

CS301 – Data Structures

Download More Highlighted Handouts from VUAnswer.com

Data Structures

Page 1 of 505

CS301 – Data Structures

Page 2 of 505

Table of Contents

Data Structures ... 1

Lecture No. 01 ... 3

Lecture No. 02 ... 12

Lecture No. 03 .. 20

Lecture No. 04 .. 32

Lecture No. 05 .. 46

Lecture No. 06 .. 56

Lecture No. 07 .. 63

Lecture No. 08 .. 71

Lecture No. 09 .. 82

Lecture No. 10 .. 93

Lecture No. 11 .. 105

Lecture No. 12 .. 123

Lecture No. 13 .. 135

Lecture No. 14 .. 146

Lecture No. 15 .. 158

Lecture No. 16 .. 170

Lecture No. 17 .. 189

Lecture No. 18 .. 203

Lecture No. 19 .. 211

Lecture No. 20 .. 220

Lecture No. 21 .. 231

Lecture No. 22 .. 240

Lecture No. 23 .. 257

Lecture No. 24 .. 273

Lecture No. 25 .. 284

Lecture No. 26 .. 296

Lecture No. 27 .. 307

Lecture No. 28 .. 321

Lecture No. 29 .. 333

Lecture No. 30 .. 348

Lecture No. 31 .. 360

Lecture No. 32 .. 370

Lecture No. 33 .. 379

Lecture No. 34 .. 386

Lecture No. 35 .. 393

Lecture No. 36 .. 404

Lecture No. 37 .. 416

Lecture No. 38 .. 424

Lecture No. 39 .. 430

Lecture No. 40 .. 441

Lecture No. 41 .. 449

Lecture No. 42 .. 459

Lecture No. 43 .. 468

Lecture No. 44 .. 474

Lecture No. 45 .. 485

CS301 – Data Structures Lecture No. 01

Page 3 of 505

Data Structures

Lecture No. 01

Reading Material

Data Structures and algorithm analysis in C++ Chapter. 3

3.1, 3.2, 3.2.1

Summary

 Introduction to Data Structures

 Selecting a Data Structure

 Data Structure Philosophy

 Goals of this Course

 Array

 List data structure

Welcome to the course of data structure. This is very important subject as the topics

covered in it will be encountered by you again and again in the future courses. Due to

its great applicability, this is usually called as the foundation course. You have

already studied Introduction to programming using C and C++ and used some data

structures. The focus of that course was on how to carry out programming with the

use of C and C++ languages besides the resolution of different problems. In this

course, we will continue problem solving and see that the organization of data in

some cases is of immense importance. Therefore, the data will be stored in a special

way so that the required result should be calculated as fast as possible.

Following are the goals of this course:

 Prepare the students for (and is a pre-requisite for) the more advanced material

 Cover well-known data structures such as dynamic arrays, linked lists, stacks,

queues, trees and graphs.
 Implement data structures in C++

You have already studied the dynamic arrays in the previous course. We will now

discuss linked lists, stacks, queues, trees and graphs and try to resolve the problems

with the help of these data structures. These structures will be implemented in C++

language. We will also do programming assignments to see the usage and importance

of these structures.

students will encounter in later courses.

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 01

Page 4 of 505

Information about Data Structure subject is available at: “http://www.vu.edu.pk/ds”.

Let’s discuss why we need data structures and what sort of problems can be solved

with their use. Data structures help us to organize the data in the computer, resulting

in more efficient programs. An efficient program executes faster and helps minimize

the usage of resources like memory, disk. Computers are getting more powerful with

the passage of time with the increase in CPU speed in GHz, availability of faster

network and the maximization of disk space. Therefore people have started solving

more and more complex problems. As computer applications are becoming complex,

so there is need for more resources. This does not mean that we should buy a new

computer to make the application execute faster. Our effort should be to ensue that the

solution is achieved with the help of programming, data structures and algorithm.

What does organizing the data mean? It means that the data should be arranged in a

way that it is easily accessible. The data is inside the computer and we want to see it.

We may also perform some calculations on it. Suppose the data contains some

numbers and the programmer wants to calculate the average, standard deviation etc.

May be we have a list of names and want to search a particular name in it. To solve

such problems, data structures and algorithm are used. Sometimes you may realize

that the application is too slow and taking more time. There are chances that it may be

due to the data structure used, not due to the CPU speed and memory. We will see

such examples. In the assignments, you will also check whether the data structure in

the program is beneficial or not. You may have two data structures and try to decide

which one is more suitable for the resolution of the problem.

As discussed earlier, a solution is said to be efficient if it solves the problem within its

resource constraints. What does it mean? In the computer, we have hard disk, memory

and other hardware. Secondly we have time. Suppose you have some program that

solves the problem but takes two months. It will be of no use. Usually, you don’t have

this much time and cannot wait for two months. Suppose the data is too huge to be

stored in disk. Here we have also the problem of resources. This means that we have

to write programs considering the resources to achieve some solution as soon as

possible. There is always cost associated with these resources. We may need a faster

and better CPU which can be purchased. Sometimes, we may need to buy memory.

As long as data structures and programs are concerned, you have to invest your own

time for this. While working in a company, you will be paid for this. All these

requirements including computer, your time and computer time will decide that the

solution you have provided is suitable or not. If its advantages are not obtained, then

either program or computer is not good.

So the purchase of a faster computer, while studying this course, does not necessarily

help us in the resolution of the problem. In the course of “Computer Architecture”

you will see how the more efficient solutions can be prepared with the hardware. In

this course, we will use the software i.e. data structures, algorithms and the recipes

through which the computer problems may be resolved with a faster solution.

Introduction to Data Structures

http://www.vu.edu.pk/ds

CS301 – Data Structures Lecture No. 01

Page 5 of 505

Selecting a Data Structure
How can we select the data structure needed to solve a problem? You have already

studied where to use array and the size of array and when and where to use the

pointers etc. First of all, we have to analyze the problem to determine the resource

constraints that a solution must meet. Suppose, the data is so huge i.e. in Gega bytes

(GBs) while the disc space available with us is just 200 Mega bytes. This problem can

not be solved with programming. Rather, we will have to buy a new disk.

Secondly, it is necessary to determine the basic operations that must be supported.

Quantify the resource constraints for each operation. What does it mean? Suppose you

have to insert the data in the computer or database and have to search some data item.

Let’s take the example of telephone directory. Suppose there are eight million names

in the directory. Now someone asks you about the name of some particular person.

You want that this query should be answered as soon as possible. You may add or

delete some data. It will be advisable to consider all these operations when you select

some data structure.

Finally select the data structure that meets these requirements the maximum. Without,

sufficient experience, it will be difficult to determine which one is the best data

structure. We can get the help from internet, books or from someone whom you know

for already getting the problems solved. We may find a similar example and try to use

it. After this course, you will be familiar with the data structures and algorithms that

are used to solve the computer problems.

Now you have selected the data structure. Suppose a programmer has inserted some

data and wants to insert more data. This data will be inserted in the beginning of the

existing data, or in the middle or in the end of the data. Let’s talk about the arrays and

suppose you have an array of size hundred. Data may be lying in the first fifty

locations of this array. Now you have to insert data in the start of this array. What will

you do? You have to move the existing data (fifty locations) to the right so that we get

space to insert new data. Other way round, there is no space in the start. Suppose you

have to insert the data at 25th location. For this purpose, it is better to move the data

from 26th to 50th locations; otherwise we will not have space to insert this new data at

25th location.

Now we have to see whether the data can be deleted or not. Suppose you are asked to

delete the data at 27 th position. How can we do that? What will we do with the space
created at 27th position?

Thirdly, is all the data processed in some well-defined order or random access

allowed? Again take the example of arrays. We can get the data from 0th position and

traverse the array till its 50th position. Suppose we want to get the data, at first from

50th location and then from 13th. It means that there is no order or sequence. We want

to access the data randomly. Random access means that we can’t say what will be the

next position to get the data or insert the data.

Data Structure Philosophy
Let’s talk about the philosophy of data structure. Each data structure has costs and

benefits. Any data structure used in your program will have some benefits. For this,

CS301 – Data Structures Lecture No. 01

Page 6 of 505

In rare cases, a data structure may be better than another one in all situations. It means

that you may think that the array is good enough for all the problems. Yet this is not

necessary. In different situations, different data structures will be suitable. Sometimes

you will realize that two different data structures are suitable for the problem. In such

a case, you have to choose the one that is more appropriate. An important skill this

course is going to lend to the students is use the data structure according to the

situation. You will learn the programming in a way that it will be possible to replace

the one data structure with the other one if it does not prove suitable. We will replace

the data structure so that the rest of the program is not affected. You will also have to

attain this skill as a good programmer.

There are three basic things associated with data structures. A data structure requires:

– space for each data item it stores
– time to perform each basic operation

– programming effort

Goals of this Course
Reinforce the concept that costs and benefits exist for every data structure. We will

learn this with practice.

Learn the commonly used data structures. These form a programmer's basic data

structure “toolkit”. In the previous course, you have learned how to form a loop,

functions, use of arrays, classes and how to write programs for different problems. In

this course, you will make use of data structures and have a feeling that there is bag

full of different data structures. In case of some problem, you will get a data structure

Understand how to measure the cost of a data structure or program. These techniques

also allow you to judge the merits of new data structures that you or others might

develop. At times, you may have two suitable data structures for some problem. These

can be tried one by one to adjudge which one is better one. How can you decide

which data structure is better than other. Firstly, a programmer can do it by writing

two programs using different data structure while solving the same problem. Now

execute both data structures. One gives the result before the other. The data structure

that gives results first is better than the other one. But sometimes, the data grows too

large in the problem. Suppose we want to solve some problem having names and the

data of names grows to10 lakhs (one million). Now when you run both programs, the

second program runs faster. What does it mean? Is the data structure used in program

one not correct? This is not true. The size of the data, being manipulated in the

program can grow or shrink. You will also see that some data structures are good for

small data while the others may suit to huge data. But the problem is how can we

determine that the data in future will increase or decrease. We should have some way

to take decision in this regard. In this course we will do some mathematical analysis

and see which data structure is better one.

you have to pay price. That can be computer resources or the time. Also keep in mind

that you are solving this problem for some client. If the program is not efficient, the

client will not buy it.

from the toolkit and use some suitable data structure.

