





LMS handling service are available

**PAID** 

Assignment, QUIZ, GDBZ and GRAND QUIZ SERVICE are available 0304-1659294

JUNAID MALIK 0304-1659294 Bc190202640@vu.edu.pk

# AL-JUNAID INSTITUTE GROUP CS502 Grand Quiz

| 1. | The sequence of merge sort algorithm is:                              |
|----|-----------------------------------------------------------------------|
|    | a. Divide Combine-Conquer                                             |
|    | b. Conquer-Divide-Combine                                             |
|    | c. Divide-Conquer-Combine Page 27                                     |
|    | d. Combine-Divide-Conquer                                             |
| 2. | ·                                                                     |
|    | be put in the bag or not. Fractional items are not allowed.           |
|    | a. 0                                                                  |
|    | b. 1                                                                  |
|    | c. 0/1 Page 91                                                        |
|    | d. Fractional                                                         |
| 3. | In Selection algorithm, we assume pivot selection takes theta         |
|    | running time.                                                         |
|    | a. n Page - 36                                                        |
|    | b. n2                                                                 |
|    | c. n3                                                                 |
|    | d. log (n)                                                            |
| 4. |                                                                       |
|    | maximum elements removed from top                                     |
|    | a. We call merge Sort Algorithm                                       |
|    | b. it becomes Order n2 Algorithm                                      |
|    | c. Divide and Conquer strategy helps us                               |
|    | d. We are left with a hole Page – 41                                  |
| 5. | If matrix A of dimension p x q is multiply with matrix B of dimension |
|    | q x r, then each entry in resultant matrix takes time.                |
|    | a. O (q) Page - 84                                                    |
|    | b. O (1)                                                              |
|    |                                                                       |
|    |                                                                       |

c. O (p x q)

d. O (q x r)



| A           | L-JUNAID INSTITUTE GROU                                                          |
|-------------|----------------------------------------------------------------------------------|
| <del></del> | is a method of solving a problem in which we check all                           |
|             | possible solutions to the problem to find the solution we need.                  |
|             | a. Plane-Sweep Algorithm                                                         |
|             | b. Sorting Algorithm                                                             |
|             | c. Brute-Force Algorithm google                                                  |
|             | d. Greedy approach                                                               |
| 7.          | The worst case running time of Quick sort algorithm                              |
|             | a. Cannot be quadratic                                                           |
|             | b. Is quadratic google QuickSort and its Analysis (codesdope.com) &              |
|             | http://personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/quickSort.htm |
|             | c. Is always Exponential                                                         |
|             | d. Is linear                                                                     |
| 8.          | In max heap (for Heap Sort algorithm), when every time maximum                   |
|             | element is removed from top we replace it with leaf in the tree.                 |
|             | a. second last                                                                   |
|             | b. Last Page -41                                                                 |
|             | c. First                                                                         |
|             | d. Any                                                                           |
| 9.          | Quick sort algorithm was developed by -                                          |
|             | a. AlferdAho                                                                     |
|             | b. Sedgewick                                                                     |
|             | c. John Vincent Atanasoff                                                        |
|             | d. Tony Hoare – Google wikipedia                                                 |
| 10          | . If Matrix-A has dimensions "3x2" and Matrix-B has dimensions                   |
|             | "2x3", then multiplication of Matrix-A and Matrix-B will result a                |
|             | new Matrix-C having dimensions.                                                  |

http://www.calcul.com/show/calculator/matrix-multiplication

a. 3x2b. 2x3c. 2x2d. 3x3

11. For comparison-based sorting algorithms, it is possible to sort more efficiently than Omega n log(n) time.

a. Always

b. Not

c. Sometimes

P-54

| d. Sometimes not                                                      |
|-----------------------------------------------------------------------|
| 12. Dynamic Programming approach is usually useful in solving         |
| optimization problems.                                                |
| a. True                                                               |
| b. False                                                              |
| 13. In Sorting the key value or attribute from an ordered domain.     |
| a. Must be page 39                                                    |
| b. Not always                                                         |
| c. May be                                                             |
| d. Occasionally                                                       |
| 14. Result of asymptotical analysis of n(n -3) and 4n*n is that       |
| a. n(n-1) is asymptotically Less                                      |
| b. n(n-1) is asymptotically Greater                                   |
| c. Both are asymptotically Not equivalent                             |
| d. Both are asymptotically Equivalent page 23 (4n*n= 4n²)             |
| 15. Floor and ceiling are to calculate while analyzing                |
| algorithms a. Very easy                                               |
| b. Usually considered difficult P-31                                  |
| c. 3rd Option is missing                                              |
| d. 4th Option is missing                                              |
| 16 of reference is an important fact of current processor technology. |
| a. Defining<br>b. Assigning                                           |
| c. Formality                                                          |
| d. Locality P-8                                                       |
| 17. In max-heap, largest element is stored at root node. Where is     |
| the smallest element stored?                                          |
| a. Right Node                                                         |
| b. Leaf Node                                                          |
| c. Middle Node                                                        |
| J                                                                     |

d. Left Node



| AL-JUNAID INSTITUTE GROUD                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 18. In average-case time analysis of Quick sort algorithm, the most balanced case for partition is when we divide the list of elements into |  |  |  |
| a. Equal no. of pieces as of input elements                                                                                                 |  |  |  |
| b. Single piece exactly                                                                                                                     |  |  |  |
| c. Two nearly equal pieces                                                                                                                  |  |  |  |
| d. Three nearly equal pieces                                                                                                                |  |  |  |
| 19. Which of the following is calculated with Big O notation?                                                                               |  |  |  |
| a. Medium bounds                                                                                                                            |  |  |  |
| b. Upper bounds Page - 25                                                                                                                   |  |  |  |
| c. Lower bounds                                                                                                                             |  |  |  |
| d. Both upper and lower bounds                                                                                                              |  |  |  |
| 20. Edit distance algorithm based onstrategy                                                                                                |  |  |  |
| a. Greedy                                                                                                                                   |  |  |  |
| b. Dynamic Programming Page - 81                                                                                                            |  |  |  |
| c. Divide and Conquer                                                                                                                       |  |  |  |
| d. Searching                                                                                                                                |  |  |  |
| 21. In Heapsort Algorithm, total time taken by heapify procedure is                                                                         |  |  |  |
| a. O (log n) Page-43                                                                                                                        |  |  |  |
| b. O (log2 n)                                                                                                                               |  |  |  |
| c. O (n log n)                                                                                                                              |  |  |  |
| d. O (n2 log n)                                                                                                                             |  |  |  |
| 22. Al-Khwarizmi was a/an                                                                                                                   |  |  |  |
| a. Artist                                                                                                                                   |  |  |  |
| b. Mathematician P-7                                                                                                                        |  |  |  |
| c. Astronomer                                                                                                                               |  |  |  |
| d. Khalifah                                                                                                                                 |  |  |  |
| 23. When matrix A of 5x3is multiply with metric B of 3x4 then the                                                                           |  |  |  |
| number of multiplication required is: Not found exactly                                                                                     |  |  |  |
| a. 15                                                                                                                                       |  |  |  |

b. 12

c. 36

d. 60 Not Found exactly but as per formula at page 84,



| 24. Pseudo code of algorithms are to be read by                                   |            |
|-----------------------------------------------------------------------------------|------------|
| a. People Page -12                                                                |            |
| b. RAM                                                                            |            |
| c. Computer                                                                       |            |
| d. Compiler                                                                       |            |
| 25. The sieve technique is a special case, where the number of sub-problems is J  | ust        |
|                                                                                   |            |
| a. 1 P-34                                                                         |            |
| b. 2                                                                              |            |
| c. 3                                                                              |            |
| d. 4                                                                              |            |
| 26. When a recursive algorithm revisits the same problem over and over            |            |
| again, we say that the optimization problem has sub-problems                      | <b>5</b> . |
| a. Overlapping - Google Search                                                    |            |
| b. Over costing                                                                   |            |
| c. Optimized                                                                      |            |
| d. Three                                                                          |            |
| 27. Sieve technique is very important special case of Divide-and-Conquer strategy | <b>/</b> . |
| a. True                                                                           |            |
| b. False                                                                          |            |
| 28. In order to say anything meaningful about our algorithms, it will             |            |
| be important for us to settle on a                                                |            |
| a. Java Program                                                                   |            |
| b. C++ Program                                                                    |            |
| c. Pseudo program                                                                 |            |
| d. Mathematical model of computation P-10                                         |            |
| 29. Merge sort is based on                                                        |            |
| a. Brute-force                                                                    |            |
| b. Plan-sweep                                                                     |            |
| c. Axis-sweep                                                                     |            |
|                                                                                   |            |

