)\) as a formal sum
\[
A(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n} x^{n}
\]

Coefficients
- Values \(a_{0}, a_{1}, \ldots, a_{n}\) are coefficients of polynomial, and drawn from a field \(F\), typically set of complex numbers.
Degree
- A polynomial \(A(x)\) is said to have degree \(n\) if its highest coefficient \(a_{n}\) is nonzero Degree Bound
- Any integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial.

\section*{Addition of two Polynomials: Brute Force}

Addition of two polynomials of degree n takes \(\Theta(\mathrm{n})\) time,
Example 1
\[
\begin{aligned}
& A(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n} x^{n} \\
& B(x)=b_{0}+b_{1} x^{1}+b_{2} x^{2}+\ldots+b_{n} x^{n} \\
& C(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x^{1}+\ldots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
\]

\section*{Multiplication of Two Polynomial: Brute Force}

Multiplication of two polynomials of degree \(n\) takes \(\Theta\left(n^{2}\right)\)
Example 2
\(A(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n} x^{n}\)
\(B(x)=b_{0}+b_{1} x^{1}+b_{2} x^{2}+\ldots+b_{n} x^{n}\)
\[
\begin{aligned}
& a_{0} b_{0}+a_{1} b_{0} x^{1}+\ldots+\left(a_{n} b_{0}\right) x^{n} \\
& \quad a_{0} b_{1} x^{1}+a_{1} b_{1} x^{2}+\ldots+\left(a_{n} b_{1}\right) x^{n+1} \\
& \quad \ldots \\
& \quad a_{0} b_{n} x^{n}+a_{1} b_{n} x^{n+1}+\ldots+\left(a_{n} b_{n}\right) x^{n+n} \\
& C(x)=\left(a_{0} b_{0}\right)+\left(a_{1} b_{0}+a_{0} b_{1}\right) x^{1}+\ldots+\left(a_{n} b_{n}\right) x^{n+n}
\end{aligned}
\]

\section*{Polynomial Representation}
1. The Coefficient Representation
2. Point Value Presentation

Note
- The method for multiplying polynomials equations as above take \(\Theta\left(n^{2}\right)\) time when the polynomials are represented in coefficient form
- But \(\Theta(n)\) time when represented in point value form
- We can multiply using coefficient representation in only \(\Theta(n \log n)\) time converting between two forms
- This lecture make much use of complex numbers, the symbol \(i\) has same meaning, you know sqr(-1)

\section*{1. Coefficient Representation}
- A coefficient representation of a polynomial degree bound n is a vector of coefficients: a \(=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\)

\section*{Vectors as Column}
- In this lecture, we will treat vector as column vector

\section*{Convenient Way}
- The coefficients representation is convenient for certain operations on polynomials

Example: Computing \(A(x)\) at \(x_{0}\)
- Operation of evaluating polynomials \(A(x)\) at given point \(x_{0}\) consists of computing value of A \(\left(x_{0}\right)\).
- Evaluation takes time \(\Theta(\mathrm{n})\) using Horner's rule

Evaluation and Addition using Coefficient Form
- Operation 1: Horner's Rule
\(A\left(x_{0}\right)=a_{0}+x_{0}\left(a_{1}+x_{0}\left(a_{2}+\ldots x_{0}\left(a_{n-2}+x_{0}\left(a_{n-1}\right)\right) \ldots\right)\right.\)
- Operation 2: Addition of Two Polynomials

Similarly adding two polynomials represented by the coefficient vectors:
\(\mathrm{a}=\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}-1}\right)\) and
\(b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)\) takes \(\Theta(n)\) times
- We just produce the coefficient vector:
\(\mathrm{c}=\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}-1}\right)\) where \(\mathrm{c}_{\mathrm{j}}=\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}, \quad \forall \mathrm{j}=1, \ldots, \mathrm{n}-1\)
- Operation 3: Multiplication of Two Polynomials
- Consider multiplication of \(A(x)\) and \(B(x)\), with degree bounds \(n\), represented in coefficient form
- If we use the method described above polynomials multiplication takes time \(\mathrm{O}\left(\mathrm{n}^{2}\right)\).
- Since each coefficient in vector a must be multiplied by each coefficients in the vector \(b\).
- Operation of multiplying polynomials in coefficient form seems to be considerably more difficult than that of evaluating or adding two polynomials.
- The resulting coefficient vector c , also called the convolution of the input vectors a and b .

\section*{2. Point-value Representation}
- A point value representation of a polynomial \(A(x)\) of degree bound \(n\) is a set of \(n\) point value pairs. \(\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}\),
all of the \(x_{k}\) are distinct and \(y_{k}=A\left(x_{k}\right)\), for \(k=0,1, \ldots, n-1\).
- Polynomial has various point value representations, since any set of \(n\) distinct points \(x_{0}, x_{1}, \ldots, x_{n-1}\) can be used as a basis for the representation.

Conversion: From a Coefficient Form to Point Value Form
- Computing a point value representation for a polynomials given in coefficient form is in principle straight forward ,
- This is because select \(n\) distinct points \(x_{0}, x_{1}, \ldots, x_{n-1}\) and then evaluate \(A\left(x_{k}\right)\) for \(k=0,1, \ldots, n-1\).
- With Horner's rule, \(n\)-point evaluation takes \(q\left(n^{2}\right)\).
- This is because for \(x=x_{0}\), evaluation cost is \(q(n)\). And since there are \(n\) number of points, hence there will be \(q\left(n^{2}\right)\) cost for evaluating all of the \(n\) number of points using Horner's rule.
Clever Choose of \(x_{k}\)
- We shall see that if we choose \(x_{k}\) cleverly, this computation can be accelerated to run in \(q(n \log n)\)
- Inverse of evaluating coefficient form of polynomial from point value representation called interpolation.

Theorem: Uniqueness of an interpolating polynomial
- For any set \(\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}\) of \(n\) point-value pairs such that all \(x_{k}\) values distinct, there is a unique polynomial \(A(x)\) of degree bound \(n\) such that \(y_{k}=A\left(x_{k}\right)\) for \(k=\) \(0,1, \ldots, n-1\).
Proof
- Proof is based on existence of inverse of a matrix.
- Let us suppose that \(A(x)\) is required polynomial
\[
A(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n} x^{n}
\]
- Equation: \(\mathrm{y}_{\mathrm{k}}=\mathrm{A}\left(\mathrm{x}_{\mathrm{k}}\right)\) is equivalent to the matrix equation given in the next slide.
\[
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots . . & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots . . & x_{1}^{n-1} \\
\cdot & \cdot & \cdot & \ldots . . & \cdot \\
\cdot & \cdot & \cdot & \ldots . . & \cdot \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots . . & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\cdot \\
\cdot \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]
\]
- This matrix on the left side is called vander-monde matrix and is denoted \(V\left(x_{0}, x_{1}, \ldots . . x_{n-1}\right)\)
- The determinant of this this matrix is \(\prod_{0 \leq \leq<\leq \leq n-1}\left(x_{k}-x_{j}\right)\)
- If \(x_{k}\) are distinct then it is nonsingular. The coefficient \(a_{j}\) can be uniquely determined \(\mathrm{a}=\mathrm{V}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots . . \mathrm{x}_{\mathrm{n}-1}\right)^{-1} \mathrm{y}\)