CS301 – Data Structures Lecture No. 01

Page 7 of 505

We have declared an int array of six elements and initialized it in the loop.

Let’s revise some of the array concepts. The declaration of array is as int x[6]; or float

x[6]; or double x[6]; You have already done these in your programming assignments.

An array is collection of cells of the same type. In the above program, we have array x

of type int of six elements. We can only store integers in this array. We cannot put int

in first location, float in second location and double in third location. What is x? x is a

name of collection of items. Its individual items are numbered from zero to one less

than array size. To access a cell, use the array name and an index as under:

x[0], x[1], x[2], x[3], x[4], x[5]

To manipulate the first element, we will use the index zero as x[0] and so on. The

arrays look like in the memory as follows:

Array cells are

contiguous in

computer memory

Array occupies contiguous memory area in the computer. In case of the above

example, if some location is assigned to x[0], the next location can not contain data

other than x[1]. The computer memory can be thought of as an array. It is a very big

array. Suppose a computer has memory of 2MB, you can think it as an array of size 2

million and the size of each item is 32 bits. You will study in detail about it in the

computer organization, and Assembly language courses. In this array, we will put our

programs, data and other things.

Arrays
You have already studied about arrays and are well-versed with the techniques to

utilize these data structures. Here we will discuss how arrays can be used to solve

computer problems. Consider the following program:

main(int argc, char** argv)

{

int x[6];

int j;
for(j = 0; j < 6; j++)

x[j] = 2 * j;

}

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

CS301 – Data Structures Lecture No. 01

Page 8 of 505

In the above program, we have declared an array named x. ‘x’ is an array’s name but

there is no variable x. ‘x’ is not an lvalue. If some variable can be written on the left-

hand side of an assignment statement, this is lvalue variable. It means it has some

memory associated with it and some value can be assigned to it. For example, if we

have the code int a, b; it can be written as b = 2; it means that put 2 in the memory

location named b. We can also write as a = b; it means whatever b has assign it to a,

that is a copy operation. If we write as a = 5; it means put the number 5 in the

memory location which is named as a. But we cannot write 2 = a; that is to put at

number 2 what ever the value of a is. Why can’t we do that? Number 2 is a constant.

If we allow assignment to constants what will happen? Suppose ‘a’ has the value

number 3. Now we assigned number 2 the number 3 i.e. all the number 2 will become

number 3 and the result of 2 + 2 will become 6. Therefore it is not allowed.

‘x’ is a name of array and not an lvalue. So it cannot be used on the left hand side in

an assignment statement. Consider the following statements

int x[6];

int n;

x[0] = 5; x[1] = 2;

x = 3; //not allowed

x = a + b; // not allowed

x = &n; // not allowed

In the above code snippet, we have declared an array x of int. Now we can assign

values to the elements of x as x[0] = 5 or x[1] = 2 and so on. The last three statements

are not allowed. What does the statement x = 3; mean? As x is a name of array and

this statement is not clear, what we are trying to do here? Are we trying to assign 3 to

each element of the array? This statement is not clear. Resultantly, it can not be

allowed. The statement x = a + b is also not allowed. There is nothing wrong with a

+ b. But we cannot assign the sum of values of a and b to x. In the statement x = &n,

we are trying to assign the memory address of n to x which is not allowed. The reason

is the name x is not lvalue and we cannot assign any value to it. For understanding

purposes, consider x as a constant. Its name or memory location can not be changed.

This is a collective name for six locations. We can access these locations as x[0], x[1]

up to x[5]. This is the way arrays are manipulated.

Sometimes, you would like to use an array data structure but may lack the information

about the size of the array at compile time. Take the example of telephone directory.

You have to store one lakh (100,000) names in an array. But you never know that the

number of entries may get double or decline in future. Similarly, you can not say that

the total population of the country is one crore (10 million) and declare an array of

one crore names. You can use one lakh locations now and remaining will be used as

the need arrives. But this is not a good way of using the computer resources. You

have declared a very big array while using a very small chunk of it. Thus the

remaining space goes waste which can, otherwise, be used by some other programs.

We will see what can be the possible solution of this problem?

Suppose you need an integer array of size n after the execution of the program. We

have studied that if it is known at the execution of the program that an array of size 20

or 30 is needed, it is allocated dynamically. The programming statement is as follows:

CS301 – Data Structures Lecture No. 01

Page 9 of 505

int* y = new int[20];

It means we are requesting computer to find twenty memory locations. On finding it,

the computer will give the address of first location to the programmer which will be

stored in y. Arrays locations are contiguous i.e. these are adjacent. These twenty

locations will be contiguous, meaning that they will be neighbors to each other. Now

y has become an array and we can say y[0] =1 or y[5] = 15. Here y is an lvalue.

Being a pointer, it is a variable where we can store the address of some variable.

When we said int* y = new int[20]; the new returns the memory address of first of

the twenty locations and we store that address into y. As y is a pointer variable, so it

can be used on the left-hand side. We can write it as:

y = &x[0];

In the above statement, we get the address of the fist location of the array x and store

it in y. As y is lvalue, so it can be used on left hand side. This means that the above

statement is correct.

y = x;

Similarly, the statement y = x is also correct. x is an array of six elements that holds

the address of the first element. But we cannot change this address. However we can

get that address and store it in some other variable. As y is a pointer variable and

lvalue so the above operation is legal. We have dynamically allocated the memory for

the array. This memory, after the use, can be released so that other programs can use

it. We can use the delete keyword to release the memory. The syntax is:

delete[] y;

We are releasing the memory, making it available for use by other programs. We will

not do it in case of x array, as ‘new’ was not used for its creation. So it is not our

responsibility to delete x.

List data structure
This is a new data structure for you. The List data structure is among the most generic
of data structures. In daily life, we use shopping list, groceries list, list of people to

invite to a dinner, list of presents to give etc. In this course, we will see how we use

lists in programming.

A list is the collection of items of the same type (grocery items, integers, names). The

data in arrays are also of same type. When we say int x[6]; it means that only the

integers can be stored in it. The same is true for list. The data which we store in list

should be of same nature. The items, or elements of the list, are stored in some

particular order. What does this mean? Suppose in the list, you have the fruit first

which are also in some order. You may have names in some alphabetical order i.e. the

names which starts with A should come first followed by the name starting with B and

so on. The order will be reserved when you enter data in the list.

It is possible to insert new elements at various positions in the list and remove any

CS301 – Data Structures Lecture No. 01

Page 10 of 505

element of the list. You have done the same thing while dealing with arrays. You

enter the data in the array, delete data from the array. Sometimes the array size grows

and at times, it is reduced. We will do this with the lists too.

List is a set of elements in a linear order. Suppose we have four names a1, a2, a3, a4

and their order is as (a3, a1, a2, a4) i.e. a3, is the first element, a1 is the second

element, and so on. We want to maintain that order in the list when data is stored in

the list. We don’t want to disturb this order. The order is important here; this is not

just a random collection of elements but an ordered one. Sometimes, this order is due

to sorting i.e. the things that start with A come first. At occasions, the order may be

due to the importance of the data items. We will discuss this in detail while dealing

with the examples.

Now we will see what kind of operations a programmer performs with a list data

structure. Following long list of operations may help you understand the things in a

comprehensive manner.

Operation Name Description

createList() Create a new list (presumably empty)

copy() Set one list to be a copy of another

clear(); Clear a list (remove all elements)

insert(X, ?) Insert element X at a particular position in the list

remove(?) Remove element at some position in the list

get(?) Get element at a given position

update(X, ?) Replace the element at a given position with X

find(X) Determine if the element X is in the list

length() Returns the length of the list.

createList() is a function which creates a new list. For example to create an array, we

use int x[6] or int* y = new int[20]; we need similar functionality in lists too. The

copy() function will create a copy of a list. The function clear() will remove all the

elements from a list. We want to insert a new element in the list, we also have to tell

where to put it in the list. For this purpose insert(X, position) function is used.

Similarly the function remove(position) will remove the element at position. To get an

element from the list get(position) function is used which will return the element at

position. To replace an element in the list at some position the function update(X,

position) is used. The function find(X) will search X in the list. The function length()

tells us about the number of elements in the list.

We need to know what is meant by “particular position” we have used “?” for this in

the above table. There are two possibilities:

The first option is used in the data structures like arrays. When we have to manipulate

the arrays, we use index like x[3], x[6]. In the second option we do not use first,

second etc for position but say wherever is the current pointer. Just think of a pointer

in the list that we can move forward or backward. When we say get, insert or update

 Use the actual index of element: i.e. insert it after element 3, get element

number 6. This approach is used with arrays
 Use a “current” marker or pointer to refer to a particular position in the list.

CS301 – Data Structures Lecture No. 01

Page 11 of 505

while using the current pointer, it means that wherever is the current pointer, get data

from that position, insert data after that position or update the data at that position. In

this case, we need not to use numbers. But it is our responsibility that current pointer

is used in a proper way.