d. Divide and Conquer

P-27



| 30. What time does Merge Sort algorithm take in order to sort an                       |
|----------------------------------------------------------------------------------------|
| array of 'n' numbers?                                                                  |
| a. (n)                                                                                 |
| b. (log n)                                                                             |
| c. (n^2)                                                                               |
|                                                                                        |
| d. (n log n) Google Search 31. In Heap Sort                                            |
| 31. algorithm, the first step is to                                                    |
| a. Call Build-Heap procedure Page - 46                                                 |
| b. Sort the array in descending order                                                  |
| c. Call Heapify procedure                                                              |
| d. Find the number of input elements                                                   |
| 32. The definition of theta-notation relies on proving asymptotic bound.               |
| a. One                                                                                 |
| b. Lower                                                                               |
| c. Upper                                                                               |
| d. Both lower & upper Page - 25                                                        |
| 33. In merge sort algorithm, to merge two lists of size n/2 to a list of size n, takes |
| time.                                                                                  |
| a. Theta (n) Page - 32                                                                 |
| b. Theta log(n)                                                                        |
| c. Theta log2(n)                                                                       |
| d. Theta n log(n)                                                                      |
| 34. We can make recursive calls in Fibonacci Sequence.                                 |
| a. Infinite                                                                            |
| b. Finite google                                                                       |
| c. Only one                                                                            |
| d. Zero                                                                                |
| 35. Following is NOT the application of Edit Distance problem.                         |
| a. Speech recognition                                                                  |
|                                                                                        |

**b.** Spelling Correction

c. Ascending Sort

Page - 76

d. Computational Molecular Biology



| 36. In plane sweep approach, a vertical  | -                             |
|------------------------------------------|-------------------------------|
| plane and structure is used for hold     | ding the maximal points lying |
| to the left of the sweep line.           |                               |
| a. Array                                 |                               |
| b. Queue                                 |                               |
| c. Stack                                 | Page - 18                     |
| d. Tree                                  |                               |
| 37. When a heapify procedure is applied  |                               |
| heap, then at each level, the compar     | ison performed takes time:    |
| a. It will take (log n).                 |                               |
| b. It can not be predicted               |                               |
| c. It will take O (1).                   | Page - 43                     |
| d. Time will vary according to th        | e nature of input data.       |
| 38 time is the maximum running           | time over all legal inputs.   |
| a. Worst-case                            | Page - 13                     |
| b. Average-case                          |                               |
| c. Best-case                             |                               |
| d. Good-case                             |                               |
| 39. Efficient algorithm requires less co | mputational                   |
| a. Memory                                |                               |
| b. Running Time                          |                               |
| c. Memory and Running Time               | Page - 9                      |
| d. Energy                                |                               |
| 40. For average-case time analysis of 0  | Quick sort algorithm, Pivot   |
| selection is on average basis from       |                               |
| a. half of the input values              |                               |
| b. all possible random values            | Page - 50                     |
| c. Pivot is input separately             |                               |
| d. values greater than 5                 |                               |
| 41. Selection algorithm takes theta      |                               |
|                                          |                               |
|                                          |                               |

a. (n2)

b. (n) Page - 37

c. log(n)

d. n log(n)

| 42. Recurrence can be described in terms of a tree. |                                       |  |
|-----------------------------------------------------|---------------------------------------|--|
| a. Yes                                              | Page - 31                             |  |
| b. No                                               |                                       |  |
| 43. Time complexity of Dynamic Program              | nming based algorithm for             |  |
| computing the minimum cost of Chai                  | n Matrix Multiplication is            |  |
| a. Log n                                            |                                       |  |
| b. n                                                |                                       |  |
| c. n^2 (n square)                                   |                                       |  |
| d. n^3 (n cube)                                     | Page -90                              |  |
| 44. The Iteration method is used for                |                                       |  |
| a. Comparing sorting algorithms                     |                                       |  |
| b. Solving Recurrence relations                     | Page 31                               |  |
| c. Merging elements in Merge s                      |                                       |  |
| d. Dividing elements in Merge's                     |                                       |  |
| 45. In 3-Dimensional space, a point P l             | nas coordinate(s).                    |  |
| a. (X, Y)                                           |                                       |  |
| b. (X, 0)                                           |                                       |  |
| c. (0, Y)                                           |                                       |  |
| d. (X,Y, Z)                                         | hand adding the second                |  |
| 46. Chain matrix multiplication problem can         |                                       |  |
| a. Dynamic programming                              | Page - 85                             |  |
| b. Greedy                                           |                                       |  |
| c. Divide and conquer                               |                                       |  |
| d. Sorting 47. Merge sort have running timerunning  | time of Hoan sort. Not found exactly  |  |
| a. Greater than                                     | time of fleap soft. Not found exactly |  |
|                                                     | Coords                                |  |
| c. Equal to                                         | <b>Google</b>                         |  |
| d. Different than                                   |                                       |  |
| d. Dilielent tildli                                 |                                       |  |

48. Median is not useful measure of central tendency of given input set especially when the distribution of values is highly skewed.

a. True



| 49. We do not need to mathematically prove that for comparison-                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| based sorting algorithms always takes Omega nlog (n) time.                                                                                                |
| a. True Google & VU Tech (pg 46 not very clear)                                                                                                           |
| b. False                                                                                                                                                  |
| 50. The Omega-notation allows us to state only the asymptoticbounds                                                                                       |
| a. Middle                                                                                                                                                 |
| b. Lower Page 25                                                                                                                                          |
| c. Upper                                                                                                                                                  |
| d. Both lower & upper                                                                                                                                     |
| 51. Both lower & upperSorting can be in                                                                                                                   |
| a. Increasing order only                                                                                                                                  |
| b. Decreasing order only                                                                                                                                  |
| c. Both Increasing and Decreasing order GOOGLR Search                                                                                                     |
| d. Random order                                                                                                                                           |
| 52. Radix sort performs sorting the numbers digit (s) at a time.                                                                                          |
| a. One Page - 71                                                                                                                                          |
| b. Two                                                                                                                                                    |
| c. Three                                                                                                                                                  |
| d. All                                                                                                                                                    |
| 53. Quicksort is a/an and sorting algorithm.                                                                                                              |
| a. Not in place, not stable one                                                                                                                           |
| b. In place , not stable one Page - 54                                                                                                                    |
| c. In place , stable one                                                                                                                                  |
| d Not in place, stable one                                                                                                                                |
| d. Not in place , stable one                                                                                                                              |
| 54. Consider three matrices X,Y,Z of dimensions 1x2, 2x3,3x4                                                                                              |
|                                                                                                                                                           |
| 54. Consider three matrices X,Y,Z of dimensions 1x2, 2x3,3x4                                                                                              |
| 54. Consider three matrices X,Y,Z of dimensions 1x2, 2x3,3x4 respectively. The number of multiplications of (XY) Z is:                                    |
| 54. Consider three matrices X,Y,Z of dimensions 1x2, 2x3,3x4 respectively. The number of multiplications of (XY) Z is:  a. 18  As per lecture slides      |
| 54. Consider three matrices X,Y,Z of dimensions 1x2, 2x3,3x4 respectively. The number of multiplications of (XY) Z is:  a. 18 As per lecture slides b. 32 |

55. In Fibonacci Sequence, unnecessary repetitions do not exist at all.

a. True

b. False Page – 74



| 56. It is not a Fibonacci sequence . 1,1,1,2,3,5,8,13,21,34,55,                                         |
|---------------------------------------------------------------------------------------------------------|
| a. True Page - 73                                                                                       |
| b. False                                                                                                |
| 57. Heap sort is a/ an and sorting algorithem.                                                          |
| a. Not in place, not stable one                                                                         |
| b. In place , not stable one Page - 54                                                                  |
| c. In place , stable one                                                                                |
| d. Not in place , stable one                                                                            |
| 58. Identify the True Statement                                                                         |
| <ul> <li>a. The knapsack problem does not belong to the domain of<br/>optimization problems.</li> </ul> |
| b. The knapsack problem belongs to the domain of optimization                                           |
| problems. Page - 91                                                                                     |
| c. The Knapsack problem cannot be solved by                                                             |
| using dynamic programming                                                                               |
| d. The knapsack problem is optimally solved by using                                                    |
| brute force algorithm.                                                                                  |
| 59. In Dynamic Programming, our approach is to                                                          |
| a. Develop the solution in a top-down fashion                                                           |
| b. Express the problem non-recursively                                                                  |
| c. Build the solution in a bottom-up fashion Page - 75                                                  |
| d. Input several sub-problems simultaneously                                                            |
| 60. Counting sort is suitable to sort the elements in range 1 to K;                                     |
| a. K is large                                                                                           |
| b. K is small Page - 57                                                                                 |
| c. K may be large or small                                                                              |
| d. None                                                                                                 |
| 61. We can multiply two matrices A and B only when they are                                             |
| compatible which means                                                                                  |
| a. Number of columns in A must be equal to number of rows in B                                          |
| it seems Correct as per page 84                                                                         |