\section*{Solving The Equation in Proof of Theorem}
- Using LU decomposition algorithms, we can solve these equation in \(O\left(n^{3}\right)\)
- A faster algorithm, in \(\Theta\left(\mathrm{n}^{2}\right)\), for n-point interpolation is based on Lagrange's formula:
\[
\sum_{k=0}^{n-1} y_{k} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
\]

\section*{Addition using Point Value Form}
- The point-value representation is quite convenient for many operations on polynomials.
- For addition:
\[
C(x)=A(x)+B(x) \Rightarrow C\left(x_{k}\right)=A\left(x_{k}\right)+B\left(x_{k}\right)
\]
- More precisely, if point value representation for \(A\)
\[
-\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\},
\]
- And for B: \(\left\{\left(x_{0}, y^{\prime}{ }_{0}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y^{\prime}{ }_{n-1}\right)\right\}\),
- Then a point-value representation for \(C\) is \(\left.\left\{\left(x_{0}, y_{0}+y^{\prime}\right)_{0}\right),\left(x_{1}, y_{1}+y_{1}^{\prime}\right), \ldots,\left(x_{n-1}, y_{n-1}+y_{n-1}^{\prime}\right)\right\}\),
- Thus, the time to add two polynomials of degree-bound n in point-value form is \(\Theta(\mathrm{n})\).

\section*{Multiplication using Point Value Form}
- Similarly, point-value representation is convenient for multiplying polynomials as well.
\(C(x)=A(x) B(x) \Rightarrow C\left(x_{k}\right)=A\left(x_{k}\right) B\left(x_{k}\right)\) for any \(x_{k}\),
- We can multiply a point value representations for \(A\) and \(B\) to obtain a point-value representation for C .
- A standard point-value representation for \(A\) and \(B\) consists of \(n\) point-value pairs for each polynomial
- Multiplying these, we must extended point-value representations for \(A\) and \(B\) of \(2 n\) pointvalue each.
- Given an extended point-value representation for \(A\), \(\left\{\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)\right\}\),
- And extended point-value representation for B ,
\[
\left.\left\{\left(x_{0}, y^{\prime}\right)_{0}\right),\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{2 n-1}, y^{\prime}{ }_{2 n-1}\right)\right\},
\]
- Then a point-value representation for \(C\) is \(\left\{\left(\mathrm{x}_{0}, \mathrm{y}_{0} \mathrm{y}^{\prime}{ }_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1} \mathrm{y}^{\prime}{ }_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-1}^{\prime}\right)\right\}\)
- Finally, we consider how to evaluate a polynomial given in point-value form at a new point.
- Apparently no simpler approach than converting polynomial to coefficient form, and then evaluating it

\section*{Discrete Fourier Transform}
- We can use any points as evaluation points, but by choosing evaluation points carefully, we can convert between representations in only \(\Theta(n \lg n)\) time.
- If we take "complex roots of unity" evaluation points, we can produce a point-value representation taking Discrete Fourier Transform of coefficient vector.
- The inverse operation, interpolation, can be performed by taking "inverse DFT" of pointvalue pairs, yielding a coefficient vector.
- We will show how FFT performs the DFT and inverse DFT operations in \(\Theta(n \lg n)\)
- Multiplication procedure is shown in the next slide

Fast multiplication of polynomials in coefficient form


\section*{Procedure: Multiplication of Polynomials in \(\mathbf{n} \operatorname{Ig} \mathbf{n}\)}

We assume n is a power of 2 ; this requirement can always be met by adding zero coefficients.
1. Double degree-bound:
- Create coefficient representations of \(A(x)\) and \(B(x)\) as degree bound \(2 n\) polynomials by adding n high-order zero coefficients to each.
2. Evaluate:
- Compute point-value representations of \(A(x)\) and \(B(x)\) of length \(2 n\) through two applications of FFT of order 2 n . These representations contain the values of the two polynomials at the (2n)th roots of unity.
3. Point wise multiply:
- Compute point-value form for polynomial \(C(x)=A(x) B(x)\) by multiplying these together point wise. This representation contains the value of \(C(x)\) at each (2n)th root of unity.
4. Interpolate:
- Create coefficient representation of \(C(x)\) through a single application of an FFT on \(2 n\) point-value pairs to compute inverse DFT.

Steps (1) and (3) take time \(\Theta(n)\), and steps (2) and (4) take time \(\Theta(n \lg n)\).

\section*{Complex Roots of Unity and Their Properties}
- We claimed that if we use complex roots of unit we can evaluate and interpolate polynomials in \(\Theta\) (nlgn) time.
- Here, we define complex roots of unity and study their properties.
- Define the DFT, and then show how the FFT computes the DFT and its inverse in just \(\Theta\) (nlgn) time.
Complex root of unity
A complex nth root of unity is a complex number \(\omega\) such that \(\omega^{n}=1\)

There are exactly \(n\) complex \(n\)th roots of unity: \(e^{2 \pi i k / n}\) for \(k=0,1, \ldots, n-1\)
\[
\mathrm{e}^{\mathrm{iu}}=\cos (\mathrm{u})+\mathrm{i} \sin (\mathrm{u}) .
\]

Values of \(\omega^{0}{ }_{8}, \omega^{1}{ }_{8}, \ldots, \omega_{8}^{7}\) in complex plane are shown where \(\omega_{8}=\mathrm{e}^{2 \pi i / 8}\) is the principal \(8^{\text {th }}\) root of unity.

Complex roots of unity form a cyclic group Complex roots of unity have interesting properties. Some of those are discussed in
 the next

\section*{Properties: Complex Roots of Unity}

\section*{Lemma 1 (cancellation lemma)}
- For any integers \(\mathrm{n} \geq 0, \mathrm{k} \geq 0\), and \(\mathrm{d}>0, \omega_{d \mathrm{dk}}^{\mathrm{dk}}=\omega^{\mathrm{k}}\).