If we use the “current” marker, the following four methods would be useful:

Functions Description

start() Moves the “current” pointer to the very first element

tail() Moves the “current” pointer to the very last element

next() Move the current position forward one element

back() Move the current position backward one element

In the next lecture, we will discuss the implementation of the list data structure and

write the functions discussed today, in C++ language.

CS301 – Data Structures Lecture No. 02

Page 12 of 505

Data Structures

Lecture No. 02

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3

Summary

3.1, 3.2, 3.2.1, 3.2.2

1) List Implementation

 add Method

 next Method

 remove Method

 find Method

 Other Methods

2) Analysis Of Array List

3) List Using Linked Memory

4) Linked List

Today, we will discuss the concept of list operations. You may have a fair idea of ‘

start operation’ that sets the current pointer to the first element of the list while the

tail operation moves the current pointer to the last element of the list. In the previous

lecture, we discussed the operation next that moves the current pointer one element

forward. Similarly, there is the ‘back operation’ which moves the current pointer one

element backward.

List Implementation

Now we will see what the implementation of the list is and how one can create a list

in C++. After designing the interface for the list, it is advisable to know how to

implement that interface. Suppose we want to create a list of integers. For this

purpose, the methods of the list can be implemented with the use of an array inside.

For example, the list of integers (2, 6, 8, 7, 1) can be represented in the following

manner where the current position is 3.

 A 2 6 8 7 1 current size

 1 2 3 4 5 3 5

In this case, we start the index of the array from 1 just for simplification against the

usual practice in which the index of an array starts from zero in C++. It is not

necessary to always start the indexing from zero. Sometimes, it is required to start the

indexing from 1. For this, we leave the zeroth position and start using the array from

index 1 that is actually the second position. Suppose we have to store the numbers

from 1 to 6 in the array. We take an array of 7 elements and put the numbers from the

CS301 – Data Structures Lecture No. 02

Page 13 of 505

add Method
Now we will talk about adding an element to the list. Suppose there is a call to add an

element in the list i.e. add(9). As we said earlier that the current position is 3, so by

adding the element 9 to the list, the new list will be (2, 6, 8, 9, 7, 1).

To add the new element (9) to the list at the current position, at first, we have to make

space for this element. For this purpose, we shift every element on the right of 8 (the

current position) to one place on the right. Thus after creating the space for new

element at position 4, the array can be represented as

Now let’s see another method, called ‘next’. We have talked that the next method

moves the current position one position forward. In this method, we do not add a new

element to the list but simply move the pointer one element ahead. This method is

required while employing the list in our program and manipulating it according to the

requirement. There is also an array to store the list in it. We also have two variables-

current and size to store the position of current pointer and the number of elements in

the list. By looking on the values of these variables, we can find the state of the list

i.e. how many elements are in the list and at what position the current pointer is.

index 1. Thus there is a correspondence between index and the numbers stored in it.

This is not very useful. So, it does not justify the non-use of zeroth position of the

array out-rightly. However for simplification purposes, it is good to use the index

from 1.

A 2 6 8 7 1 current size

 1 2 3 4 5 3 5

Now in the second step, we put the element 9 at the empty space i.e. position 4. Thus

the array will attain the following shape. The figure shows the elements in the array in

the same order as stored in the list.

A 2 6 8 9 7 1 current size

 1 2 3 4 5 6 4 6

We have moved the current position to 4 while increasing the size to 6. The size

shows that the elements in the list. Where as the size of the array is different that we

have defined already to a fixed length, which may be 100, 200 or even greater.

next Method

The method next is used to know about the boundary conditions of the list i.e. the

array being used by us to implement the list. To understand the boundary conditions,

we can take the example of an array of size 100 to implement the list. Here, 100

elements are added to the array. Let’s see what happens when we want to add 101 st

element to the array? We used to move the current position by next method and

reached the 100th position. Now, in case of moving the pointer to the next position

(i.e. 101st), there will be an error as the size of the array is 100, having no position

after this point. Similarly if we move the pointer backward and reach at the first

position regardless that the index is 0 or 1. But what will happen if we want to move

backward from the first position? These situations are known as boundary conditions

and need attention during the process of writing programs when we write the code to

use the list. We will take care of these things while implementing the list in C++

CS301 – Data Structures Lecture No. 02

Page 14 of 505

programs.

remove Method
We have seen that the add method adds an element in the list. Now we are going to

discuss the remove method. The remove method removes the element residing at the

current position. The removal of the element will be carried out as follows. Suppose

there are 6 elements (2, 6, 8, 9, 7, 1) in the list. The current pointer is pointing to the

position 5 that has the value 7. We remove the element, making the current position

empty. The size of the list will become 5. This is represented in the following figure.

A 2 6 8 9 1 current size

 1 2 3 4 5 6 5 6
5

We fill in the blank position left by the removal of 7 by shifting the values on the right
of position 5 to the left by one space. This means that we shift the remaining elements

on the right hand side of the current position one place to the left so that the element

next to the removed element (i.e. 1) takes its place (the fifth position) and becomes

the current position element. We do not change the current pointer that is still pointing

to the position 5. Thus the current pointer remains pointing to the position 5 despite

the fact that there is now element 1 at this place instead of 7. Thus in the remove

method, when we remove an element, the element next to it on the right hand side

comes at its place and the remaining are also shifted one place to the right. This step is

represented by the following figure.

A 2 6 8 9 1 current size

 1 2 3 4 5 5 5

int find (int x)
{

int j ;
for (j = 1; j < size + 1; j++)

if (A[j] == x)

break ;

if (j < size + 1) // x is found

{

current = j ; //current points to the position where x found

return 1 ; // return true

find Method
Now lets talk about a function, used to find a specific element in the array. The find

(x) function is used to find a specific element in the array. We pass the element, which

is to be found, as an argument to the find function. This function then traverses the

array until the specific element is found. If the element is found, this function sets the

current position to it and returns 1 i.e. true. On the other hand, if the element is not

found, the function returns 0 i.e. false. This indicates that the element was not found.

Following is the code of this find(x) function in C++.

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 02

Page 15 of 505

}

return 0 ; //return false, x is not found

}

In the above code, we execute a for loop to traverse the array. The number of

execution of this loop is equal to the size of the list. This for loop gets terminated

when the value of loop variable (j) increases from the size of the list. However we

terminate the loop with the break statement if the element is found at a position.

When the control comes out from the loop, we check the value of j. If the value of j is

less than the size of the array, it means that the loop was terminated by the break

statement. We use the break statement when we find the required element (x) in the

list. The execution of break statement shows that the required element was found at

the position equal to the value of j. So the program sets the current position to j and

comes out the function by returning 1 (i.e. true). If the value of j is greater than the

size of the array, it means that the whole array has traversed and the required element

is not found. So we simply return 0 (i.e. false) and come out of the function.

This statement returns the element to which the current is pointing to (i.e. the current

position) in the list A.

Another function is update(x). This method is used to change (set) the value at the

current position. A value is passed to this method as an argument. It puts that value at

the current position. The following statement in this method carries out this process.

A [current] = x ;

Then there is a method length().This method returns the size of the list. The syntax of

return size ;

You may notice here that we are returning the size of the list and not the size of the

array being used internally to implement the list. This size is the number of the

elements of the list, stored in the array.

The -- is a decrement operator in C++ that decreases the value of the operand by one.

The above statement can also be written as

Other Methods

There are some other methods to implement the list using an array. These methods are

very simple, which perform their task just in one step (i.e. in one statement). There is

a get() method , used to get the element from the current position in the array. The

syntax of this function is of one line and is as under

return A[current] ;

this method is

The back() method decreases the value of variable current by 1. In other words, it
moves the current position one element backward. This is done by writing the

statement.

current -- ;

CS301 – Data Structures Lecture No. 02

Page 16 of 505

Remove

When we remove an element at the current position in the list, its space gets empty.

The current pointer remains at the same position. To fill this space, we shift the

elements on the right of this empty space one place to the left. If we remove an

element from the beginning of the list, then we have to shift the entire remaining

elements one place to the left. Suppose there is a large number of elements, say 10000

current = current -1 ;

current = 1 ;

Add

First of all, we have talked about the add method. When we add an element to the list,
every element is moved to the right of the current position to make space for the new

element. So, if the current position is the start of the list and we want to add an

element in the beginning, we have to shift all the elements of the list to the right one

place. This is the worst case of adding an element to the list. Suppose if the size of the

list is 10000 or 20000, we have to do the shift operation for all of these 10000 or

20000 elements. Normally, it is done by shifting of elements with the use of a for

loop. This operation takes much time of the CPU and thus it is not a good practice to

add an element at the beginning of a list. On the other hand, if we add an element at

the end of the list, it can be done by carrying out ‘no shift operation’. It is the best

case of adding an element to the list. However, normally we may have to move half of

the elements. The usage of add method is the matter warranting special care at the

time of implementation of the list in our program. To provide the interface of the list,

we just define these methods.

or 20000, in the list. We remove the first element from the list. Now to fill this space,

the remaining elements are shifted (that is a large number). Shifting such a large

number of elements is time consuming process. The CPU takes time to execute the for

loop that performs this shift operation. Thus to remove an element at the beginning of

the list is the worst case of remove method. However it is very easy to remove an

The start() method sets the current position to the first element of the list. We know

that the index of the array starts from 0 but we use the index 1 for the starting

position. We do not use the index zero. So we set the current position to the first

element by writing

Similarly, the end() method sets the current position to the last element of the list i.e.

size. So we write

current = size ;

Analysis of Array List

Now we analyze the implementation of the list while using an array internally. We

analyze different methods used for the implementation of the list. We try to see the

level upto which these are efficient in terms of CPU’s time consumption. Time is the

major factor to see the efficiency of a program.