b. Number of rows and columns do not matter



| <b>AL-JUNAID</b> | INSTITUTE | <b>GROUP</b> |
|------------------|-----------|--------------|
|------------------|-----------|--------------|

|        | c. Number of columns in A must be        | equal to number of columns in B  |
|--------|------------------------------------------|----------------------------------|
|        | d. Number of rows in A must be           | equal to number of rows in B     |
| 62. Ma | atrix multiplication is a (n)            | operation.                       |
|        | a. Commutative                           |                                  |
|        | b. Associative                           | Page 85                          |
|        | c. Neither commutative nor asso          | ciative                          |
|        | d. Commutative but not associat          | ive                              |
| 63. In | Dynamic Programming approach,            | solution is modified / changed   |
|        | a. Always once                           |                                  |
|        | b. At each stage                         | oogle and wikipedia              |
|        | c. Only for specific problems            |                                  |
|        | d. At 4 <sup>th</sup> stage only         |                                  |
| 64. In | Knapsack problem, the goal is to put ite | ems in the Knapsack such that    |
| the    | e value of the items is subje            | ect to weight limit of knapsack. |
|        | a. Minimized                             | <b>Y Y</b>                       |
|        | b. Decreased                             |                                  |
|        | c. Maximized                             | Page - 91                        |
|        | d. None of the given options             |                                  |
| 65. Ar | າ in-place sorting algorithm is one      | that uses                        |
| ad     | lditional array for storage.             |                                  |
|        | a. Always                                |                                  |
|        | b. Permanently                           |                                  |
|        | c. Does not                              | Page - 54                        |
|        | d. Sometime                              |                                  |
| 66. M  | emoization is a part of Dynamic Pi       | rogramming Strategy.             |
|        | a. True                                  | Page - 74                        |
|        | b. False                                 |                                  |
|        | natrix A of dimension 2x4 is multiply wi |                                  |
| th     | e dimension of resultant matrix is       | Not found exactly                |
|        | a. 2x4                                   |                                  |
|        |                                          |                                  |

b. 4x3

c. 3x4

d. 2x3 It seems correct as per second last Para of page 84



| THE COLUMN THE STREET                                                                                      |
|------------------------------------------------------------------------------------------------------------|
| 68. In Dynamic Programming approach, we do not store the solution                                          |
| to each sub-problem in case if it reappears.                                                               |
| a. True                                                                                                    |
| b. False Page - 75                                                                                         |
| 69. Dynamic Programming is a problem-solving approach in which                                             |
| a. Problem is solved in Zero time                                                                          |
| b. Solution is developed only at final stage                                                               |
| c. Both are correct                                                                                        |
| d. Both are incorrect google                                                                               |
| 70. In Fibonacci sequence, each term is calculated by previous terms.                                      |
| a. Subtracting, Two                                                                                        |
| b. Adding, Three                                                                                           |
| c. Adding, Two Page - 73                                                                                   |
| d. Multiplying, Two                                                                                        |
| 71. Selection sort is not an in-place sorting algorithm.                                                   |
| a. True Page - 54                                                                                          |
| b. False                                                                                                   |
| 72. If there are $\theta$ (n <sup>2</sup> ) entries in edit distance matrix then the total running time is |
| a. θ (n)                                                                                                   |
| b. θ (1)                                                                                                   |
| c. θ (n <sup>2</sup> ) Page – 84                                                                           |
| d. θ (n logn)                                                                                              |
| 73. The only way to convert a string of i characters into the empty                                        |
| string is with i deletions, represented as                                                                 |
| a. E(0.j) =j                                                                                               |
| b. E(i.j) = 1                                                                                              |
| c. E(0.i) = j                                                                                              |
| d. E (i.0)=I Page - 78                                                                                     |
| 74. Dynamic programming formulation of the matrix chain multiplication                                     |
| problem will store the solutions of each sub problem in an                                                 |

a. Array

b. Table Page - 86

c. Variable

d. class



| 75. We can use the optimal substructure property to devise a       |
|--------------------------------------------------------------------|
| formulation of the edit distance problem.                          |
| a. Selective                                                       |
| b. Optimum                                                         |
| c. Iterative                                                       |
| d. Recursive Page - 78                                             |
| 76. Sorting is performed on the basis of                           |
| a. Computational resources                                         |
| b. Asymptotic notation                                             |
| c. Summation                                                       |
| d. Some key value of attribute page- 39                            |
| 77. In Heap Sort algorithm, we call Build-heap procedure           |
| a. Only once page 46                                               |
| b. Twice                                                           |
| c. Thrice                                                          |
| d. As many times as we need                                        |
| 78. Radix sort is not a non-comparative integer sorting algorithm. |
| a. True Google Search                                              |
| b. False                                                           |
| 79. In the statement "output P[1].x, P[1].y", the number of times  |
| elements of P are accessed is                                      |
| a. 1                                                               |
| b. 2 page 14                                                       |
| c. 3                                                               |
| d. 4                                                               |
| 80. The main purpose of mathematical analysis is measuring the     |
| required by the algorithm.                                         |
| a. Space                                                           |
| b. Execution time P-13                                             |
| c. Inputs & outputs                                                |
|                                                                    |

d. Execution time and memory



| 81.                                                         | provides us more accurate result when input values a      |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
|                                                             | not closer with each other                                |  |  |  |  |  |
|                                                             | a. Average                                                |  |  |  |  |  |
|                                                             | b. Median P-34                                            |  |  |  |  |  |
|                                                             | c. Mode                                                   |  |  |  |  |  |
|                                                             | d. Mean                                                   |  |  |  |  |  |
| 82.                                                         | The process of ends when you are left with such tiny      |  |  |  |  |  |
|                                                             | pieces remaining that it is trivial to solve them.        |  |  |  |  |  |
|                                                             | a. Brute-force                                            |  |  |  |  |  |
|                                                             | b. Plan-sweep                                             |  |  |  |  |  |
|                                                             | c. Divide and Conquer P-27                                |  |  |  |  |  |
|                                                             | d. Axis-sweep                                             |  |  |  |  |  |
| 83.                                                         | overcomes the limitations of by                           |  |  |  |  |  |
|                                                             | working as per positional notations of numbers.           |  |  |  |  |  |
|                                                             | a. Counting sort, Radix sort                              |  |  |  |  |  |
|                                                             | b. Radix sort, Counting sort P-71                         |  |  |  |  |  |
| 84. Memorization is a part of Dynamic Programming strategy. |                                                           |  |  |  |  |  |
|                                                             | a. True P-74                                              |  |  |  |  |  |
|                                                             | b. False                                                  |  |  |  |  |  |
| 85.                                                         | Rank of an element can be defined as                      |  |  |  |  |  |
|                                                             | a. One minus the number of elements that are smaller      |  |  |  |  |  |
| b. Two plus the number of elements that are greater         |                                                           |  |  |  |  |  |
|                                                             | c. One plus the number of elements that are smaller P-34  |  |  |  |  |  |
|                                                             | d. Two minus the number of elements that are smaller      |  |  |  |  |  |
| 86.                                                         | If the time complexity of an algorithm is given by O (1), |  |  |  |  |  |
|                                                             | then its time complexity would be                         |  |  |  |  |  |
|                                                             | a. Polynomial                                             |  |  |  |  |  |
|                                                             | b. Exponential                                            |  |  |  |  |  |
|                                                             | c. Constant - Wikipedia                                   |  |  |  |  |  |
|                                                             | d. Average                                                |  |  |  |  |  |
|                                                             |                                                           |  |  |  |  |  |