Proof:
- the lemma follows directly from \(\omega_{n}=e^{2 \pi i / n}\), since
\[
\begin{aligned}
& -\omega^{\mathrm{dk}}{ }_{d n}=\left(\mathrm{e}^{2 \pi i / d \mathrm{n}}\right)^{\mathrm{dk}} \\
& -=\left(\mathrm{e}^{2 \pi / / n}\right)^{\mathrm{k}} \\
& -=\omega_{\mathrm{n}}^{\mathrm{k}}
\end{aligned}
\]

\section*{Corollary 1 (cancellation lemma)}
- For any even integer \(n>0\),
\(\omega^{n / 2}{ }_{n}=-1\)

Proof:
We know that \(\omega_{n}=\mathrm{e}^{2 \pi i / n}\)
Now \(\omega^{n / 2}{ }_{n}=\omega^{n / 2}{ }_{2 . n / 2}=\omega_{2}=\omega_{n}=e^{2 \pi i / 2}=\omega_{n}=e^{\pi i}=-1\)

\section*{Lemma 2 (Halving Lemma)}
- If \(n>0\) is even, then squares of \(n\) complex \(n\)th root of unity are the \(n / 2\) complex ( \(n / 2\) )th root of unity.
Proof:
- By the cancellation lemma, we have: \(\left(\omega_{n}{ }^{k}\right)^{2}=\omega^{k}{ }_{n / 2}\)
- For any nonnegative integer \(k\), note that if we square all of complex nth root of unity, then each ( \(\mathrm{n} / 2\) )th root of unity is obtained exactly twice, since
\[
\begin{aligned}
\left(\omega_{n}^{\mathrm{k}+n / 2}\right)^{2} & =\omega^{2 k+n}{ }_{n / 2} \\
& =\omega^{2 k}{ }_{n} \omega_{n}{ }^{n}=\omega^{2 k}{ }_{n}
\end{aligned}
\]

Halving Lemma is Essential in Reducing Cost
- Thus \(\omega^{k}{ }_{n}\) and \(\omega^{k+n / 2}{ }_{n / 2}\) have the same square.
- This property can also be proved using corollary,
\[
\omega_{n}^{n / 2}=\omega_{2}=-1
\]
- Since \(\omega^{n / 2}{ }_{n}=-1\) implies \(\omega^{k+n / 2}{ }_{n}=-\omega^{k}{ }_{n}\) and thus
\[
\left(\omega_{n}{ }^{k+n / 2}\right)^{2}=\left(\omega_{n}{ }^{k}\right)^{2}
\]
- As we shall see, the halving lemma is essential to our divide-and-conquer approach of converting between coefficient and point-value representation of polynomials
- Since it guarantees that the recursive sub problems are only half as large.

\section*{Lemma 3 (Summation Lemma)}

For any integer \(\mathrm{n} \geq 1\) and nonnegative integer k not divisible by n ,
\[
\sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j}=0
\]

Proof:
n-1
- \(\sum_{j=0}\left(\omega_{n}^{k}\right)^{j}=\frac{\left(\omega_{n}^{k}\right)^{n}-1}{\omega_{n}^{k}-1}\)
\[
\frac{\left(\omega_{n}^{n}\right)^{k}-1}{=\omega_{n}^{k}-1}
\]
\[
=\frac{(1)^{k}-1}{\omega_{n}^{k}-1}
\]
\[
=0
\]
- Requiring that k not be divisible by n ensures that the denominator is not 0 , since \(\omega_{\mathrm{n}}{ }^{\mathrm{k}}=1\) only when k is divisible by n .

\section*{The DFT}

Recall that we wish to evaluate a polynomial
\[
\underset{j=0}{n-1}(x)=\sum a_{j} x^{j}
\]
of degree-bound \(n\) at \(\omega_{n}{ }^{0}, \omega_{n}{ }^{1}, \omega_{n}{ }^{2}, \ldots \ldots . . \omega_{n}{ }^{n-1}\) (that is, at the \(n\) complex nth roots of unity).
- Without loss of generality, we assume that \(n\) is a power of 2 , since a given degree-bound can always be raised we can always add new high-order zero coefficients as necessary.
- We assume that \(A\) is given in coefficient from \(a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\).
- Let us define the results \(\mathrm{y}_{\mathrm{k}}\) for \(\mathrm{k}=0,1, \ldots, \mathrm{n}-1\), by
\[
\begin{aligned}
y_{k} & =A\left(\omega^{k}\right) \\
& =\sum_{j=0}^{n-1} a_{j} \omega^{k j}{ }_{n}
\end{aligned}
\]
- The vector \(\mathrm{y}=\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \ldots, y_{\mathrm{n}-1}\right)\) is Discrete Fourier Transform (DFT) of the coefficient vector \(a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\).
- We can also write \(\mathrm{y}=\mathrm{DFT}_{\mathrm{n}}(\mathrm{a})\)

\section*{The FFT}

And hence
\(A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots . .+a_{n-2} x^{n / 2-1}\)
\(A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots . .+a_{n-1} x^{n / 2-1} \quad(\mathrm{~A})\)
(*) \(A(x)=A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)\)

Thus evaluating \(\mathrm{A}(\mathrm{x})\) at \(\omega_{n}^{0}, \omega_{n}^{1}, \ldots . ., \omega_{n}^{n-1}\) reduce to
1. evaluating \(A^{[0]}(x)\) and \(A^{[1]}(x)\) at
\[
\left(\omega_{n}^{0}\right)^{2},\left(\omega_{n}^{1}\right)^{2}, \ldots \ldots,\left(\omega_{n}^{n-1}\right)^{2}
\]
2. combining the results according to \(\left(^{*}\right)\)

Let \(\left\{\begin{array}{l}y_{k}^{[0]}=A^{[0]}\left(\omega_{n / 2}^{k}\right) \\ y_{k}^{[1]}=A^{[1]}\left(\omega_{n / 2}^{k}\right)\end{array}\right.\)
\[
\begin{aligned}
y_{k}=A\left(\omega_{n}^{k}\right) & =A^{[0]}\left(\omega_{n}^{2 k}\right)+\omega_{n}^{2 k} A^{[1]}\left(\omega_{n}^{2 k+n}\right) \\
& =A^{[0]}\left(\omega_{n / 2}^{k}\right)-\omega_{n}^{k} A^{[1]}\left(\omega_{n / 2}^{k}\right) \\
& =y_{k}^{[0]}+\omega_{n}^{k} y_{k}^{[1]}
\end{aligned}
\]
\[
y_{k+n / 2}=A\left(\omega_{n}^{k+n / 2}\right)=A^{[0]}\left(\omega_{n}^{2 k+n}\right)+\omega_{n}^{k+n / 2} A^{[1]}\left(\omega_{n}^{2 k}\right)
\]
\[
=A^{[0]}\left(\omega_{n / 2}^{k}\right)+\omega_{n}^{k+n / 2} A^{[1]}\left(\omega_{n / 2}^{k}\right)
\]
\[
=y_{k}^{[0]}+\omega_{n}^{k+n / 2} y_{k}^{[1]}=y_{k}^{[0]}-\omega_{n}^{k} y_{k}^{[1]}
\]