CS301 – Data Structures Lecture No. 02

Page 17 of 505

element at the end of the list. In average cases of the remove method we expect to

shift half of the elements. This average does not mean that in most of the cases, you

will have to shift half the elements. It is just the average. We may have to shift all the

elements in one operation (if we remove at the beginning) and in the second

operation, we have to shift no element (if we remove at the end). Similarly, in certain

operations, we have to shift just 10, 15 elements.

The other methods get (), length () etc are one-step methods. They carry out their

operation in one instruction. There is no need of any loop or other programming

structures to perform the task. The get() method gets the value from the specified

position just in one step. Similarly the update() method sets a value at the specific

position just in one-step. The length () method returns the value of the size of the list.

The other methods back(), start() and end() also perform their tasks only in one step.

List using Linked Memory

We have seen the implementation of the list with the use of an array. Now we will

discuss the implementation of the list while using linked memory. In an array, the

memory cells of the array are linked with each other. It means that the memory of the

array is contiguous. In an array, it is impossible that one element of the array is

located at a memory location while the other element is located somewhere far from it

in the memory. It is located in very next location in the memory. It is a property of the

array that its elements are placed together with one another in the memory. Moreover,

when we have declared the size of the array, it is not possible to increase or decrease

it during the execution of the program. If we need more elements to store in the array,

there is need of changing its size in the declaration. We have to compile the program

again before executing it. Now array will be of the new size. But what happens if we

again need to store more elements? We will change the code of our program to

change the declaration of the array while recompiling it.

Suppose we have used the dynamic memory allocation and created an array of 100

elements with the use of new operator. In case of need of 200 elements, we will

release this array and allocate a new array of 200 elements. Before releasing the

previous array, it will wise to copy its elements to the new array so that it does not

lose any information. Now this new array is in ‘ready for use’ position. Thus the

procedure of creating a new array is not an easy task.

To avoid such problems, usually faced by the programmers while using an array,

there is need of using linked memory in which the various cells of memory, are not

located continuously. In this process, each cell of the memory not only contains the

value of the element but also the information where the next element of the list is

residing in the memory. It is not necessary that the next element is at the next location

in the memory. It may be anywhere in the memory. We have to keep a track of it.

Thus, in this way, the first element must explicitly have the information about the

location of the second element. Similarly, the second element must know where the

Find

We have discussed that the find method takes an element and traverses the list to find

that element. The worst case of the find method is that it has to search the entire list

from beginning to end. So, it finds the element at the end of the array or the element is

not found. On average the find method searches at most half the list.

CS301 – Data Structures Lecture No. 02

Page 18 of 505

third element is located and the third should know the position of the fourth element

and so on. Thus, each cell (space) of the list will provide the value of the element

along with the information about where the next element is in the memory. This

information of the next element is accomplished by holding the memory address of

the next element. The memory address can be understood as the index of the array. As

in case of an array, we can access an element in the array by its index. Similarly, we

can access a memory location by using its address, normally called memory address.

A chain of these nodes forms a linked list. Now let’s consider our previous list, used

with an array i.e. 2, 6, 8, 7, 1. Following is the figure which represents the list stored

as a linked list.

This diagram just represents the linked list. In the memory, different nodes may occur

at different locations but the next part of each node contains the address of the next

node. Thus it forms a chain of nodes which we call a linked list.

While using an array we knew that the array started from index 1that means the first

element of the list is at index 1. Similarly in the linked list we need to know the

starting point of the list. For this purpose, we have a pointer head that points to the

first node of the list. If we don’t use head, it will not be possible to know the starting

position of the list. We also have a pointer current to point to the current node of the

list. We need this pointer to add or remove current node from the list. Here in the

linked list, the current is a pointer and not an index as we used while using an array.

The next field of the last node points to nothing .It is the end of the list. We place the

memory address NULL in the last node. NULL is an invalid address and is

inaccessible.

Now again consider the list 2, 6, 8, 7, 1. The previous figure represents this list as a

linked list. In this linked list, the head points to 2, 2 points to 6, 6 points to 8, 8 points

to 7 and 7 points to 1. Moreover we have the current position at element 8.

This linked list is stored in the memory. The following diagram depicts the process

Linked List

For the utilization of the concept of linked memory, we usually define a structure,

called linked list. To form a linked list, at first, we define a node. A node comprises

two fields. i.e. the object field that holds the actual list element and the next that holds

the starting location of the next node.

object next

Head

2 6 8 7 1 size = 5

current

CS301 – Data Structures Lecture No. 02

Page 19 of 505

through which this linked list is stored in the memory.

 1051 6

 1052 1063

 current 1053

 1054 2

 1055 1051

 1056

 1057 7

 1058 1060

 1059

 1060 1

 1061 0

 head 1062 1054

 1063 8

 1064 1057

 1065

We can see in the figure that each memory location has an address. Normally in

programming, we access the memory locations by some variable names. These

variable names are alias for these locations and are like labels that are put to these

memory locations. We use head and current variable names instead of using the

memory address in numbers for starting and the current nodes. In the figure, we see

that head is the name of the memory location 1062 and the name current is used for

the memory address 1053. The head holds the address 1054 and the element 2, the

first one in the list, is stored in the location 1054. Similarly current holds the address

1063 where the element 8 is stored which is our current position in the list. In the

diagram, two memory locations comprise a node. So we see that the location 1054

holds the element 2 while the next location 1055 holds the address of the memory

location (1051) where the next element of the list (i.e. 6) is stored. Similarly the next

part of the node that has value 6 holds the memory address of the location occupied

by the next element (i.e. 8) of the list. The other nodes are structured in a similar

fashion. Thus, by knowing the address of the next element we can traverse the whole

list.

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 03

Page 20 of 505

Data Structures

Lecture No. 03

Reading Material

Data Structures and algorithm analysis in C++ Chapter. 3

3.2.2, 3.2.3, 3.2.5

Summary

 Linked List inside Computer Memory

 Linked List Operations

 Linked List Using C++

 Example Program

In the previous lectures, we used an array to construct a list data structure and

observed the limitation that array being of fixed size can only store a fixed number of

elements. Therefore, no more elements can be stored after the size of the array is

reached.

In order to resolve this, we adopted a new data structure called linked list. We started

discussing, how linked lists are stored in computer memory and how memory chains
are formed.

CS301 – Data Structures Lecture No. 03

Page 21 of 505

Linked List inside Computer Memory

Fig 1. Linked list in memory

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

There are two parts of this figure. On the left is the linked list chain that is actually the

conceptual view of the linked list and on the right is the linked list inside the computer

memory. Right part is a snapshot of the computer memory with memory addresses

from 1051 to 1065. The head pointer is pointing to the first element in the linked list.

Note that head itself is present in the memory at address 1062. It is actually a pointer

containing the memory address 1054. Each node in the above linked list has two parts

i.e. the data part of the node and the pointer to the next node. The first node of the

linked list pointed by the head pointer is stored at memory address 1054. We can see

the data element 2 present at that address. The second part of the first node contains

the memory address 1051. So the second linked list’s node starts at memory address

1051. We can use its pointer part to reach the third node of the list and in this way, we

can traverse the whole list. The last node contains 1 in its data part and 0 in its pointer

part. 0 indicates that it is not pointing to any node and it is the last node of the linked

list.

Linked List Operations

The linked list data structure provides operations to work on the nodes inside the list.

The first operation we are going to discuss here is to create a new node in the

memory. The Add(9) is used to create a new node in the memory at the current

current

6

1063

1063

2

1051

7

1060

1

0

1054

8

1057

head

2 6 8 7 1

head

CS301 – Data Structures Lecture No. 03

Page 22 of 505

position to hold ‘9’. You must remember while working with arrays, to add an

element at the current position that all the elements after the current position were

shifted to the right and then the element was added to the empty slot.

Here, we are talking about the internal representation of the list using linked list. Its

interface will remain the same as in case of arrays.

We can create a new node in the following manner in the add() operation of the linked

list with code in C++:

Node * newNode = new Node(9);

The first part of the statement that is on the left of the assignment is declaring a

variable pointer of type Node. It may also be written as Node * newNode. On the

right of this statement, the new operator is used to create a new Node object as new

Node(9). This is one way in C++ to create objects of classes. The name of the class is

provided with the new operator that causes the constructor of the class to be called.

The constructor of a class has the same name as the class and as this a function,

parameters can also be passed to it. In this case, the constructor of the Node class is

called and ‘9’ is passed to it as an int parameter.

Hence, the whole statement means:

“Call the constructor of the Node class and pass it ‘9’ as a parameter. After

constructing the object in memory, give me the starting memory address of the object.

That address will be stored in the pointer variable newNode.”

To create an object of int type in the same manner, we can write as:

int * i = new int ;

Previously, we used the same technique to allocate memory for an array of ints as:

int * i = new int [10] ;

Now after the node has been created, how the node is fit into the chain of the linked

list.

Fig 2. Insertion of new Node into the linked list

current

3

newNode

In the above figure, there is a linked list that contains five nodes with data elements as

2, 6, 8, 7 and 1. The current pointer is pointing to the node with element as 8. We

want to insert a new node with data element 9. This new node will be inserted at the

current position (the position where the current pointer is pointing to). This insertion

2 1

1
2

9

6 8 7

CS301 – Data Structures Lecture No. 03

Page 23 of 505

operation is performed in a step by step fashion.

- The first step is to point next pointer of the new node (with data element as 9) to

the node with data element as 7.

- The second step is to point the next pointer of the node with data element 8 to the

node the new node with data element 9.

- The third step is to change the current pointer to point to the new node.