87. Quick sort is a recursive algorithm.

a. True Wikipedia ; Google



| 88. The asymptotic growth of n(n+1)/2 is:                                                                                                                 |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>a. O(n<sup>2</sup>) As the n<sup>2</sup> term has the largest contribution, the Big-O complexity is O(n<sup>2</sup>)</li> <li>b. O(n)</li> </ul> |  |  |  |  |  |
| c. O(n+2)                                                                                                                                                 |  |  |  |  |  |
| d. O(n log n)                                                                                                                                             |  |  |  |  |  |
| 89. Approach of solving geometric problems by sweeping a line                                                                                             |  |  |  |  |  |
| across the plane is called sweep.                                                                                                                         |  |  |  |  |  |
| a. Line                                                                                                                                                   |  |  |  |  |  |
| b. Plane Page 18                                                                                                                                          |  |  |  |  |  |
| c. Cube                                                                                                                                                   |  |  |  |  |  |
| d. Box                                                                                                                                                    |  |  |  |  |  |
| 90. As per algorithm of Dynamic Programing, we need to store                                                                                              |  |  |  |  |  |
| a. First sub-problem only                                                                                                                                 |  |  |  |  |  |
| b. Best solution only                                                                                                                                     |  |  |  |  |  |
| c. Intermediate sub-problems Pg:75                                                                                                                        |  |  |  |  |  |
| d. Final solution only                                                                                                                                    |  |  |  |  |  |
| 91. In Sieve technique, we solve the problem                                                                                                              |  |  |  |  |  |
| a. In recursive manner Pg:34                                                                                                                              |  |  |  |  |  |
| b. Non recursively                                                                                                                                        |  |  |  |  |  |
| c. Using Merge Sort algorithm                                                                                                                             |  |  |  |  |  |
| d. Using Brute force technique                                                                                                                            |  |  |  |  |  |
| 92. One of the limitation in 0/1 knapsack is that an item can either be                                                                                   |  |  |  |  |  |
| in the bag or not.                                                                                                                                        |  |  |  |  |  |
| a. Use                                                                                                                                                    |  |  |  |  |  |
| b. Put Pg:91                                                                                                                                              |  |  |  |  |  |
| c. Move                                                                                                                                                   |  |  |  |  |  |
| d. Store                                                                                                                                                  |  |  |  |  |  |
| 93. Which one is not passed as parameter in Quick sort algorithm?                                                                                         |  |  |  |  |  |
| a. End of the array                                                                                                                                       |  |  |  |  |  |
| b. Middle of the array                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                           |  |  |  |  |  |

c. Array (containing input elements)

Google

d. Start of the array



| 94. In the analysis of Selection algorithm, we get the convergent     |  |  |  |  |
|-----------------------------------------------------------------------|--|--|--|--|
| a. Harmonic                                                           |  |  |  |  |
| b. Linear                                                             |  |  |  |  |
| c. Arithmetic                                                         |  |  |  |  |
| d. Geometric Pg:37                                                    |  |  |  |  |
| 95. A Random Access Machine (RAM)is an idealized machine              |  |  |  |  |
| withrandom access memory.                                             |  |  |  |  |
| a. Infinite large Pg:10                                               |  |  |  |  |
| b. 512 MB                                                             |  |  |  |  |
| c. 256 MB                                                             |  |  |  |  |
| d. 2 GBs                                                              |  |  |  |  |
| 96. While analyzing Selection algorithm, we make a number of          |  |  |  |  |
| passes, in fact it could be as many as                                |  |  |  |  |
| a. n(n+1)                                                             |  |  |  |  |
| b. log(n) Pg:37                                                       |  |  |  |  |
| c. n/3                                                                |  |  |  |  |
| d. n/4                                                                |  |  |  |  |
| 97. In Random Access Machine (RAM), instructions are executed in      |  |  |  |  |
| a. Parallel                                                           |  |  |  |  |
| b. Batch                                                              |  |  |  |  |
| c. One by One Pg:10                                                   |  |  |  |  |
| d. Multiple times                                                     |  |  |  |  |
| 98. In selection problem, the rank of an element will be its position |  |  |  |  |
| a. First                                                              |  |  |  |  |
| b. final Pg:34                                                        |  |  |  |  |
| c. Second last                                                        |  |  |  |  |
| d. Last                                                               |  |  |  |  |
| 99. The worst-case running time of Merge sort is in order to          |  |  |  |  |
| sort an array of n elements.                                          |  |  |  |  |
| a. O(log n)                                                           |  |  |  |  |
|                                                                       |  |  |  |  |

b. O(n)

c. O(n log n) page 40 and google

d. O(n)



|      | 100. f(n) and g(n) are asymptotically equivalent. This means |                              |  |  |  |
|------|--------------------------------------------------------------|------------------------------|--|--|--|
| tł   | that they have essentially the same                          | <u>_</u> .                   |  |  |  |
|      | a. Results                                                   |                              |  |  |  |
|      | b. Variables                                                 |                              |  |  |  |
|      | c. Size                                                      |                              |  |  |  |
|      | d. Growth rates                                              | :23                          |  |  |  |
| 101. | . An algorithm is a mathematical entity. Which i             | s independent of             |  |  |  |
|      | a. Programming language                                      |                              |  |  |  |
|      | b. Machine and Programming language                          |                              |  |  |  |
|      | c. Compiler and Programming languag                          | le                           |  |  |  |
|      | d. Programming language Compiler an                          | d Machine P:07               |  |  |  |
| 102. | 2. In Quick sort algorithm, Pivots form                      |                              |  |  |  |
|      | a. Stack                                                     |                              |  |  |  |
|      | b. Queue                                                     |                              |  |  |  |
|      | c. Binary Search Tree                                        | P:49                         |  |  |  |
|      | d. Graph                                                     |                              |  |  |  |
| 103. |                                                              | s within range 1 to P. where |  |  |  |
|      | a. P is large                                                |                              |  |  |  |
|      | b. P is small                                                | P-57                         |  |  |  |
|      | c. P is very large                                           |                              |  |  |  |
|      | d. P is undetermined                                         |                              |  |  |  |
|      | I. In asymptotical analysis of n'(5 2)-3, as                 | _                            |  |  |  |
| tł   | the dominant (fastest growing) term is some constant times   |                              |  |  |  |
|      | a. n_1                                                       |                              |  |  |  |
|      | b. n                                                         |                              |  |  |  |
|      | c. n+1                                                       |                              |  |  |  |
|      | d. n*n P-23                                                  |                              |  |  |  |
| 105. |                                                              |                              |  |  |  |
|      | knapsack. a. Lighter                                         | _                            |  |  |  |
|      | b. Fractional P                                              | <mark>-91</mark>             |  |  |  |
|      |                                                              |                              |  |  |  |

c. Whole

d. Weighty



| 106. Fibonacci Sequence was named on, a famous                 |
|----------------------------------------------------------------|
| mathematician in 12th Century.                                 |
| a. Fred Brooks                                                 |
| b. Grady Booch                                                 |
| c. Leonardo Pisano P-73                                        |
| d. Edgar F. Codd                                               |
| 107. In Heap Sort algorithm, we build for ascending sort.      |
| a. Max heap P-41                                               |
| b. Min heap                                                    |
| 108. Bubble sort is not an in-place sorting algorithm.         |
| a. True                                                        |
| b. False                                                       |
| 109. In partition algorithm, the subarray has elements         |
| which are greater than pivot element x.                        |
| a. A[pr]                                                       |
| b. A[pq-1]                                                     |
| c. A[q]                                                        |
| d. A[q+1r] P-46                                                |
| 110. In Heap Sort algorithm, if heap property is violated      |
| a. We call Build heap procedure P-43                           |
| b. We call Heapify procedure                                   |
| c. We ignore                                                   |
| d. Heap property can never be violated                         |
| 111 is not a characteristic of Random Access Machine.          |
| a. Single-Processor P-10                                       |
| b. Assigning a value to a variable                             |
| c. Locality of reference                                       |
| d. Executing an arithmetic instruction                         |
| 112. The only way to convert an empty string into a sting of j |
| characters is by doing j insertions, represented as            |
|                                                                |

a. E(i,j) = 1

b. E(1,0) = 1

c. E(0,j) = j page 78

d. E(1,j)=j



| 113. In Selection problem, the Sieve technique works in                             |
|-------------------------------------------------------------------------------------|
| a. Non-recursive manner                                                             |
| b. Constant time                                                                    |
| c. Phases page 34                                                                   |
| d. One complete go                                                                  |
| 114. Algorithm is a sequence of computational steps that                            |
| the input into output.                                                              |
| a. Merge                                                                            |
| b. Assign                                                                           |
| c. Transform page 7                                                                 |
| d. Integrate                                                                        |
| 115. If pj dominates pi and pi dominates ph then pj also dominates                  |
| ph, it means dominance relation is                                                  |
| a. Transitive page 18                                                               |
| b. Non Transitive                                                                   |
| c. Equation                                                                         |
| d. Symbolic                                                                         |
| 116. To find maximal points in brute-force algorithm each point of                  |
| the space is compared against of that space.                                        |
| a. One other point                                                                  |
| b. All other points page 11                                                         |
| c. Few other points                                                                 |
| d. Most of the other points                                                         |
| 117. In the following code the statement "cout< <j;"executes< td=""></j;"executes<> |
| times. for (j=1; j<=5; j = j+2)                                                     |
| cout< <j;< td=""></j;<>                                                             |
| a. 5 times                                                                          |
| b. 2 times                                                                          |
| c. <mark>3 times</mark>                                                             |
|                                                                                     |
|                                                                                     |