\section*{FFT Recursive Algorithm}

\section*{Recursive-FFT(a)}
\{ \(\mathrm{n}=\) length[a]; /* n : power of 2 */
if \(\mathrm{n}=1\) the return a ;
\(\omega_{\mathrm{n}}=e^{2 \pi i / n}\);
\(\omega=1\)
\(\mathrm{a}^{[0]}=\left(a_{0}, a_{2}, \ldots ., a_{n-2}\right) ;\)
\(\mathrm{a}^{[1]}=\left(a_{1}, a_{3}, \ldots ., a_{n-1}\right) ;\)
\(\mathrm{y}^{[0]}=\) Recursive-FFT( \(\left.\mathrm{a}^{[0]}\right)\);
\(\mathrm{y}^{[1]}=\) Recursive-FFT( \(\mathrm{a}^{[1]}\) );
for \(\mathrm{k}=0\) to ( \(\mathrm{n} / 2-1\) ) do
\{
\[
\begin{aligned}
& \mathrm{y}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}^{[0]}+\omega \mathrm{y}_{\mathrm{k}}^{[1]} ; \\
& \mathrm{y}_{\mathrm{k}+\mathrm{n} / 2}=\mathrm{y}_{\mathrm{k}}^{[0]}-\omega \mathrm{y}_{\mathrm{k}}^{[1]} ;
\end{aligned}
\]
\[
\omega=\omega \omega_{\mathrm{n}} ;
\]
\}
\[
\begin{aligned}
T(n) & =2 T(n / 2)+\theta(n) \\
& =\theta(n \log \mathrm{n})
\end{aligned}
\]

\section*{Lecture No. 44}

NP Completeness

\section*{Polynomial Time Algorithms}
- On any inputs of size n , if worst-case running time of algorithm is \(\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)\), for constant k , then it is called polynomial time algorithm
- Every problem can not be solved in polynomial time
- There exists some problems which can not be solved by any computer, in any amount of time, e.g. Turing's Halting Problem
- Such problems are called un-decidable
- Some problems can be solved but not in \(\mathrm{O}\left(\mathrm{n}^{k}\right)\)

\section*{Polynomial Time (Class P)}
- These problems are solvable in polynomial time
- Problems in class \(P\) are also called tractable

\section*{Intractable Problems}
- Problems not in \(P\) are called intractable
- These problems can be solved in reasonable amount of time only for small input size

\section*{Decision problems}
- The problems which return yes or no for a given input and a question regarding the same problem

Optimization problems
- Find a solution with best value, it can be maximum or minimum. There can be more than one solutions for it
- Optimization problems can be considered as decision problems which are easier to study.
- Finding a path between \(u\) and \(v\) using fewest edges in an un-weighted directed graph is O. P. but does a path exist from \(u\) to \(v\) consisting of at most \(k\) edges is D. P.?

\section*{NP: Nondeterministic Problems}

\section*{Class NP}
- Problems which are verifiable in polynomial time.
- Whether there exists or not any polynomial time algorithm for solving such problems, we do not know.
- Can be solved by nondeterministic polynomial
- However if we are given a certificate of a solution, we could verify that certificate is correct in polynomial time
- \(\mathrm{P}=\mathrm{NP}\) ?

Nondeterministic algorithm: break in two steps
1) Nondeterministic step generate a candidate solution called a certificate
2) Deterministic (verification) Step. It takes certificate and an instance of problem as input, returns yes if certificate represents solution
- In NP problems, verification step is polynomial

\section*{Example: Hamiltonian Cycle}
- Given: a directed graph \(G=(V, E)\), determine a simple cycle that contains each vertex in V , where each vertex can only be visited once
- Certificate:
- Sequence: \(\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\rangle\)
- Generating certificates

hamiltonian
- Verification:
1. \(\left(v_{i}, v_{i+1}\right) \in E\) for \(i=1, \ldots, n-1\)
2. \(\left(v_{n}, v_{1}\right) \in E\)

It takes polynomial time

not hamiltonian

\section*{Reduction in Polynomial Time Algorithm}
- Given two problems \(A, B\), we say that \(A\) is reducible to \(B\) in polynomial time \(\left(A \leq_{p} B\right)\) if
1. There exists a function \(f\) that converts the input of \(A\) to inputs of \(B\) in polynomial time
2. \(A(x)=Y E S \Leftrightarrow B(f(x))=Y E S\)
where \(x\) is input for \(A\) and \(f(x)\) is input for \(B\)

Solving a decision problem A in polynomial time
- Use a polynomial time reduction algorithm to transform A into B
- Run a known polynomial time algorithm for \(B\)
- Use the answer for B as the answer for A


\section*{NP Complete}
- A problem A is NP-complete if
1) \(A \in N P\)
2) \(B \leq_{p} A\) for all \(B \in N P\)
- If A satisfies only property No. 2 then B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NPComplete problem

\section*{Reduction and NP Completeness}
- Let \(A\) and \(B\) are two problems, and also suppose that we are given
- No polynomial time algorithm exists for problem A
- If we have a polynomial reduction from \(A\) to \(B\)
- Then no polynomial time algorithm exists for \(B\)


\section*{Relation in Between P, NP, NPC}
- \(\mathrm{P} \subseteq \mathrm{NP}\) (Researchers Believe)
- NPC \(\subseteq\) NP (Researchers Believe)
- \(P=N P\) (or \(P \subset N P\), or \(P \neq N P\) ) ???
- \(N P C=N P\) (or NPC \(\subset N P\), or NPC \(\neq\) NP) ???
- \(P \neq N P\)
- One of the deepest, most perplexing
 open research problems in theoretical computer science since 1971

\section*{Problem Definitions: Circuit Satisfiability}

Boolean Combinational Circuit
- Boolean combinational elements wired together
- Each element takes a set of inputs and produces a set of outputs in constant number, assume binary
- Limit the number of outputs to 1
- Logic gates: NOT, AND, OR
- Satisfying assignment: a true assignment causing the output to be 1.
- A circuit is satisfiable if it has a satisfying assignment.

\section*{Two Instances: Satisfiable and Un-satisfiable}


Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment \(\left\langle x_{1}=1\right.\), \(\left.x_{2}=1, x_{3}=0\right\rangle\) to the inputs of this circuit causes the output of the circuit to be 1 . The circuit is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the circuit to be 1 . The circuit is therefore unsatisfiable.

\section*{Problem: Circuit Satisfiability}

Statement
- Given a boolean combinational circuit composed of AND, OR, and NOT, is it stisfiable? Intuitive solution
- For each possible assignment, check whether it generates 1.
- Suppose the number of inputs is \(k\), then the total possible assignments are \(2^{k}\).
- So the running time is \(\Omega\left(2^{\mathrm{k}}\right)\).
- When the size of the problem is \(\Theta(\mathrm{k})\), then the running time is not polynomial

\section*{Lemma 2: CIRCUIT-SAT is NP Hard}

Proof:
- Suppose \(X\) is any problem in NP
- Construct polynomial time algorithm \(F\) that maps every instance \(x\) in \(X\) to a circuit \(C=\) \(f(x)\) such that \(x\) is \(Y E S \Leftrightarrow C \in\) CIRCUIT-SAT (is satisfiable).
- Since \(X \in N P\), there is a polynomial time algorithm \(A\) which verifies \(X\).
- Suppose the input length is \(n\) and Let \(T(n)\) denote the worst-case running time.
- Let k be the constant such that \(\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)\) and the length of the certificate is \(\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)\).