Now, the updated linked list has nodes with data elements as 2, 6, 8, 9, 7 and 1. The

list size has become 6.

Linked List Using C++

Whenever, we write a class, it begins with the word class followed by the class-name

and the body of the class enclosed within curly braces. In the body, we write its public

variables, methods and then private variables and methods, this is normally the

sequence.

If there is no code to write inside the constructor function of a class, we need not to

declare it ourselves as the compiler automatically creates a default constructor for us.

Similarly, if there is nothing to be done by the destructor of the class, it will be better

not to write it explicitly. Rather, the compiler writes it automatically. Remember, the

default constructor and destructor do nothing as these are the function without any

code statements inside.

Let’s start with the data members first. These are given at the bottom of the class body

with the scope mentioned as private. These data members are actually two parts of a

linked list’s node. First variable is object of type int, present there to store the data

part of the node. The second variable is nextNode, which is a pointer to an object of

type Node. It has the address of the next element of the linked list.

The very first public function given at the top is get(). We have written its code within

the class Node. It returns back the value of the variable object i.e. of the type of int.

When we write class in C++, normally, we make two files (.h and .cpp) for a class.

The .h file contains the declarations of public and private members of that class. The

public methods are essentially the interface of the class to be employed by the users of

this class. The .cpp file contains the implementation for the class methods that has the

/* The Node class */

class Node

{

public:

int get() { return object; };

void set(int object) { this->object = object; };

Node * getNext() { return nextNode; };

void setNext(Node * nextNode) { this->nextNode = nextNode; };

private:

int object;

Node * nextNode;

};

CS301 – Data Structures Lecture No. 03

Page 24 of 505

actual code. This is usually the way that we write two files for one class. But this is

not mandatory. In the code given above, we have only one file .cpp, instead of

separating into two files. As the class methods are very small, so their code is written

within the body of the class. This facilitates us in carrying on discussion. Thus instead

of talking about two files, we will only refer to one file. On the other hand, compiler

takes these functions differently that are called inline functions. The compiler replaces

the code of these inline functions wherever the call to them is made.

Let’s discuss a little bit about classes. A very good analogy of a class is a factory.

Think about a car factory. On the placement of order, it provides us with the number

of vehicles we ordered for. Similarly, you can see number of other factories in your

daily-life that manufacture the specific products.

Let’s take this analogy in C++ language. Suppose, we want to make a factory in C++.

By the way, what is our Node class? It is actually a factory that creates nodes. When

we want to make a new node, a new operator is used. By using new operator with the

Node class, actually, we send an order to Node factory, to make as many as nodes for

us.

So we have a good analogy, to think about a class as a factory. The products that are

made by the factory have their own characteristics. For example, a car made by an

automobile factory has an engine, wheels, steering and seats etc. These variables

inside a class are called state variables. Now the kinds of operations this car can do

are the methods of its class. A car can be driven, engine can be started, gears can be

shifted and an accelerator can be pressed to run it faster.

Similarly, the Node class creates nodes, where every node has two-state variables i.e.

object and nextNode. We have already seen its operations in the above code. We use

new to create new object or an array of new objects, stored in memory.

Let’s see the code below.

/* List class */

#include <stdlib.h>
#include "Node.cpp"

class List

{

public:

The second method in the above-mentioned class is set() that accepts a parameter of

type int while returning back nothing. The accepted parameter is assigned to the

internal data member object. Notice the use of this pointer while assigning the value

to the internal data member. It is used whenever an object wants to talk to its own

members.

The next method is getNext() which returns a pointer to an object of type Node lying

somewhere in the memory. It returns nextNode i.e. a pointer to an object of type

Node. As discussed above, nextNode contains the address of next node in the linked

list.

The last method of the class is setNext() that accepts a pointer of type Node, further

assigned to nextNode data member of the object. This method is used to connect the

next node of the linked list with the current object. It is passed an address of the next

node in the linked list.

CS301 – Data Structures Lecture No. 03

Page 25 of 505

We are creating a list factory here employed to create list objects. Remember the list

operations; add, remove, next, back and start etc. Let’s see the above class declaration

code in detail.

There are two include statements at the start. The first line is to include a standard

library stdlib.h while the second line includes the Node class file Node.cpp. This Node

class is used to create nodes that form a List object. So this List factory will order

Node class to create new nodes. The List class itself carries out the chain management

of these Node objects.

We have written our own constructor of List class as the default constructor is not

sufficient enough to serve the purpose. The List constructor is parameterless. The very

first step it is doing internally is that it is asking Node class to create a new node and

assigning the starting address of the new Node’s object to the headNode data member.

In the second statement, we are calling setNext() method of the Node class for the

object pointed to by the headNode pointer. This call is to set the nextNode data

member to NULL, i.e. Node’s object pointed to by the headNode pointer is not

pointing to any further Node. The next statement is to set the currentNode pointer to

NULL. So at the moment, we have initialized the currentNode pointer to NULL that is

not pointing to any Node object. The next statement is to initialize the size data

member to 0 indicating that there is no node present in the list. All this processing is

done inside the constructor of List class, as we want all this done when a list object is

created. Considering the analogy of car factory, the constructor function can perform

certain tasks: The oil is poured into the engine, the tyres are filled-in with air etc.

Let’s see the add method of the List class:

/* add() class method */

void

{

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

add (int addObject)

Node * newNode = new Node();

newNode->set(addObject);

if(currentNode != NULL)
{

newNode->setNext(currentNode->getNext());

currentNode->setNext(newNode);

lastCurrentNode = currentNode;

currentNode = newNode;

}

else

{
newNode->setNext(NULL);

headNode->setNext(newNode);

// Constructor

List() {

headNode = new Node();

headNode->setNext(NULL);

currentNode = NULL;

size = 0;

}

CS301 – Data Structures Lecture No. 03

Page 26 of 505

The interface or signatures of add() method is similar to the one discussed in case of

an array. This method takes the object to be added as a parameter. The

implementation of this add() method is a bit longer as the method is being

implemented for linked list. In the first statement, a new Node object is created with

its address stored in the newNode pointer variable. The second statement is to call

set() method of the Node object pointed to by the newNode pointer. You can note the

way the method is called. A pointer variable is at the left most side then an arrow sign

(->), then the name of the method with appropriate arguments within parenthesis. It is

followed by the if-statement that checks the currentNode is not NULL to perform

certain operations inside the if-code block. Inside the if-statement, at line 5, the

nextNode pointer of the new node is being set to the nextNode of the object pointed to

by the currentNode pointer. In order to understand the statements given in this code

properly, consider the fig 2 above, where we added a node in the linked list. We have

done step 1 at line5. At line 6, we are performing the second step by setting the

newNode in the nextNode pointer of the object pointed to by the currentNode. At line

7, we are saving the current position (address) of the currentNode pointer in the

pointer variable lastCurrentNode, which might be useful for backward traversing.

Although, the fig 1 (left part) indicates movement in one direction from left to right

but the lastCurrentNode pointer node can be used by the back() member function to

traverse one position back from right to left. At line 8, the currentNode pointer is

assigned the address of the object pointed to by newNode. This way, a new node is

added in already existent linked list.
Line 10 is start of the else part of if-statement. This is executed if the currentNode is
NULL. It means that there is no node present in the list previously and first node is

going to be added. At line 12, we are setting the nextNode pointer of the object

pointed to by newNode pointer. The nextNode is being set to NULL by calling the

setNext() method. Then at line 13, we point the head pointer (headNode) to this new

node pointed to by newNode pointer. Note that headNode is pointing to a node that is

there despite the fact that the size of the linked list is 0. Actually, we have allocated a

Node object for headNode pointer. Although, we don’t need a Node object here, yet it

will be helpful when we perform other operations like remove() and find().

At line 14, the headNode address is being assigned to lastCurrentNode. At line 15,

currentNode pointer is assigned the address of newNode. At the end i.e. at line 17, the

size of the list is incremented by 1.

14.

15.

16.

17.

}

lastCurrentNode = headNode;

currentNode = newNode;

}

size ++;

CS301 – Data Structures Lecture No. 03

Page 27 of 505

7

List list; headNode size = 0

currentNode

list.add(2); headNode size = 1

lastCurrentNode

list.add(6);

headNode

currentNode

size = 2

lastCurrentNode

Fig 3. Add operation of linked list

Following is the crux of this add() operation :

Firstly, it will make a new node by calling Node class constructor. Insert the value

e.g. 2. of the node into the node by calling the set method. Now if the list already

exists (has some elements inside or its size is non-zero), it will insert the node after

the current position. If the list does not already exist, this node is added as the first

element inside the list.

Let’s try to add few more elements into the above linked list in the figure. The

following are the lines of code to be executed to add nodes with values 8, 7 and 1 into
the linked list.

list.add(8); list.add(7); list.add(1);

currentNode

size = 5

headNode lastCurrentNode

Fig 4. More Nodes added into linked list

Now we will see the remaining methods of the linked list. The get() method of the

List class is given below

2

2 6

2 6 8 1

CS301 – Data Structures Lecture No. 03

Page 28 of 505

This method firstly confirms that the currentNode pointer is not NULL. If it is not

NULL, then it must be pointing to some Node object as inside the constructor of the

List class, we have initialized this pointer variable to NULL. That indicates that the

currentNode is NULL when there is no element inside the list. However, when a Node

object is added into it, it starts pointing to it. So, this get() returns the address of the

node pointed to by the currentNode pointer.

Further, we have another method given below:

This is next() method, used to advance the currentNode pointer to the next node inside

the linked list. At line 1, the currentNode is being checked to confirm that there are

some elements present in the list to advance further. At line 1, the method is returning

false if there is no element present in the list. At line 3, it is storing the value of the

currentNode pointer into the lastCurrentNode. At line 4, currentNode is calling the

getNext() method to get the address of next node to be stored in the currentNode

pointer to advance the currentNode pointer to the next element. At line 5, it returns

true indicating the method is successful in moving to the next node.