d. 0 times



| 118. In merge sort algorithm, we split the array around the                  |
|------------------------------------------------------------------------------|
| index q. a. Entring                                                          |
| b. Mid page 17                                                               |
| c. Exiting                                                                   |
| d. Summing                                                                   |
| 119. In Selection problem, the Sieve technique                               |
| a. Add some more input items each time                                       |
| b. Do not work recursively                                                   |
| c. Do not uses Divide and Conquer approach                                   |
| d. Eliminates undesired data items each time                                 |
| 120. Consider three matrices X, Y, Z of dimensions 1 x 2, 2 x 3,             |
| 3 x 4 respectively. The number of multiplications of X(YZ) is .              |
| a. 16                                                                        |
| b. 32                                                                        |
| c. 26                                                                        |
| d. 32 page 84                                                                |
| 121. In Heap Sort algorithm, the total running time for Heapify procedure is |
|                                                                              |
| a. Theta (log n)                                                             |
| b. Order (log n)                                                             |
| c. Omega (log n)                                                             |
| d. O(1) i.e. Constant time                                                   |
| 122. The sieve technique works where we have to find                         |
| items(s) from a large input.                                                 |
| a. Single page 34                                                            |
| b. Two                                                                       |
| c. Three                                                                     |
| d. Similar                                                                   |
| 123. In Dynamic Programming based solution of Knapsack Problem,              |
| if we decide to take an object i , then we gain                              |
| · · · · · · · · · · · · · · · · · · ·                                        |
|                                                                              |



- a. W(Total Weight of Knapsack)
- b. V (Total Value of all items)
- c. vi (Value of object i) page 93
- d. Nome of the given option



|                   | <u> </u>                                                                                 |
|-------------------|------------------------------------------------------------------------------------------|
| 124.              | While Sorting, the order domain means for any two input elements x and y satisfies only. |
| _                 | a. x < y page 39                                                                         |
|                   | b. x > y                                                                                 |
|                   | c. x = y                                                                                 |
|                   | d. All of the above                                                                      |
| 125               | For solving Selection problem, we introduced Sieve technique due to                      |
| 120.              | Tor solving defection problem, we introduced dieve technique due to                      |
| _                 | a. Using Decrease and Conquer strategy page 34                                           |
|                   | b. Avoiding to sort all input data                                                       |
|                   | c. Eliminating Rank of an element                                                        |
|                   | d. Using Brute-force approach                                                            |
| 126.              |                                                                                          |
| _                 | oounds exist on how fast we can sort.                                                    |
| ~                 | a. Searching                                                                             |
|                   | b. Sorting page 38                                                                       |
|                   | c. Both Searching & sorting                                                              |
|                   | d. Growing                                                                               |
| 127               | In plane sweep approach, a vertical line is swept across                                 |
|                   | he 2d-plane from                                                                         |
| <u>.</u>          | a. Right to Left                                                                         |
|                   | b. Left to Right page 18                                                                 |
|                   | c. Top to Bottom                                                                         |
|                   | d. Bottom to top                                                                         |
| <mark>128.</mark> | In generating Fibonacci sequence, we can avoid unnecessary repetitions by                |
|                   | process.                                                                                 |
|                   | a. Tokenization                                                                          |
|                   | b. Memorization page 43                                                                  |
|                   | c. Randomization                                                                         |
|                   | d. Memorization                                                                          |
| 129.              | For values of n, any algorithm is fast enough.                                           |
|                   |                                                                                          |

a. Small page 14

- b. Medium
- c. Large
- d. Infinity



| 130. | Dynamic programming comprises of                                               |
|------|--------------------------------------------------------------------------------|
|      | a. Recursion only                                                              |
|      | b. Repetition only                                                             |
|      | c. Recursion with Repetition                                                   |
|      | d. No Repetition but Recursion page 75                                         |
| 131. | The function f(n)=n(logn+1)/2 is asymptotically equalient t nlog n :Here Lower |
| В    | ound means function f(n) grows asymptotically at as fast as nlog n.            |
|      | a. Least page 23                                                               |
|      | b. Normal                                                                      |
|      | c. Most                                                                        |
|      | d. At                                                                          |
| 132. | Counting sort has time complexity.                                             |
|      | a. O(n+k)                                                                      |
|      | b. O(n) page 58                                                                |
|      | c. O(k)                                                                        |
|      | d. O(nlogn)                                                                    |
| 133. | Due to left complete nature of binary tree, the heap can be stored in          |
|      | a. Array page 40                                                               |
|      | b. Structures                                                                  |
|      | c. Link List                                                                   |
|      | d. Stack                                                                       |
| 134. | Single item from a larger set of                                               |
|      | a. Constant                                                                    |
|      | b. Pointers                                                                    |
|      | c. Phases                                                                      |
|      | d. n items page 34                                                             |
| 135. | In the clique cover problem, for two vertices to be in the same                |
| g    | roup, they must be each other.                                                 |
|      | a. Apart from                                                                  |
|      | b. Far from                                                                    |
|      |                                                                                |

c. Near to

d. Adjacent to page 76



| 136.                                                                                            | How much time merge sort takes for an array of numbers?  a. T(n^2)  b. T(n)  c. T(log n) |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| 40-                                                                                             | d. T(n log n) page 40                                                                    |  |  |
| 137.                                                                                            | In in-place sorting algorithm is one that uses arrays for storage.                       |  |  |
|                                                                                                 | a. No additional array page 54                                                           |  |  |
|                                                                                                 | b. An additional array                                                                   |  |  |
|                                                                                                 | c. Both of above may be true according to algorithm                                      |  |  |
| <b>138.</b>                                                                                     | d. More than 3 arrays of one dimension                                                   |  |  |
|                                                                                                 | Brute-force algorithm for 2D-Maxima is operated by comparing                             |  |  |
| þ                                                                                               | airs of points.  a. Two                                                                  |  |  |
|                                                                                                 | b. Some                                                                                  |  |  |
|                                                                                                 | c. Most                                                                                  |  |  |
|                                                                                                 | d. All page 18                                                                           |  |  |
| 120                                                                                             |                                                                                          |  |  |
| 139. While Sorting, the ordered domain means for any two input elements x and y satisfies only. |                                                                                          |  |  |
| C                                                                                               | a. x > y                                                                                 |  |  |
|                                                                                                 | b. x < y                                                                                 |  |  |
|                                                                                                 | c. x=y                                                                                   |  |  |
|                                                                                                 | d. All of the above page 38                                                              |  |  |
| 140                                                                                             | Quick sort is.                                                                           |  |  |
| 140.                                                                                            | a. Stable & in place                                                                     |  |  |
|                                                                                                 | b. Not stable but in place page 54                                                       |  |  |
| 4                                                                                               | c. Stable but not in place                                                               |  |  |
|                                                                                                 | d. Some time stable & some times in place                                                |  |  |
| 141.                                                                                            | Which may be a stable sort?                                                              |  |  |
|                                                                                                 | a. Merger                                                                                |  |  |
|                                                                                                 | b. Insertion                                                                             |  |  |
|                                                                                                 |                                                                                          |  |  |

c. Both above page 54

d. None of the above



| AL-JUNAID INSTITUTE GROUI                                                        |
|----------------------------------------------------------------------------------|
| 142. For the Sieve Technique we take time.                                       |
| a. T(nk) page 34                                                                 |
| b. IT(n / 3)                                                                     |
| c. n^2                                                                           |
| d. n/3                                                                           |
| 143. Continuation sort is suitable to sort the elements in range 1 to k.         |
| a. K is Large                                                                    |
| b. K is not known                                                                |
| c. K may be small or large                                                       |
| d. K is small page 54                                                            |
| 144. Asymptotic growth rate of the function is taken over                        |
| case running time                                                                |
| a. Best                                                                          |
| b. Worst page 14                                                                 |
| c. Average                                                                       |
| d. Normal                                                                        |
| 145. The sieve technique is a special case, where the number of                  |
| sub problems is just.                                                            |
| a. 5                                                                             |
| b. Many                                                                          |
| c. 1 page 34                                                                     |
| d. Few                                                                           |
| 146. In Quick sort, we don't have the control over the sizes of recursive calls. |
| a. True page 49                                                                  |
| b. False                                                                         |
| c. Less information to decide                                                    |
| d. Ether true or false                                                           |
| 147. Before sweeping a vertical line in plane sweep approach, in start sorting   |
| of the points is done in increasing order of their coordinates                   |
| a. X page 18                                                                     |
|                                                                                  |