\section*{Circuit Satisfiability Problem is NP-complete}
- Represent computation of A as a sequence of configurations, \(\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}+1}, \ldots, \mathrm{C}_{T(\mathrm{n})}\), each \(c_{i}\) can be broken into various components
- \(\mathrm{c}_{\mathrm{i}}\) is mapped to \(\mathrm{c}_{\mathrm{i}+1}\) by the combinational circuit M implementing the computer hardware.
- It is to be noted that \(A(x, y)=1\) or 0 .
- Paste together all \(T(n)\) copies of the circuit \(M\). Call this as, \(F\), the resultant algorithm
- Please see the overall structure in the next slide


Figure 34.9 The sequence of configurations produced by an algorithm \(A\) running on an input \(x\) and certificate \(y\). Each configuration represents the state of the computer for one step of the computation and, besides \(A, x\), and \(y\), includes the program counter ( PC ), auxiliary machine state, and working storage. Except for the certificate \(y\), the initial configuration \(c_{0}\) is constant. Each configuration is mapped to the next configuration by a boolean combinational circuit \(M\). The output is a distinguished bit in the working storage.
- Now it can be proved that:
1. F correctly constructs reduction, i.e., C is satisfiable if and only if there exists a certificate y , such that \(\mathrm{A}(\mathrm{x}, \mathrm{y})=1\).
2. F runs in polynomial time
(Left as an assignment)
- Construction of \(C\) takes \(O\left(\mathrm{n}^{k}\right)\) steps, a step takes polynomial time
- F takes polynomial time to construct C from x .

\section*{NP-completeness Proof Basis}

\section*{Lemma 3}
- If \(X\) is problem such that \(P^{‘} \leq_{p} X\) for some \(P^{\prime} \in N P C\), then \(X\) is NP-hard. Moreover, \(X \in\) \(N P \Rightarrow X \in N P C\).
Proof:
- Since \(P^{\prime}\) is NPC hence for all \(P^{\prime \prime}\) in NP, we have
\[
\begin{equation*}
\mathrm{P}^{\prime \prime} \leq_{p} \mathrm{P}^{\prime} \tag{1}
\end{equation*}
\]
- And \(P^{‘} \leq_{p} X\) given
- By (1) and (2)
- \(\quad \mathrm{P}^{\prime \prime} \leq_{p} \mathrm{P}^{\prime} \leq_{p} \mathrm{X} \Rightarrow \quad \mathrm{P}^{\prime \prime} \leq_{p} \mathrm{X} \quad\) hence X is NP-hard
- Now if \(X \in N P \Rightarrow X \in N P C\)

\section*{Formula Satisfiability: Notations and Definitions}
- SAT Definition
- \(n\) boolean variables: \(x_{1}, x_{2}, \ldots, x_{n}\).
- m boolean connectives: \(\wedge, \vee, \neg, \rightarrow, \leftrightarrow\), and
- Parentheses.
- A SAT \(\phi\) is satisfiable if there exists a true assignment which causes \(\phi\) to evaluate to 1 .

In Formal Language
- \(S A T=\{<\phi>: \phi\) is a satifiable boolean formula \(\}\).

\section*{SAT is NP Complete}

\section*{Theorem:}
- SAT is NP-complete.

\section*{Proof:}
- SAT belongs to NP.
- Given a satisfying assignment
- Verifying algorithm replaces each variable with its value, and evaluates formula in polynomial time.
- SAT is NP-hard
- Sufficient to show that CIRCUIT-SAT \(\leq_{p}\) SAT
- CIRCUIT-SAT \(\leq_{p}\) SAT, i.e., any instance of circuit satisfiability can be reduced in polynomial time to an instance of formula satisfiability.
- Intuitive induction:
- Look at the gate that produces the circuit output.
- Inductively express each of gate's inputs as formulas.
- Formula for circuit is obtained by writing an expression that applies gate's function to its input formulas.
- Unfortunately, this is not a polynomial time reduction
- This is because the gate whose output is fed to 2 or more inputs of other gates, cause size to grow exponentially.

\section*{Example of Reduction of CIRCUIT-SAT to SAT}
\[
\begin{aligned}
\phi=\mathrm{x}_{10} & \wedge\left(\mathrm{x}_{10} \leftrightarrow\left(\mathrm{x}_{7} \wedge \mathrm{x}_{8} \wedge \mathrm{x}_{9}\right)\right) \\
& \wedge\left(\mathrm{x}_{9} \leftrightarrow\left(\mathrm{x}_{6} \vee \mathrm{x}_{7}\right)\right) \\
& \wedge\left(\mathrm{x}_{8} \leftrightarrow\left(\mathrm{x}_{5} \vee \mathrm{x}_{6}\right)\right) \\
& \wedge\left(\mathrm{x}_{7} \leftrightarrow\left(\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \mathrm{x}_{4}\right)\right) \\
& \left.\wedge\left(\mathrm{x}_{6} \leftrightarrow \neg \mathrm{x}_{4}\right)\right) \\
& \wedge\left(\mathrm{x}_{5} \leftrightarrow\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right)\right) \\
& \wedge\left(\mathrm{x}_{4} \leftrightarrow \neg \mathrm{x}_{3}\right)
\end{aligned}
\]


Figure 34.10 Reducing circuit satisfiability to formula satisfiability. The formula produced by the reduction algorithm has a variable for each wire in the circuit.

INCORRECT REDUCTION: \(\phi=x_{10}=x_{7} \wedge x_{8} \wedge x_{9}=\left(x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right) \wedge\left(x_{6} \vee x_{7}\right)\) \(=\left(x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(\left(x_{1} \vee x_{2}\right) \vee \neg x_{4}\right) \wedge\left(\neg x_{4} \vee\left(x_{1} \wedge x_{2} \wedge X_{4}\right)\right)=\ldots\).

\section*{NPC Proof: 3 CNF Satisfiability}

Definitions:
- A literal in a boolean formula is an occurrence of a variable or its negation.
- Clause, OR of one or more literals.
- CNF (Conjunctive Nornal Form) is a boolean formula expressed as AND of clauses.
- 3-CNF is a CNF in which each clause has exactly 3 distinct literals.
(a literal and its negation are distinct)
- 3-CNF-SAT: whether a given 3-CNF is satiafiable?

\section*{3-CNF-SAT is NP Complete}

Proof:
\(3-C N F-S A T \in N P\)
- 3-CNF-SAT is NP-hard.
- SAT \(\leq_{p} 3-C N F-S A T ?\)
- Suppose \(\phi\) is any boolean formula, Construct a binary 'parse' tree, with literals as
leaves and connectives as internal nodes.
- Introduce \(y_{i}\) for output of each internal node.
- Rewrite formula to \(\phi^{6}\) : AND of root and conjunction of clauses describing operation of each node.
- In \(\phi^{\prime}\), each clause has at most three literals.
- Change each clause into conjunctive normal form as:
- Construct a true table, (at most 8 by 4)
- Write disjunctive normal form for items evaluating 0
- Using DeMorgan law to change to CNF.
- Result: \(\phi\) " in CNF but each clause has 3 or less literals.
- Change 1 or 2-literal clause into 3-literal clause as:
- Two literals:
\(\left(I_{1} \vee I_{2}\right)\), change it to \(\left(I_{1} \vee I_{2} \vee p\right) \wedge\left(I_{1} \vee I_{2} \vee \neg p\right)\).
- If a clause has one literal \(I\), change it to \((l \vee p \vee q) \wedge(l \vee p \vee \neg q) \wedge(I \vee \neg p \vee q) \wedge(l \vee \neg p \vee \neg q)\).