Example Program
Given below is the full source code of the example program. You can copy, paste and

compile it right away. In order to understand the linked list concept fully, it is highly

desirable that you understand and practice with the below code.

#include <iostream.h>

#include <stdlib.h>

/* The Node class */

class Node

{

public:

int get() { return object; };

void set(int object) { this->object = object; };

/* next() class method */

bool

{

1.

2.

3.

4.

5.

};

next()

if (currentNode == NULL) return false;

lastCurrentNode = currentNode;

currentNode = currentNode->getNext();

return true;

/* get() class method */

int get()

{

if (currentNode != NULL)

return currentNode->get();

}

CS301 – Data Structures Lecture No. 03

Page 29 of 505

Node * getNext() { return nextNode; };

void setNext(Node * nextNode) { this->nextNode = nextNode; };

private:

int object;

Node * nextNode;

};

/* The List class */

class List

{
public:

List();

void add (int addObject);

int get();

bool next();

friend void traverse(List list);

friend List addNodes();

private:

int size;

Node * headNode;

Node * currentNode;

Node * lastCurrentNode;

};

/* Constructor */
List::List()

{

headNode = new Node();

headNode->setNext(NULL);

currentNode = NULL;

lastCurrentNode = NULL;

size = 0;

}

/* add() class method */

void List::add (int addObject)

{

Node * newNode = new Node();

newNode->set(addObject);

if(currentNode != NULL)

{

newNode->setNext(currentNode->getNext());

currentNode->setNext(newNode);

lastCurrentNode = currentNode;

currentNode = newNode;

}

else

{

CS301 – Data Structures Lecture No. 03

Page 30 of 505

newNode->setNext(NULL);

headNode->setNext(newNode);

lastCurrentNode = headNode;

currentNode = newNode;

}

size ++;

}

/* get() class method */

int List::get()

{

if (currentNode != NULL)

return currentNode->get();

}

/* next() class method */

bool List::next()

{

if (currentNode == NULL) return false;

lastCurrentNode = currentNode;

currentNode = currentNode->getNext();

if (currentNode == NULL || size == 0)

return false;

else

}

return true;

/* Friend function to traverse linked list */

void traverse(List list)
{

Node* savedCurrentNode = list.currentNode;

list.currentNode = list.headNode;

for(int i = 1; list.next(); i++)

{

cout << "\n Element " << i << " " << list.get();

}

list.currentNode = savedCurrentNode;

}

/* Friend function to add Nodes into the list */

List addNodes()

{

List list;

list.add(2);

list.add(6);

list.add(8);

list.add(7);

list.add(1);

CS301 – Data Structures Lecture No. 03

Page 31 of 505

The output of the example program is as follows:

List size = 5

Element 1 2

Element 2 6

Element 3 8

Element 4 7

Element 5 1

cout << "\n List size = " << list.size <<'\n';

return list;

}

main()

{

List list = addNodes();

traverse(list);

}

CS301 – Data Structures Lecture No. 04

Page 32 of 505

Data Structures

Lecture No. 04

Reading Material

Data Structures and algorithm analysis in C++ Chapter. 3

3.2.3, 3.2.4, 3.2.5

Summary

 Methods of Linked List

 Example of list usage

 Analysis of Link List

 Doubly-linked List

 Circularly-linked lists

 Josephus Problem

Methods of Linked List

In the previous lecture, we discussed the methods of linked list. These methods form

the interface of the link list. For further elucidation of these techniques, we will talk

about the start method that has the following code.

// position currentNode and lastCurrentNode at first element

void start() {

lastCurrentNode = headNode;

currentNode = headNode;

};

There are two statements in this method. We assign the value of headNode to both

lastCurrentNode and currentNode. These two pointers point at different nodes of the

list. Here we have pointed both of these pointers at the start of the list. On calling

some other method like next, these pointers will move forward. As we can move in

the singly-linked list in one direction, these pointers cannot go behind headNode.

We will now see how a node can be removed from the link list. We use the method

remove for this purpose.

void remove() {

if(currentNode != NULL && currentNode != headNode) {

(step 1) lastCurrentNode->setNext(currentNode->getNext());

(step 2) delete currentNode;

(step 3) currentNode = lastCurrentNode;

(step 4) size--;

}

};

CS301 – Data Structures Lecture No. 04

Page 33 of 505

6 2

Step1

2

currentNode

headNode

Size = 5

lastCurrentNode

Suppose that the currentNode is pointing at the location that contains the value 6. A

request for the removal of the node is made. Resultantly, the node pointed by

currentNode should be removed. For this purpose, at first, the next pointer of the node

with value 2 (the node pointed by the lastCurrentNode pointer), that is before the

node with value 6, bypasses the node with value 6. It is, now pointing to the node with

value 8. The code of the first step is as:

lastCurrentNode->setNext(currentNode->getNext());

What does the statement currentNode->getNext() do? The currentNode is pointing to

the node with value 6 while the next of this node is pointing to the node with value 8.

That is the next pointer of node with value 6 contains the address of the node with

value 8. The statement lastCurrentNode->setNext(currentNode->getNext()) will set

the next pointer of the node pointed by the lastCurrentNode to the node with value 8.

So the next pointer of the node with value 2 is pointing to the node with value 8.

currentNode

headNode

Size = 5

lastCurrentNode

You see that the next pointer of the node having data element 2 contains the address

of the node having data element 8. The node with value 6 has been disconnected from

the chain while the node with value 2 is connected to the node with the value 8.

The code of the next step is:

delete currentNode;

You already know, in case of allocation of the memory with the help of the new

keyword, the delete statement releases this memory which returns the memory to the

system. Pictorially it can be represented as:

1 7 8

6 8 1 7

CS301 – Data Structures Lecture No. 04

Page 34 of 505

Step1

2

Step1

2

currentNode

headNode

Size = 5

lastCurrentNode

In the next step, we have moved the currentNode to point the next node. The code is:

currentNode = lastCurrentNode;

In the fourth step, the size of the list has been reduced by 1 after the deletion of one

node i.e.

size--;

currentNode

headNode

Size = 4

lastCurrentNode

The next method is length() that simply returns the size of the list. The code is as

follows:

// returns the size of the list

int length()

{

return size;

};

The private data members of the list are:

private:

int size; // contains the size of the list

Node *headNode; // points to the first node of the list

Node *currentNode, // current node

Node *lastCurrentNode; // last current node

The list class completed just now, can be termed as list factory. We have included all

1 7 8

Step2

1 7 8

Step2

Step4

Step3

CS301 – Data Structures Lecture No. 04

Page 35 of 505

the required methods in it. We may employ more methods if required. A programmer

can get the size of the list, add or remove nodes in it besides moving the pointers.

Example of list usage

Now let’s see how we use the link list. Here is an example showing the use of list:

The output of the program is:

Let’s discuss the code of the above program. We have included the standard libraries

besides having the “List.cpp” file. Usually we do not include .cpp files. Rather, the .h

files are included. Whenever you write a class, two files will be created i.e. .h (header

file containing the interface of the class) and .cpp (implementation file). Here for the

sake of explanation, we have combined the two files into “List.cpp” file. At the start

/* A simple example showing the use of link list */

#include <iostream>

#include <stdlib.h>

#include "List.cpp" // This contains the definition of List class

// main method

int main(int argc, char *argv[])

{

List list; // creating a list object

// adding values to the list

list.add(5);

list.add(13);

list.add(4);

list.add(8);

list.add(24);

list.add(48);

list.add(12);

// calling the start method of the list

list.start();

// printing all the elements of the list

while (list.next())

cout << "List Element: "<< list.get()<<endl;

}

List Element: 5

List Element: 13

List Element: 4

List Element: 8

List Element: 24

List Element: 48

List Element: 12

CS301 – Data Structures Lecture No. 04

Page 36 of 505

of the main method, we have created a list object as:

List list;

Here the default constructor will be called. If you understand the concept of factory,

then it is not difficult to know that we have asked the List factory to create a List

object and named it as list. After creating the object, nodes have been added to it. We

have added the elements with data values 5, 13, 4, 8, 24, 48 and 12. Later, the start()

method of list is called that will position the currentNode and lastCurrentNode at the

start of the list. Now there is no need to worry about the implementation of the List.

Rather, we will use the interface of the List. So the start method will take us to the

start of the list and internally, it may be array or link list or some other

implementation. Then there is a while loop that calls the next() method of the List. It

moves the pointer ahead and returns a boolean value i.e. true or false. When we reach

at the end of the list, the next() method will return false. In the while loop we have a

cout statement that prints the value of the list elements, employing the get() method.

The loop will continue till the next() method returns true. When the pointers reach at

the end of the list the next() will return false. Here the loop will come to an end.

Please keep in mind that list is a very important data structure that will be used in the

entire programming courses.

Analysis of Link List
As stated earlier, we will be going to analyze each data structure. We will see whether

it is useful or not. We will see its cost and benefit with respect to time and memory.

Let us analyze the link list which we have created with the dynamic memory

allocation in a chain form.

 add

For the addition purposes, we simply insert the new node after the current node.
So ‘add’ is a one-step operation. We insert a new node after the current node in

the chain. For this, we have to change two or three pointers while changing the

values of some pointer variables. However, there is no need of traversing too

much in the list. In case of an array, if we have to add an element in the centre of

the array, the space for it is created at first. For this, all the elements that are after

the current pointer in the array, should be shifted one place to the right. Suppose if

we have to insert the element in the start of the array, all the elements to the right

one spot are shifted. However, for the link list, it is not something relevant. In link

lists, we can create a new node very easily where the current pointer is pointing.