b. Y

c. Z

d. X , Y



|      | <u>E GOTTAID INSTITUTE GROOT</u>                                                 |
|------|----------------------------------------------------------------------------------|
| 148. | Random access machine or RAM is a/an.                                            |
|      | a. Machine build by Al-Khwarizmi                                                 |
|      | b. Mechanical machine                                                            |
|      | c. Mathematical model page 10                                                    |
|      | d. Electronics machine                                                           |
| 149. | The Huffman codes provide a method of encoding data                              |
|      | nefficiently when coded using ASCII standard.                                    |
|      | a. True                                                                          |
|      | b. False page 99                                                                 |
| 150. | A heap is a left-complete binary tree that confirms to the                       |
|      | a. increasing order only                                                         |
|      | b. decreasing order only                                                         |
|      | c. heap order page 40                                                            |
|      | d. log n order                                                                   |
| 151. | If we associate (x, y) integers pair to cars where x is the speed of the car and |
| у    | is the negation of the price. High y value for a car means a car.                |
|      | a. Fast                                                                          |
|      | b. Slow                                                                          |
|      | c. Expensive                                                                     |
|      | d. Cheap                                                                         |
| 152. | Which one of the following sorting algorithms is the fastest?                    |
|      | a. Merge sort                                                                    |
|      | b. Quick sort                                                                    |
|      | c. Insertion sort                                                                |
|      | d. Heap sort                                                                     |
| 153. | Quick sort algorithm divide the entire array into sub arrays.                    |
|      | a. 2                                                                             |
|      | b. 3                                                                             |
|      | c. 4                                                                             |
|      | d. 5                                                                             |
| 154. | In brute force algorithm, we measure running time T(n) based on                  |

a. Average-case time and best-case time

b. Worst-case time and average-case time page 46

c. Worst-case time and best-case time

d. Best-case time and staring-case time



| 155.                                                | For 2D Maxima problem. Plane Sweep algorithm first of all  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------|--|--|--|
|                                                     | a. Sorts all points                                        |  |  |  |
|                                                     | b. Delete some points                                      |  |  |  |
|                                                     | c. Output the elements                                     |  |  |  |
|                                                     | d. Pushes all points on stack                              |  |  |  |
| 156.                                                | There are entries in the Edit Distance Matrix              |  |  |  |
|                                                     | a. e (n)                                                   |  |  |  |
|                                                     | b. e (n₂) page 84                                          |  |  |  |
|                                                     | с. ө (n+2)                                                 |  |  |  |
|                                                     | d. e (n + 100)                                             |  |  |  |
| 157.                                                | Which symbol is used for Omega notation?                   |  |  |  |
|                                                     | a. (O)                                                     |  |  |  |
|                                                     | b. (e)                                                     |  |  |  |
|                                                     | <b>c.</b> (Ω)                                              |  |  |  |
|                                                     | d. (@)                                                     |  |  |  |
| 158.                                                | Selection sort is asorting algorithm                       |  |  |  |
|                                                     | a. In-place page 54                                        |  |  |  |
|                                                     | b. Not In-Place                                            |  |  |  |
|                                                     | c. Stable                                                  |  |  |  |
|                                                     | d. in-partition                                            |  |  |  |
|                                                     | In Dynamic Programming based solution of knapsack problem, |  |  |  |
| to                                                  | compute entries of 'V', we will imply a(n) approach.       |  |  |  |
|                                                     | a. Subjective                                              |  |  |  |
|                                                     | b. Inductive                                               |  |  |  |
|                                                     | c. Brute Force                                             |  |  |  |
|                                                     | d. Combination                                             |  |  |  |
| 160.                                                | We do not need to prove comparison-based sorting           |  |  |  |
| algorithms by mathematically. It always takes time. |                                                            |  |  |  |
|                                                     | a. Big Oh nlog(n)                                          |  |  |  |
|                                                     | b. Omega nlog(n) NOT SURE                                  |  |  |  |
|                                                     |                                                            |  |  |  |

- c. Omega n(n^2)
- d. Theta nlog(n)



| <u>AL-JUNAID INSTITUTE GROUI</u> |
|----------------------------------|
|----------------------------------|

| 161. | 1. Merge sort is a/an and s                             | orting algorithm      |
|------|---------------------------------------------------------|-----------------------|
|      | a. Not in-place, not stable one                         |                       |
|      | b. In-place, not stable one                             |                       |
|      | c. In-place, stable one                                 |                       |
|      | d. Not in-place, stable one page 5                      | 4                     |
| 162. | 2. Cubic function will a quadratic fu                   | unction.              |
|      | a. Prove                                                | <b>A</b>              |
|      | b. be equal to                                          |                       |
|      | c. overtake Page 25                                     |                       |
|      | d. find                                                 |                       |
| 163. | <ol><li>Insertion sort is a sorting algorithm</li></ol> | ithm                  |
|      | a. Unstable                                             |                       |
|      | b. In-place Page 54                                     |                       |
|      | c. Not In-Place                                         |                       |
|      | d. in-partition                                         | 7                     |
| 164. | 4. To check whether a function grows faster or s        | slower than the other |
| fı   | function, we use some asymptotic notations, wh          | nich is               |
|      | a. Big-oh notation                                      |                       |
|      | b. Theta notation                                       |                       |
|      | c. Omega notation                                       |                       |
|      | d. All of the given                                     |                       |
| 165. | 5. Asymptotic growth of 8n^2 + 2n – 3 is:               |                       |
|      | a. Θ(n^2 + n)                                           |                       |
|      | b. Θ (n^2) page 14                                      |                       |
| 4    | c. Θ(8n^2)                                              |                       |
|      | d. Θ(8n^2 + 2n)                                         |                       |
| 166. | 6. In the analysis of algorithms, pla                   | ys an important role. |
|      | a. text analysis                                        |                       |
|      | <mark>b. time</mark>                                    |                       |
|      | c. growth rate                                          |                       |
|      |                                                         |                       |

d. money



| 167. | In inductive approach of knapsack problem, we consider 2 cases, |
|------|-----------------------------------------------------------------|
| 0    | or                                                              |
|      | a. Median, Mode                                                 |
|      | b. Recursive, Iterative                                         |
|      | c. Leave object, Take object page 93                            |
|      | d. Sequentially. Parallel                                       |
| 168. | Random Access Machine (RAM) can executeinstructions             |
|      | a. only logical                                                 |
|      | b. parallel                                                     |
|      | c. only arithmetic                                              |
|      | d. logical and arithmetic                                       |
| 169. |                                                                 |
|      | a. Greedy                                                       |
|      | b. Merge sort                                                   |
|      | c. Processing as there is no algorithm by this name             |
|      | d. Brute Force                                                  |
| 170. | Bubble sort takes theta in the worst case                       |
|      | a. (n2) page 39                                                 |
|      | b. (n)                                                          |
|      | c. log(n)                                                       |
| 4-4  | d. nlog(n)                                                      |
|      | If matrix A of dimension p × q is multiply with matrix B of     |
| a    | imension q × r, then dimension of resultant matrix is:          |
|      | a. p × q                                                        |
|      | b. p × r page 84<br>c. q × r                                    |
|      |                                                                 |
| 470  | d. r×p                                                          |
| 1/2. | Dynamic Programing algorithms often use some kind of            |
| _    | to store the results of intermediate sub-problems               |
|      | a. table (Page 75)                                              |
|      |                                                                 |

- b. variable
- c. stack
- d. loop



# AL-JUNAID INSTITUTE GROUP 173. is in place and it.

| 175. | is in-place softing algorithm.                                                |
|------|-------------------------------------------------------------------------------|
|      | a. Bubble sort (Page 54)                                                      |
|      | b. Merge sort                                                                 |
|      | c. Linear search                                                              |
|      | d. Binary Search                                                              |
| 174. | Which one of the following problems can be solved using dynamic problem?      |
|      | a. Bubble sort problem                                                        |
|      | b. Matrix chain multiplication problem page 85                                |
|      | c. Greedy search problem                                                      |
|      | d. Fractional knapsack problem                                                |
| 175. | In chain matrix multiplication, solutions of the sub-problems are stored in a |
| _    | ·                                                                             |
|      | a. Array                                                                      |
|      | b. Table page 86                                                              |
|      | c. Tree                                                                       |
|      | d. Link list                                                                  |
| 176. | What is the average running time of a quick sort algorithm?                   |
|      | a. O(n^2)                                                                     |
|      | b. O(n)                                                                       |
|      | c. O(n log n) (Page 49)                                                       |
|      | d. O(log n)                                                                   |
| 177. | Sorting Algorithms having O running time are                                  |
| C    | onsidered to be slow ones.                                                    |
|      | a. (n)                                                                        |
| 4    | b. (n^2) (Page 39)                                                            |
|      | c. (nlog(n))                                                                  |
|      | d. (log(n))                                                                   |
| 178. | While solving Selection problem, in Sieve technique we partition input data   |
| _    |                                                                               |
|      | a. In increasing order                                                        |
|      |                                                                               |