Binary parse tree for \(\phi=((x 1 \rightarrow x 2) \vee \neg((\neg x 1 \leftrightarrow x 3) \vee x 4)) \wedge \neg x 2\)


Figure 34.11 The tree corresponding to the formula \(\phi=\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}\).

\section*{Example of Converting a 3-literal clause to CNF format}
\begin{tabular}{ccc|c}
\(y_{1}\) & \(y_{2}\) & \(x_{2}\) & \(\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right)\) \\
\hline 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{tabular}

Figure 34.12 The truth table for the clause \(\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right)\).

\section*{CLIQUE: NPC Proof}

\section*{Definition:}
- A clique in an undirected graph \(G=(V, E)\) is a subset \(V^{\prime} \subseteq V\), each pair of \(V^{\prime}\) is connected by an edge in E , i.e., clique is a complete subgraph of G .
- Size of a clique is number of vertices in the clique.
- Optimization problem: Find maximum size clique.
- Decision problem: whether a clique of given size \(k\) exists in the graph?
- CLIQUE \(=\{<\mathrm{G}, \mathrm{k}>\) : G is a graph with a clique of size k.\(\}\)
- Intuitive solution: ???

\section*{CLIQUE is NP Complete}
- Theorem
- CLIQUE problem is NP-complete.
- Proof:
- CLIUEQE \(\in\) NP: given \(G=(\mathrm{V}, \mathrm{E})\) and a set \(\mathrm{V}^{‘} \subseteq \mathrm{~V}\) as a certificate for G . The verifying algorithm checks for each pair of \(u, v \in V^{\prime}\), whether \(\langle u, v>\in E\). time:
\(\mathrm{O}\left(\left|\mathrm{V}^{\prime}\right|^{2}|E|\right)\).
- CLIQUE is NP-hard:
- Show 3-CNF-SAT \(\leq_{p}\) CLUQUE.
- Surprise: from boolean formula to graph.
- Reduction from 3-CNF-SAT to CLUQUE.
- Suppose \(\phi=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots \wedge \mathrm{C}_{k}\) be a boolean formula in 3-CNF with k clauses.
- We construct a graph \(G=(\mathrm{V}, \mathrm{E})\) as follows:
- For each clause \(C_{r}=\left(I_{1}{ }^{r} \vee I_{2}{ }^{r} \vee I_{3}{ }^{r}\right)\), place triple of \(V_{1}{ }^{r}, v_{2}{ }^{r}, v_{3}{ }^{r}\) into \(V\)
- Put edge between vertices \(v_{i}^{r}\) and \(v_{j}^{s}\) when:
\(\checkmark \quad r \neq s\), i.e. \(v_{i}^{r}\) and \(v_{j}^{s}\) are in different triples, and
\(\checkmark\) corresponding literals are consistent, i.e, \(l_{i}^{r}\) is not negation of \(l_{j}^{s}\).
- Then \(\phi\) is satisfiable \(\Leftrightarrow G\) has a clique of size \(k\).

\section*{\(\phi=(x 1 \vee \neg x 2 \vee \neg x 3) \wedge(\neg x 1 \vee x 2 \vee x 3) \wedge(x 1 \vee x 2 \vee x 3)\) and its reduced graph \(G\)}


Figure 34.14 The graph \(G\) derived from the 3-CNF formula \(\phi=C_{1} \wedge C_{2} \wedge C_{3}\), where \(C_{1}=\) \(\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right), C_{2}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)\), and \(C_{3}=\left(x_{1} \vee x_{2} \vee x_{3}\right)\), in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has \(x_{2}=0, x_{3}=1\), and \(x_{1}\) may be either 0 or 1. This assignment satisfies \(C_{1}\) with \(\neg x_{2}\), and it satisfies \(C_{2}\) and \(C_{3}\) with \(x_{3}\), corresponding to the clique with lightly shaded vertices.

\section*{NP-completeness proof structure}


Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ultimately follow by reduction from the NP-completeness of CIRCUIT-SAT.

\section*{Lecture No. 45}

Review Lecture

\section*{Lecture No 1: Model of Computation}
- Analysis independent of the variations in machine, operating system, language, compiler, etc.
- Our model was an abstraction of a standard generic single-processor machine, called a random access machine RAM
- infinitely large random-access memory,
- instructions execute sequentially
- Every instruction, a basic operation taking unit time.
- We identified some weaknesses in our model of computation but finally we proved that with all these weaknesses, our model is not so bad because it fulfils our needs in design and analysis of algorithms

\section*{Lecture No 2, 3, 4 \& 5: Mathematical Tools}

A Sequence of Mathematical Tools
- Sets, Sequences, Cross Product, Relation, Functions, Operators over above structures Logic and Proving Techniques
- Propositional Logic, Predicate Logic
- Proofs Logical Equivalences, Contradiction, Rule of Inference

Mathematical Induction
- Simple Induction
- Strong Induction

\section*{Lecture 6, 7, 8, \& 9: Recursion}
- Fibonacci Sequences
- Recursion? Recursive Mathematical Models
- First, second, higher order Linear Homogenous Recurrences with Constant Coefficients
- General Homogenous Recurrence when
- Roots distinct, repeated, multiplicity of root is \(k\)
- many roots with different multiplicities
- Non-homogenous Recurrence, Characteristics and solution
- Recursive Tree methods
- Substitution Method
- Proof of Master Theorem

\section*{Lecture 10 \& 11: Asymptotic Notations}
- Major Factors in Algorithms Design
- Complexity Analysis
- Growth of Functions
- Asymptotic Notations
- Usefulness of Notations
- Reflexivity, Symmetry, Transitivity Relations over \(\Theta, \Omega, \mathrm{O}, \omega\) and o
- Relation between \(\Theta, \Omega\) and \(O\)
- Various Examples Explaining each concept

\section*{Lecture 12, 13 \& 14}

\section*{Brute Force Approach,}
- Checking primality
- Sorting sequence of numbers
- Knapsack problem
- Closest pair in 2-D, 3-D and n-D
- Finding maximal points in n-D

Divide and Conquer?
- Merge Sort algorithm
- Finding Maxima in 1-D, and 2-D
- Finding Closest Pair in 2-D

\section*{Lecture 15-24: Dynamic Programming}

Optimizations Problems and Dynamic Programming
1. Chain-Matrix Multiplication
2. Assembly Line Scheduling Problem
3. Generalization to \(n\)-Line Assembly Problem
4. 0-1 Knapsack Problem
5. Optimal Weight Triangulation
6. Longest Common sub-sequence problem
7. Optimal Binary Search Trees

\section*{1. Chain Matrix Multiplication}

Statement: The chain-matrix multiplication problem can be stated as below:
- Given a chain of \(\left[A_{1}, A_{2}, \ldots, A_{n}\right]\) of \(n\) matrices for \(i=1,2, \ldots, n\), matrix \(A_{i}\) has dimension \(p_{i-1} \times p_{i}\), find the order of multiplication which minimizes the number of scalar multiplications.
Objective Function
- Let \(m[i, j]=\) minimum number of multiplications needed to compute \(A_{i ., j}\), for \(1 \leq i \leq j \leq n\)
- Objective function \(=\) finding minimum number of multiplications needed to compute \(A_{1 . . n}\) i.e. to compute \(m[1, n]\)

\section*{2. Assembly-Line Scheduling}
- There are two assembly lines each with \(n\) stations
- The jth station on line \(i\) is denoted by \(S_{i, j}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line i taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the \((\mathrm{j}+1)\) st station on either line
- There is no transfer cost if it stays on the same line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer to other line after station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- After exiting the nth station on a line, it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 and 2 to minimize total time through the factory.