We have to adjust two or three pointers. Its cost, in terms of CPU time or

computing time, is not much as compared to the one with the use of arrays.

 remove

Remove is also a one-step operation. The node before and after the node to be

removed is connected to each other. Update the current pointer. Then the node to

be removed is deleted. As a result, the node to be removed is deleted. Very little

work is needed in this case. If you compare it with arrays, for the deletion of an

element from the array, space is created. To fill this space, all the right elements

are shifted one spot left. If the array size is two thousand or three thousand, we

need to run a loop for all these elements to shift them to left.

CS301 – Data Structures Lecture No. 04

Page 37 of 505

Doubly-linked List
If you look at single link list, the chain is seen formed in a way that every node has a

field next that point to the next node. This continues till the last node where we set the

next to NULL i.e. the end of the list. There is a headNode pointer that points to the

start of the list. We have seen that moving forward is easy in single link list but going

back is difficult. For moving backward, we have to go at the start of the list and begin

from there. Do you need a list in which one has to move back or forward or at the start

or in the end very often? If so, we have to use double link list.

In doubly-link list, a programmer uses two pointers in the node, i.e. one to point to
next node and the other to point to the previous node. Now our node factory will

create a node with three parts.

 find

The worst-case in find is that we may have to search the entire list. In find, we

have to search some particular element say x. If found, the currentNode pointer is

moved at that node. As there is no order in the list, we have to start search from

the beginning of the list. We have to check the value of each node and compare it

with x (value to be searched). If found, it returns true and points the currentNode

pointer at that node otherwise returns false. Suppose that x is not in the list, in this

case, we have to search the list from start to end and return false. This is the worst

case scenario. Though time gets wasted, yet we find the answer that x is not in the

list. If we compare this with array, it will be the same. We don’t know whether x

is in the array or not. So we have to search the complete array. In case of finding

it, we will remember that position and will return true. What is the average case? x

can be found at the first position , in the middle or at the end of the list. So on

average, we have to search half of the list.

 back

In the back method, we move the current pointer one position back. Moving the

current pointer back, one requires traversing the list from the start until the node

whose next pointer points to current node. Our link list is singly linked list i.e. we

can move in one direction from start towards end. Suppose our currentNode

pointer and lastCurrentNode are somewhere in the middle of the list. Now we

want to move one node back. If we have the pointer of lastCurrentNode, it will be

easy. We will assign the value of lastCurrentNode to currentNode. But how can

we move the lastCurrentNode one step back. We don’t have the pointer of

previous node. So the solution for this is to go at the start of the list and traverse

the list till the time you reach the node before the lastCurrentNode is pointing.

That will be the node whose next pointer contains the value lastCurrentNode. If

the currentNode and the lastCurrentNode are at the end of the list, we have to

traverse the whole list. Therefore back operation is not a one step operation. We

not only need a loop here but also require time.

First part is prev i.e. the pointer pointing to the previous node, second part is element,

next element prev

CS301 – Data Structures Lecture No. 04

Page 38 of 505

containing the data to be inserted in the list. The third part is next pointer that points to

the next node of the list. The objective of prev is to store the address of the previous

node.

Let’s discuss the code of the node of the doubly-link list. This node factory will create

nodes, each having two pointers. The interface methods are same as used in singly

link list. The additional methods are getPrev and setPrev. The method getPrev returns

the address of the previous node. Thus its return type is Node*. The setPrev method

sets the prev pointer. If we have to assign some address to prev pointer, we will call

this method. Following is the code of the doubly-linked list node.

Most of the methods are same as those in singly linked list. A new pointer prevNode

is added and the methods to get and set its value i.e. getPrev and setPrev. Now we

will use this node factory to create nodes.

This is a doubly link list. The arrows pointing towards right side are representing

nextNode while those pointing towards left side are representing prevNode. Suppose

/* this is the doubly-linked list class, it uses the next and prev pointers */

class Node {

public:

int get() { return object; }; // returns the value of the element

void set(int object) { this->object = object; }; // set the value of the element

Node* getNext() { return nextNode; }; // get the address of the next node
void setNext(Node* nextNode) // set the address of the next node

{ this->nextNode = nextNode; };

Node* getPrev() { return prevNode; }; // get the address of the prev node

void setPrev(Node* prevNode) // set the address of the prev node

{ this->prevNode = prevNode; };

private:

int object; // it stores the actual value of the element
Node* nextNode; // this points to the next node

Node* prevNode; // this points to the previous node

};

You have to be very cautious while adding or removing a node in a doubly linked list.

The order in which pointers are reorganized is important. Let’s have a pictorial view

of doubly-link list. The diagram can help us understand where the prevNode and

nextNode are pointing.

2 6 8 7 1 size=5 head

current

CS301 – Data Structures Lecture No. 04

Page 39 of 505

we are at the last node i.e. the node with value 1. In case of going back, we usually

take the help of prevNode pointer. So we can go to the previous node i.e. the node

with value 7 and then to the node with value 8 and so on. In this way, we can traverse

the list from the end to start. We can move forward or backward in doubly-link list

very easily. We have developed this facility for the users to move in the list easily.

Let’s discuss other methods of the doubly-linked list. Suppose we have created a new

node from the factory with value 9. We will request the node factory to create a new

object using new keyword. The newly created node contains three fields i.e. object,

prevNode and nextNode. We will store 9 into object and connect this new node in the

chain. Let’s see how the pointers are manipulated to do that. Consider the above

diagram, the current is pointing at the node with value 6. The new node will be

inserted between the node with value 6 and the one with value 8.

In the first step, we assign the address of the node with value 8 to the nextNode of the

new node.

newNode->setNext(current->getNext());

current

head size=5

newNode

In the next step, a programmer points the prevNode of the newNode to the node with
value 6.

newNode->setprev(current);

current

head size=5

newNode

In the third step, we will set the previous node with value 8 to point to the newNode.

(current->getNext())->setPrev(newNode);

9 1

9 1

2

 2

 6

 8

 7

 1

 2

 6

 8

 7

CS301 – Data Structures Lecture No. 04

Page 40 of 505

9

6

8 6

current

head

newNode

size=5

Now the prevNode of the node with value 8 is pointing to the node with value 9.

In the fourth step, the nextNode of the node with value 6 is pointing to the newNode

i.e. the node with value 9. Point the current to the newNode and add one to the size of

the list.

current->setNext(newNode);

current = newNode;

size++;

head

newNode

size=6

current

Now the newNode has been inserted between node with value 6 and node with value

8.

The next method in the singly-linked list or doubly-linked list moves the current

pointer to the next node and every time it checks whether the next pointer is NULL or

not. Similarly the back method in the double-linked list has to be employed carefully

if the current is pointing the first node. In this case, the prev pointer is pointing to

NULL. If we do not take care of this, the current will be pointing to NULL. So if we

try to access the NULL pointer, it will result in an error. To avoid this, we can make a

circularly linked list.

4 3

 2

 2

8

1

1 9

2

2

 7

 1

 7

 1

3

Circularly-linked lists
Let’s talk about circularly linked list. The next field in the last node in a singly-linked

list is set to NULL. The same is the case in the doubly-linked list. Moving along a

singly-linked list has to be done in a watchful manner. Doubly-linked lists have two

NULL pointers i.e. prev in the first node and next in the last node. A way around this

potential hazard is to link the last node with the first node in the list to create a

circularly-linked list.

CS301 – Data Structures Lecture No. 04

Page 41 of 505

We have a list with five elements. We have connected the last node with the first

node. It means that the next of the last node is pointing towards the first node.

current

head

size=5

The same list has been shown in a circular shape.

current

head
size=5

You have noticed that there is no such node whose next field is NULL. What is the

benefit of this? If you use the next or back methods that move the current pointer, it

will never point to NULL. It may be the case that you keep on circulating in the list.

To avoid this, we get help from the head node. If we move the head node in the

circularly linked list, it will not be certain to say where it was pointing in the start. Its

advantages depend on its use. If we do not have to move too much in the list and have

no problem checking the NULL, there is little need a circularly-linked list. But this

facility is available to us.

In this example, we made a circular linked list from a singly link list. In a singly link

list we move in one direction. We point the next pointer of the last node to the first

node. We can do the same with the doubly-linked list. The prev pointer of the first

node will point to the last node and the next pointer of the last node will point to the

first node. If you arrange all the nodes in a circle, one of the pointers (i.e. next

pointer) will move in clockwise direction while the prev pointers in anti-clockwise

direction. With the help of these pointers, you can move in the clockwise direction or

anti-clockwise direction. Head node pointer will remain at its position. You don’t

need to change it. If there is a need to remove the node pointed by head node than you

have to move the head pointer to other node. Now we don’t have any NULL pointer

in the doubly-linked list. We will not get any exception due to NULL pointers.

7

2

8

2 6 8 7 1

6

1

CS301 – Data Structures Lecture No. 04

Page 42 of 505

You might ask why someone has to choose a leader in this way. There are some

historical stories attached to it. This problem is also studied in mathematics. Let’s see

its pictorial view.

N=10, M=3

We have ten numbers representing the ten persons who are in a circle. The value of M

shows the count. As the value of M is three, the count will be three. N represents the

number of persons. Now we start counting clockwise. After counting up to three, we

have the number four. The number four is eliminated and put in the eliminated

column.

N=10, M=3 Eliminated

After eliminating the number four, we will start our counting from number five.

Counting up to three, we have number eight which is eliminated and so on.