- b. In decreasing order
- c. According to Pivot
- d. Randomly



| AI   | <u>L-JUNAID INSTITUTE GROUP</u>                                    |
|------|--------------------------------------------------------------------|
| 179. | is the process of avoiding unnecessary repetitions                 |
| by   | y writing down the results of recursive calls and looking them     |
| u    | p again if we need them later.                                     |
|      | a. Loop                                                            |
|      | b. Memoization page 74                                             |
|      | c. Recursion                                                       |
|      | d. Function                                                        |
| 180. | In average-case time the probability of seeing input is denoted by |
|      | a. p{I}                                                            |
|      | b. p[l]                                                            |
|      | c. p <i></i>                                                       |
|      | d. p(i) page 13                                                    |
| 181. | While applying the Sieve technique to selection sort, how to       |
| cł   | hoose a pivot element.                                             |
|      | a. Through mean                                                    |
|      | b. Linear                                                          |
|      | c. Randomly page 35                                                |
|      | d. Sequentially                                                    |
|      | Number of of the pseudo code are counted to measure                |
| th   | ne running time.                                                   |
|      | a. Inputs                                                          |
|      | b. Outputs                                                         |
|      | c. Steps page 13                                                   |
|      | d. Pages                                                           |
| 183. | Developing a dynamic programming algorithm generally involves      |
| Se   | eparate steps.                                                     |
|      | a. One                                                             |
|      | b. Two page 75                                                     |
|      | c. Three                                                           |
| 404  | d. Four                                                            |
| 184. | 8n^2+2n+3 will exceed c28(n), no matter how large we make          |
|      | a. n                                                               |

b. 2n

c. c2 page 25

d. this quadratic equation



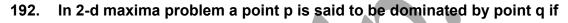
| 185. | The running time of quick sort algorithm                                |
|------|-------------------------------------------------------------------------|
|      | a. Is impossible to compute                                             |
|      | b. Has nothing to do with pivot selection                               |
|      | c. Is Random upon each execution                                        |
|      | d. Greatly influenced by the selection of pivot page 49                 |
| 186. | involves breaking up the problem into sub problems                      |
| W    | hose solutions can be combined to solve the global problem.             |
|      | a. Complexity Theory                                                    |
|      | b. Dynamic programming solution                                         |
|      | c. Divide and Conquer Strategy page 34                                  |
|      | d. Greedy Algorithms                                                    |
| 187. | In we have to find rank of an element from given input.                 |
|      | a. Merge sort algorithm                                                 |
|      | b. Selection problem page 34                                            |
|      | c. Brute force technique                                                |
|      | d. Plane Sweep algorithm                                                |
| 188. | How many steps are involved to design the dynamic programming strategy? |
|      | a. 2                                                                    |
|      | b. 3                                                                    |
|      | c. 1                                                                    |
|      | d. 4 page 92                                                            |
| 189. | In Bucket sort, if there are duplicates then each bin can be            |
|      | replaced by a a. Stack                                                  |
|      | b. Linked list page 69                                                  |
|      | c. Hash table                                                           |
|      | d. Heap                                                                 |
| 190. | In merge sort algorithm, we split the array to find index q.            |
|      | a. from start                                                           |
|      | b. midway page 28                                                       |
|      | c. from end                                                             |
|      |                                                                         |

d. both from start or end



| 191. | Find the  | maximum    | value of | f the ite | ms wl  | nich ( | can | carry |
|------|-----------|------------|----------|-----------|--------|--------|-----|-------|
| us   | sing knap | osack Knap | osack we | eight ca  | pacity | y = 50 | ).  |       |

Item Weight Value


11070

22020

33080

470 200

- a. 280
- b. 100
- c. 90
- d. 200



- a.  $p.x \leq q.x$
- b. p.x <= q.x and p.y <= q.y page 17
- c. p.y <= q.y
- d.  $p.x \ge q.x$  and  $p.y \ge q.y$
- 193. Sorting can be in \_\_\_\_\_.
  - a. Increasing order only
  - b. Decreasing order only
  - c. Both increasing and decreasing order
  - d. Random order

- a. Array
- b. Linear
- c. Tree page 31
- d. Graph

- a. n
- b. n(log n)

c. n\*n page 18 d. n3



| 196. | In plane sweep approach of solving geometric problems, a                           |
|------|------------------------------------------------------------------------------------|
| _    | is swept across the plane.                                                         |
|      | a. Line page 18                                                                    |
|      | b. Plane<br>c. Cube                                                                |
|      |                                                                                    |
| 407  | d. Box                                                                             |
| 197. | Which of the following is calculated with Big Omega notation?                      |
|      | a. Medium bounds                                                                   |
|      | b. Upper bounds                                                                    |
|      | c. Lower bounds Page - 25                                                          |
| 198. | d. Both upper and lower bounds                                                     |
| 190. | is always based on divide and conquer strategy.  a. Bubble sort                    |
|      | b. Selection sort                                                                  |
|      |                                                                                    |
|      | c. Pigeon sort d. Quick sort page 46                                               |
| 100  | d. Quick sort page 46  If a matrix has three rows and two columns, then dimensions |
|      | f matrix will be:                                                                  |
| U    | a. 3x2                                                                             |
|      | b. 2x3                                                                             |
|      | c. 3x3                                                                             |
|      | d. 2x2                                                                             |
| 200. |                                                                                    |
|      | a. Length                                                                          |
|      | b. running time google                                                             |
| 4    | c. size                                                                            |
|      | d. compile time                                                                    |
| 201. | Catalan numbers are related the number of different on 'n' nodes.                  |
|      | a. Arrays                                                                          |
|      | b. linked lists                                                                    |
|      |                                                                                    |

c. binary trees page 85

d. functions



| <b>AL-JUNAID</b> | INSTITUT | E GROUP |
|------------------|----------|---------|
|------------------|----------|---------|

| 202. | Applying the sieve technique to selection problem,        |
|------|-----------------------------------------------------------|
| е    | lement is picked from array.                              |
|      | a. Output                                                 |
|      | b. Total                                                  |
|      | c. Input                                                  |
|      | d. Pivot page 35                                          |
| 203. | Dynamic Programming approach is usually useful in solving |
| р    | roblems.                                                  |
|      | a. Normal                                                 |
|      | b. Optimization google                                    |
|      | c. Array                                                  |
|      | d. Loop                                                   |
| 204. | In recursive formulation of knapsack                      |
|      | Problem: V [0, j] = for j>=0                              |
|      | a1                                                        |
|      | b. 0 page 93                                              |
|      | c. 1                                                      |
|      | d. 2                                                      |
| 205. | is a linear time sorting algorithm.                       |
|      | a. Merge sort                                             |
|      | b. Radix sort page 71                                     |
|      | c. Quick sort                                             |
|      | d. Bubble sort                                            |
| 206. | Quick sort is one of the sorting algorithm.               |
|      | a. Fastest page 19                                        |
|      | b. Slowest                                                |
|      | c. Major                                                  |
|      | d. Average                                                |
| 207. | The time assumed for each basic operation to execute on   |
| R    | AM model of computation is                                |
|      |                                                           |
|      |                                                           |