\section*{Assembly-Line Scheduling Problem}

- Let \(\mathrm{f}_{\mathrm{i} j} \mathrm{j}=\) fastest time from starting point station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- Objective function \(=f^{*}=\min \left(f_{1}[n]+x_{1}, f_{2}[n]+x_{2}\right)\)
- \(I^{*}=\) line no. whose \(\mathrm{n}^{\text {th }}\) station is used in fastest way.

\section*{3. n Line Assembly Scheduling Problem}
- There are \(n\) assembly lines each with \(m\) stations
- The jth station on line \(i\) is denoted by \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- The assembly time at that station is \(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\).
- An auto enters factory, goes into line i taking time \(e_{i}\)
- After going through the jth station on a line i , the auto goes on to the ( \(\mathrm{j}+1\) ) st station on either line
- It takes time \(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\) to transfer from line i , station j to line i and station \(\mathrm{j}+1\)
- After exiting the nth station on a line \(i\), it takes time \(x_{i}\) for the completed auto to exit the factory.
- Problem is to determine which stations to choose from lines 1 to n to minimize total time through the factory.

- Let \(\left.\mathrm{f}_{\mathrm{i}} \mathrm{j}\right]=\) fastest time from starting point to station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(\mathrm{I}_{\mathrm{i}}[\mathrm{j}]=\) Line no. 1 to n , for station \(\mathrm{j}-1\) used in fastest way
- \(\left.\mathrm{t}_{\mathrm{i}}^{\mathrm{j}} \mathrm{j}-1\right]=\) transfer time from station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}-1}\) to station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(a[i, j]=\) time of assembling at station \(\mathrm{S}_{\mathrm{i}, \mathrm{j}}\)
- \(f^{*}=\) is minimum time through any way
- \(I^{*}=\) line no. whose \(\mathrm{m}^{\text {th }}\) station is used in a fastest way

\section*{4. 0-1 Knapsack Problem} Assumption
- Each item must be put entirely in the knapsack or not included at all that is why the problem is called 0-1 knapsack problem
Remarks
- Because an item cannot be broken up arbitrarily, so it is its 0-1 property that makes the knapsack problem hard.
- If an item can be broken and allowed to take part of it then algorithm can be solved using greedy approach optimally

\section*{5. Optimal Weight Triangulation Problem}
- A triangulation of a convex polygon is a maximal set T of pair-wise non-crossing chords.
- It is easy to see that such a set subdivides interior of polygon into a collection of triangles, pair-wise disjoint
Problem Statement
- Given a convex polygon, determine a triangulation that minimizes sum of the perimeters of its triangles

\section*{6. Longest Common Subsequence Problem}

\section*{Statement:}
- In the longest-common-subsequence (LCS) problem, we are given two sequences
\[
\begin{aligned}
& X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \text { and } \\
& Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle
\end{aligned}
\]
- And our objective is to find a maximum-length common subsequence of X and Y .

Note:
- This LCS problem can be solved using brute force approach as well but using dynamic programming it will be solved more efficiently.

Optimal Substructure of an LCS
- If \(X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)\), and \(Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) be sequences and let us suppose that \(Z=\) \(\left(z_{1}, z_{2}, \ldots, z_{k}\right)\) be a longest common sub-sequence of \(X\) and \(Y\)
1. if \(x_{m}=y_{n}\), then \(z_{k}=x_{m}\) and \(Z_{k-1}\) is LCS of \(X_{m-1}, Y_{n-1}\).
2. If \(x_{m} \neq y_{n}\), then \(z_{k} \neq x_{m}\) implies that \(Z\) is LCS of \(X_{m-1}\) and \(Y\)
3. If \(x_{m} \neq y_{n}\) then \(z_{k} \neq y_{n}\) implies \(Z\) is LCS of \(X\) and \(Y_{n-1}\)
\(c(i, j)= \begin{cases}0 & \text { if } \mathrm{i}=0 \text { OR } \mathrm{j}=0 \\ c(i-1, j-1)+1 & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}} \\ \max (c(i-1, j), c(i, j-1)) & \text { if } \mathrm{i}, \mathrm{j}>0 \text { and } \mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}\end{cases}\)

\section*{7. Optimal Binary Search Trees}

A translator from English to, say, Urdu.
- Use a binary search tree to store all the words in our dictionary, together with their translations.
- The word "the" is much more likely to be looked up than the word "ring"
- So we would like to make the search time for the word "the" very short, possibly at the expense of increasing the search time for the word "ring."
Problem Statement:
- We are given a probability distribution that determines, for every key in the tree, the likelihood that we search for this key. Objective is to minimize expected search time of tree.

\section*{Lecture 25-26: Greedy Algorithms}

List of Greedy Algorithms discussed in this Course
1. Activity Selection Problem
2. Fractional Knapsack Problem
3. Coin Change Making Problem
4. Huffman Problem
5. Road Trip Problem

Steps Designing Greedy Algorithms
We went through the following steps in the above problem:
1. Determine the suboptimal structure of the problem.
2. Develop a recursive solution.
3. Prove that at any stage of the recursion, one of the optimal choices is the greedy choice. Thus, it is always safe to make the greedy choice.
4. Show that all but one of the sub-problems induced by having made the greedy choice are empty.
5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert this recursive algorithm to an iterative one.

\section*{Huffman Codes}
- In Huffman coding, variable length code is used
- Data considered to be a sequence of characters.
- Huffman codes are a widely used and very effective technique for compressing data
- Savings of \(20 \%\) to \(90 \%\) are typical, depending on the characteristics of the data being compressed.
- Huffman's algorithm uses table of frequencies of occurrence of characters to build up an optimal way of representing each character as a binary string.
- Objective in Huffman coding is to develop a code that represents given text as compactly as possible

\section*{Lecture 27-37: Graph Theoretic Algorithms}

Graph Theoretic Algorithms
- Graph Concepts and types of graphs
- Representation of graphs
- Searching Algorithms
- Backtracking, Branch and Bound Algorithms
- Applications of Searching Algorithm
- Minimal Spanning Tree Algorithms
- Kruskal's Algorithm
- Prim's Algorithm
- Shortest Path Algorithms

\section*{Minimum Spanning Tree}
- Given a graph \(G=(V, E)\) such that
- \(G\) is connected and undirected
- w(u, v) weight of edge ( \(u, v\) )
- T is a Minimum Spanning Tree (MST) of G if
- \(\quad T\) is acyclic subset of \(E(T \square E)\)
- It connects all the vertices of \(G\) and
- Total weight, \(\mathrm{w}(\mathrm{T})=\sum_{(u, v) \in T} w(u, v)\) is minimized.