- a. Infinite
- b. Continuous

c. Constant page 10

d. Variable



| 208. In Sieve Technique, we know the item of interest. a. True                  |
|---------------------------------------------------------------------------------|
| b. False page 34                                                                |
| 209. While analyzing algorithms, and usually considered difficult to calculate. |
| a. Finite, Infinite                                                             |
| b. Floor, ceiling google                                                        |
| c. Row, Column                                                                  |
| d. Graph, Tree                                                                  |
| 210. While analysis of the brute-force maxima algorithm, an array               |
| sorted in the reverse order is the type of case input.                          |
| a. Best                                                                         |
| b. Worst page 14                                                                |
| c. Somewhat bad                                                                 |
| d. Average                                                                      |
| 211 is not useful measure of central tendency of given                          |
| input set especially when the distribution of values is highly skewed.          |
| a. Mean                                                                         |
| b. Mode                                                                         |
| c. Average                                                                      |
| d. Median page 34                                                               |
| 212. In asymptotical analysis of n(n-3) and 4n*n, as n becomes large,           |
| the dominant (fastest growing) term is some constant times                      |
| a, n+1                                                                          |
| b. n-1                                                                          |
| c. n                                                                            |
| d. n*n page 23                                                                  |
| 213. In addition to passing in the array itself to Merge Sort                   |
| algorithm, we will pass in other arguments which are indices.                   |

a. Two

P-38

b. Three

c. Four

d. Five



# AL-JUNAID INSTITUTE GROUP 214. In 2d-maximal problem, a point is said to be if it is not

| dominated by any other point in that space                                |
|---------------------------------------------------------------------------|
| dominated by any other point in that space.  a. Member                    |
| b. Minimal                                                                |
|                                                                           |
| c. Maximal P-11                                                           |
| d. Joint                                                                  |
| 215. Counting sort assumes that the numbers to be sorted are in the range |
| - K to n vulnama m in lamma                                               |
| a. K to n where n is large                                                |
| b. 1 to k where k is small (P-57)                                         |
| c. K to n where k is small                                                |
| d. k to n where n is small                                                |
| 216. Insertion sort is an efficient algorithm for sorting a               |
| number of elements                                                        |
| a. Large                                                                  |
| b. Small                                                                  |
| c. Extra large                                                            |
| d. Medium                                                                 |
| 217. If the indices passed to merge sort algorithm are                    |
| then this means that there is only one element to sort.                   |
| a. Small page 28                                                          |
| b. Large                                                                  |
| c. Equal                                                                  |
| d. Not Equal                                                              |
| 218. In Knapsack Problem, each item must be entirely accepted             |
| or rejected, is called problem.                                           |
| a. Fractional                                                             |
| b. 0-1 P-92                                                               |
| c. Linear                                                                 |
| d. Optimal                                                                |
|                                                                           |

| 219. |                             | an algorithm is O(n). then it is called |
|------|-----------------------------|-----------------------------------------|
|      | time complexity.  a. Linear | Wikipedia                               |
|      | b. Constant                 |                                         |
|      | c. Average                  |                                         |
|      | d. Exponential              |                                         |
| 220  | •                           | analysis does not depend upon on        |
|      | ne distribution of input.   | _ analysis asso not aspona apon su      |
| •-   | a. Merge sort               |                                         |
|      | b. Quick sort               | P-50                                    |
|      | c. Insertion sort           |                                         |
|      | d. Heap sort                |                                         |
| 221  | We can use the              | Property to devise a recursive          |
|      | ormulation of the edit dis  |                                         |
|      | a. Small substructure       |                                         |
|      | b. Algorithmic              | _ ( ) / /                               |
|      | c. Real                     |                                         |
|      | d. Optimal substructure     | page 78                                 |
| 222. | The following sequence      |                                         |
|      | 1,2,3,5,8,13,21,34,55,      | 9 541154                                |
|      | a. Optimize sequence        |                                         |
|      | b. Fibonacci sequence       | page 73                                 |
|      | c. Optimal sequence         | page 13                                 |
|      | d. Overlapping sequence     | 26                                      |
| 223  |                             | ithm is best suited to sort an array    |
|      | f 2 million elements?       | itilii is best suited to soft all array |
| . 0  | a. Bubble sort              |                                         |
|      | b. Insert sort              |                                         |
|      | c. Merge sort               |                                         |
|      | d. Quick sort               |                                         |
|      | u. Quick suit               |                                         |

e. Ridx Sort page 71



| 224. | We can improve the performance of quick sort if we could                     |
|------|------------------------------------------------------------------------------|
| b    | e able to _,                                                                 |
|      | a. Skip input elements somehow                                               |
|      | b. Select two or more pivots page 34                                         |
|      | c. Skip any sub-array completely                                             |
|      | d. Eliminate recursive calls                                                 |
| 225. | The problem with the brute-force algorithm is that is uses in pruning out de |
|      | a. Worst-case time                                                           |
|      | b. No intelligence page 18                                                   |
|      | c. Outside looping                                                           |
|      | d. Artificial intelligence                                                   |
| 226. | In chain matrix multiplication, the order of the matrices                    |
|      | a. Can be changed                                                            |
|      | b. Can not be changed page 85                                                |
|      | c. is equal                                                                  |
|      | d. is reverse                                                                |
| 227. | In quick sort algorithm, we choose pivot                                     |
|      | a. Always the smallest element                                               |
|      | b. Greater than 5                                                            |
|      | c. Randomly page 35                                                          |
|      | d. Less than 5                                                               |
| 228. | In Heap Sort algorithm. Heapify procedure is in nature.                      |
|      | a. Recursive                                                                 |
|      | b. Non-Recursive page 43                                                     |
|      | c. Fast                                                                      |
|      | d. Slow                                                                      |
| 229. | When matrix A of 5x 3 is multiplied with matrix B of 3 x 4 then              |
|      | ne number of multiplications required will be                                |
|      | a. 15                                                                        |
|      |                                                                              |

b. 12

c. 36

<mark>d. 60</mark>



| AL-JUNAID INSTITUTE GROU                                                      |
|-------------------------------------------------------------------------------|
| 230. An algorithm is said to be correct if for every instance,                |
| it halts with the correct                                                     |
| a. Input, Output page 13                                                      |
| b. Design, Analysis                                                           |
| c. Value, Key                                                                 |
| d. Key, Analysis                                                              |
| 231. In chain matrix multiplication, table is filled                          |
| to find the multiplication of matrix.                                         |
| a. row wise                                                                   |
| b. column wise                                                                |
| c. diagonally                                                                 |
| d. bottom-to-up page 86                                                       |
| 232. If we have an equation 8n2+7f*n + 5f + 6 then is large, tern             |
| will be muchxxxxxxxthe n term and will dominate the running time.             |
| a. f g (n)                                                                    |
| b. g (n) * 2                                                                  |
| c. n * 2 page 23                                                              |
| d. f (n)                                                                      |
| 233. For quick sort algorithm. Partitioning takes theta                       |
| a. (n)                                                                        |
| b. log(n)                                                                     |
| c. n log (n)                                                                  |
| d. n2log (n)                                                                  |
| 234. In Heap Sort algorithm, the maximum levels an element can move upward is |
|                                                                               |
| a. Theta (log n) page 43                                                      |
| b. Big-ch (log n)                                                             |
| c. Omega (log n)                                                              |
| d. 0 (1) i.e. Constant time                                                   |

235. \_\_\_\_\_ programming is essentially recursion without repetition.

a. Fast

b. Dynamic page 75

c. Array

d. n (log n)

| 236. | There are no hard formal rules to the syntax of the        | code.     |
|------|------------------------------------------------------------|-----------|
|      | a. Basic                                                   |           |
|      | b. Programming                                             |           |
|      | c. Pseudo                                                  |           |
|      | d. Assembly                                                |           |
| 237. | In Heap Sort algorithm, to remove the maximum element even | ery time. |
|      | a. We call Build-Heap procedure                            |           |
|      | b. Heap Sort algorithm terminates without result           |           |
|      | c. We call heapify procedure                               |           |
|      | d. Nothing happens                                         |           |
| 238. | Which process is used for avoiding unnecessary repetit     | ions      |
| а    | nd looking them up again if we need them later.            |           |
|      | a. Greedy Approach                                         |           |
|      | b. Memoization page 74                                     |           |
|      | c. Divide and conquer                                      |           |
|      | d. Recursion                                               |           |
| 239. | The worst-case running time of Quick sort is               | in        |
| 0    | order to sort an array of n element.                       |           |
|      | a. O(n log n) page 49                                      |           |
|      | b. O(n)                                                    |           |
|      | c. O(n <sup>2</sup> )                                      |           |
|      | d. O(log n)                                                |           |
| 240. | Boolean operation is a operation on an ideali              | zed       |
| R    | RAM model of computation.                                  |           |
|      | a. Starting                                                |           |
|      | b. Basic page 10                                           |           |
|      | c. Advance                                                 |           |
|      | d. Normal                                                  |           |
|      |                                                            |           |
|      |                                                            |           |

- 241. In chain matrix multiplication, if there are n items, there are \_\_\_\_\_ ways in which outer most pair of parentheses can placed.
  - a. n^2
  - b. 2n
  - c. n+1
  - d. n-1 page 85
- 242. The number of nodes in a complete binary tree of height h is: a. 2 \* (h+1) 1
  - b. 2^(h+1) 1 page 40
  - c. 2 \* (h+1)
  - d. ((h+1)^2) 1