Shortest Path Problems
- Single-source shortest path
- The Bellman-Ford Algorithm
- Shortest Path in directed acyclic graphs
- Dijkstra's Algorithm
- Single-destination shortest path
- Single-pair shortest path
- All-pairs shortest-paths
- Matrix Multiplication
- The Floyd-Warshall Algorithm
- Johnson’s Algorithm

The Bellman-Ford Algorithm
BELLMAN-FORD ( \(G, w, s\) )
1 INITIALIZE-SINGLE-SOURCE \((G, s)\)
2 for \(i \leftarrow 1\) to \(|V[G]|-1\)
do for each edge ( \(u, v\) ) \(\mathfrak{m}, E[G]\)
do RELAX \((u, v, w)\)
* (V)

4
4
5 for each edge \((u, v) \mathrm{M}, E[G]\) do if \(d[v]>d[u]+w(u, v)\)
then return FALSE
\(O(E)\)
7
8
return TRUE
Total Running Time \(=\mathrm{O}(\mathrm{V} . \mathrm{E})\)
Algorithm: Shortest Path (dag)
DAG-SHORTEST-PATHS (G, w, s)
1 topologically sort the vertices of \(G\) 来 \((V+E)\)
2 INITIALIZE-SINGLE-SOURCE \((G, s)\) 来 (V)
3 for each vertex \(u\), taken in topologically sorted order \(\quad \Theta(V)\} \Theta(E)\)
4 do for each vertex \(\vee \mathrm{M}, \operatorname{Adj}[u]\)
5 do RELAX ( \(u, v, w\) )
Each iteration of for loop takes \(\mathrm{O}(1)\)
Total Running Time \(=\mathrm{O}(\mathrm{V}+\mathrm{E})\)

\section*{Dijkstra's Algorithm}

Input Given graph \(G(V, E)\) with source s, weights w
Assumption
- Edges non-negative, \(w(u, v) \geq 0, \forall(u, v) \square E\)
- Directed, if \((u, v) \in E\) then \((v, u)\) may or may not \(\in E\)

Objective: Find shortest paths from s to every u \(\square \mathrm{V}\)
Approach
- Maintain a set S of vertices whose final shortest-path weights from s have been determined
- Repeatedly select, \(u \square \mathrm{~V}-\mathrm{S}\) with minimum shortest path estimate, add u to S , relax all edges leaving u.
- Greedy, always choose light vertex in V-S , add to S

\section*{Lecture 38-40: Number Theoretic Algorithms}
- Applications of Number Theory
- Some Important Concepts and Fats useful in number theoretic Algorithms
- Modular Arithmetic
- Finding GCD
- Euclid's Algorithm
- Extended Euclid's Algorithm
- Residues and Reduced set of Residues
- Chinese Remainder Theorem
- RSA Cryptosystem

The RSA Public Key Cryptosystem
1. Choose two distinct large random prime numbers \(p\) and \(q\) such that \(p \neq q\)
2. Compute n by \(\mathrm{n}=\mathrm{pq}, \mathrm{n}\) is used as modulus
3. Compute the totient function \(\varphi(\mathrm{n})\)
4. Choose an integer e such that \(1<e<\varphi(n)\) and \(e\) and \(\varphi(n)\) share no factors other than 1
5. Compute \(d\) to satisfy the congruence relation; \(\quad d e \equiv 1 \bmod \varphi(n)\) i.e.
\(\mathrm{de}=1+\mathrm{k} \varphi(\mathrm{n})\) for some integer k
6. Publish the pair \(P=(e, n)\) as his RSA public Key
7. Keep secret pair \(S=(\mathrm{d}, \mathrm{n})\) as his RSA secret Key

\section*{Lecture 41-44: Further Topics}
- String Matching Problem
- Naïve approach
- Rabin Karp algorithm
- String Matching using Finite automata
- Polynomials and Fast Fourier Transform
- NP Completeness

\section*{Lecture No. 45: Review Lecture}

\section*{Final -Term 2015 Exam Questions}
1. Steps of greedy algorithm design
2. Pseudo code of Huffman coding
3. Prove that circuit-sat is hard
4. Prove \(\operatorname{gcd}(a n, b n)=n . g c d(a, b)\)
5. Decrypted message (example in slides)
6. Backtracking to find maximum profit maximum weight is 8 . see example in backtracking)
7. In DFS if vi is en-queued before vj then prove that \(\mathrm{d}[\mathrm{vi}]<\mathrm{d}[\mathrm{vj}] 5\) makrs
8. Bellman ford algorithm 5marks
9. Prove that \(a \mid 0\) for all a belong to \(Z 5\) marks
10. Naïve String Matching Algorithm 5 marks
11. For all primes \(p\) and all integers \(a, b\), if \(p \mid a b\), then \(p|a \operatorname{or} p| b\) (or \(p\) divides both and b)
12. Prime algorithm 10 marks
13. CNF-SAT is NP complete 10 marks
14. If X is problem such that \(P^{\prime} \leq p X\) for some \(P^{\prime} \in N P C\), then X is NP-hard. Moreover, \(X \in N P \Rightarrow X \in N P C 15\) marks
15. Write down pseudo code of longest common subsequence?
16. Write down pseudo code of Naive String Matching problem?
17. Write down pseudo code of optimal BST?
18. Write down pseudo code of transition function?
19. Write down prim's algorithm?
20. Write down Shortest Path (dag) algorithm?
21. If \(a>b \geq 1\) and the invocation EUCLID \((a, b)\) takes \(k \geq 1\) recursive calls, then \(a \geq\) \(F k+2\) and \(b \geq F k+1\) ?
22. If \(p\) is prime, \(a\) is positive integer not divisible by \(p, a p-1=1 \bmod p\) OR ap \(=a\) \(\bmod p\)
23. If \(\operatorname{gcd}(a, m)=1\) and \(m>1\), then a has a unique inverse \(a^{\prime}\) (modulo \(m\) ).
24. If \(X\) is problem such that \(P^{\prime} \leq p X\) for some \(P^{\prime} \in N P C\), then \(X\) is NP-hard. Moreover, \(X \in N P \rightarrow X \in N P C\).
25. Why we use dynamic programming? Give limitations..... 5 marks
26. Pseudo code for Johnson's algorithm.... 5 marks
27. How to print path in BFS algorithm... 5 marks.
28. Prove that for a problem \(X\) and \(P^{\prime}\) such that \(P^{\prime}<p\) NPC , \(X\) is NP hard. ...
29. Extend Shortest Path algorithm. 5 marks.```