4 3

2
5

1
6

10
7

9 8

Josephus Problem
Now we will see an example where circular link list is very useful. This is Josephus

Problem. Consider there are 10 persons. They would like to choose a leader. The way

they decide is that all 10 sit in a circle. They start a count with person 1 and go in

clockwise direction and skip 3. Person 4 reached is eliminated. The count starts with

the fifth and the next person to go is the fourth in count. Eventually, a single person

remains.

3
4

2
5

1
6

10
7

9 8

CS301 – Data Structures Lecture No. 04

Page 43 of 505

N=10, M=3

Eliminated

In the end, only number five will remain intact.

N=10, M=3

Eliminated

If we have ten persons (N = 10) in a circle and eliminate after counting up to three (M

= 3). If we start our count from one, who will be the leader? We have studied this

earlier and know that the person who is sitting at the fifth position will become the

leader.

Suppose if the value of N is 300 or 400 and the value of M is 5 or 10. Now who will

be the leader? This is a mathematical problem where we can change the values of N

and M. There is a formula where the values of N, M are allotted. You can calculate

who should become the leader. Here we will not solve it mathematically. Rather, it

will be tackled as a computer problem. If you analyze the pictures shown above, it

gets clear that this can be solved with the circular link list. We arrange these numbers

in a circularly-linked list, point the head pointer at the starting number and after

calling the next method for three times, we will reach the node which is to be

removed. We will use the remove method to remove the node. Then the next method

is called thrice from there and the node is removed. We will continue this till we have

5

4

8

2

7

3

10

9

1

6

3

2
5

1
6

10
7

9

4

8

CS301 – Data Structures Lecture No. 04

Page 44 of 505

only one node.

We are not concerned with the NULL pointers, internal to link list. However, if you

want to solve this problem and choose the best data structure, then circular link list is

the best option. We can also use the list to solve this.

Let’s see the code of the program by which we can solve this problem. The code is as
under:

We have included the “CList.cpp”. It means that we are using the circularly-linked

list. In the main method, CList factory is called to create a circular link list as CList

list; After this, we assign the values to N and M. We have used for loop to add the

nodes in the list. When this loop finishes, we have ten nodes in the list having values

from 1 to 10. But here a programmer may not pay attention to the internal details of

the list. We have created a list and stored ten numbers in it. Then we moved the

pointers of the list at the start of the list using the start method. It means that the

pointers are pointing at the position from where we want to start the counting of the

list.

There is a while loop that will continue executing until only one node is left in the list.

Inside this loop, we have a for loop. It will execute from 1 to M. It has only one

statement i.e. list.next(). This will move the pointer forward three times (as the value

of M is 3). Now the current pointer is at the 4 th node. We called the remove method.

Before removing the node, we display its value on the screen using cout. Again we

come into the while loop, now the length of the list is 9. The ‘for loop’ will be

executed. Now the list.next() is not starting from the start. It will start from the

/*This program solves the Josephus Problem */

#include <iostream.h>

#include "CList.cpp" //contains the circularly-linked list definition

// The main method

void main(int argc, char *argv[])

{

CList list; // creating an object of list

int i, N=10, M=3;

for(i=1; i <= N; i++) list.add(i); // initializing the list with values

list.start(); // pointing the pointers at the start of the list

// counting upto M times and removing the element

while(list.length() > 1) {

for(i=1; i <= M; i++) list.next();
cout << "remove: " << list.get() << endl;

list.remove();

}

cout << "leader is: " << list.get() << endl; //displaying the remaining node

}

CS301 – Data Structures Lecture No. 04

Page 45 of 505

position where the current pointer is pointing. The current pointer is pointing at the

next node to the node deleted. The count will start again. The list.next() will be called

for three times. The current pointer will point at the 8 th node. Again the remove

method will be called and the current pointer moved to the next node and so on. The

nodes will be deleted one by one until the length of the list is greater than one. When

the length of the list is one, the while loop will be terminated. Now only one node is

left in the list i.e. the leader. We will display its value using the get method.

We can change the values of M and N. Similarly, these values can be read from the

file or can use the command line arguments to get values. There are many variations

of this problem. One variation is that the value of M keeps on changing. Sometimes, it

is 3, sometimes 4 or 5 and so on. Due to this, it will become difficult to think that who

will become leader. Make a picture in your mind that ten persons are sitting in a

circle. Every time the value of M is incremented by one. Now try to ascertain which

position you should sit to get chosen as a leader. You may like to write a program to

solve this or use the mathematical formula.

CS301 – Data Structures Lecture No. 05

Page 46 of 505

Data Structures

Lecture No. 05

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3

3.1, 3.2.5, 3.3.1, 3.3.2

(array implementation)

Summary

5) Benefits of using circular list

6) Abstract Data Type

7) Stacks

8) Stack Implementation using arrays

In the previous lecture, we demonstrated the use of the circular list for the resolution

of the Josephus problem. After writing a program with the help of this data structure,

a leader among ten persons was selected. You must have noted many things while

trying to solve the problem. These things will help us to understand the usage of data

structures in C++, thus making the programming easy. The code of the program is

given below.

#include "CList.cpp"

void main(int argc, char *argv[])

{

CList list;

int i, N=10, M=3;

for(i=1; i <= N; i++) list.add(i);

list.start();

while(list.length() > 1) {

for(i=1; i <= M; i++) list.next();

cout << "remove: " << list.get() << endl;

list.remove();

}

cout << "leader is: " << list.get() << endl;

}

In the program, we include the file of the class CList and create its object i.e. list.

Then we solve the problem by using the add, start, length, next, remove and get

methods of the class CList.

CS301 – Data Structures Lecture No. 05

Page 47 of 505

In the program, we have included already-defined data structure CList. After defining

its different methods, we have an interface of Clist. There is no need to be worry

about the nature of the list i.e. whether it is linked list, doubly linked list or an array.

For us, it is only a list to be manipulated according to our requirement. You will see

that a programmer may use different methods of the list object to solve the problem.

We add elements to the list by a simple call of add method and go to the first element

of the list by start method. Here, the length method is used in the condition of the

while loop. Then we remove elements from the list and use the next, get and remove

methods during this process. We get the current element by using the get method, then

remove it by calling the remove method and then go to the next element by the

method next. This way, all the elements are removed from the list except one element,

called the leader. This one element remains there as we execute the while loop one

less than the length of the list.

In singly linked list, the ‘next’ returns false when it reaches to the last node due to the

fact that the next field of the last node is set to NULL. But in a circularly linked list

there is no NULL. It will be there only when there is no node in the list.

The whole process, which we carried out to solve the Josephus problem, can also be

carried out with functions in C++. While adopting this way (of writing functions), we

have to write these functions whenever we write another program that manipulates a

list. In this method, we define a class of the data structure list and its different

methods for the purpose of manipulation. This way, this class, obviously its methods

too, can be used in any program where the manipulation of a list is needed. Thus there

is re-usability of the code. In a class, we encapsulate the data and its methods. This

shows that we are no longer interested in the internal process of the class. Rather, we

simply use it wherever needed. The circular linked list, earlier used for the resolution

of the Josephus problem, can also be employed in other problems. We have a class

CList of this circular linked list through which any number of objects of data type of

circular linked list can be created. Thus we can assume the class CList as a factory,

creating as many objects of list as needed. This class and its objects in any program

can be used to solve the problems with the help of its interface. The interface of this

class consists of some methods like add, remove, next, back, get and some other

simple ones. While carrying out programming, we will see that these classes (objects)

help us very much to solve different problems.

Benefits of using circular list

While solving the Josephus problem, it was witnessed that the usage of circular linked
list helped us make the solution trivial. We had to just write a code of some lines that

solved the whole problem. In the program, we included the class CList (which is of

our data structure i.e. circular linked list) and used all of its methods according to the

requirements. There was no problem regarding the working of the methods. We just

called these methods and their definition in the class CList worked well.

Now we will see what happens if we solve the Josephus problem by using an array

instead of the class in our program. In this case, we have to define an array and write

code to move back and forth in the array and to remove different elements properly in

a particular order. A programmer needs to be very careful while doing this, to reach

the solution of the problem. Thus our code becomes very complex and difficult for

CS301 – Data Structures Lecture No. 05

Page 48 of 505

someone to understand and modify it. Moreover we cannot use this code in some

other problem. Note that here we are talking about the use of an array in the main

program, not in the class that defines the CList data structure. There is no need to be

worried whether an array, singly linked list, doubly linked list is used or circular

linked list being employed internally in implementing the list in defining the cla ss of

list data type. We only want that it should create objects of list. The usage of the class

of a data structure simplifies the code of the program. We can also use this class

wherever needed in other programs. This shows that the choice of appropriate data

structures can simplify an algorithm. It can make the algorithm much faster and

efficient. In this course, we will see that there are different data structures, which

makes the algorithms very easy to solve our problems. Later, we will see how some

elegant data structures lie at the heart of major algorithms. There is also a course

dedicated to study different algorithms and recipes that can be used to solve host of

complex problems. Moreover, we will study different data structures in detail and see

that with the use of a proper data structure, we can solve a problem efficiently. A

properly constructed data structure will always help in the solution of problems.

Abstract Data Type

A data type is a collection of values and a set of operations on those values. That
collection and these operations form a mathematical construct that may be

implemented with the use of a particular hardware or software data structure. The

term abstract data type (ADT) refers to the basic mathematical concept that defines

the data type. We have discussed four different implementations of the list data

structure. In case of implementation of the list with the use of an array, the size of the

array gives difficulty if increased. To avoid this, we allocate memory dynamically for

nodes before connecting these nodes with the help of pointers. For this purpose, we

made a singly linked list and connected it with the next pointer to make a chain.

Moving forward is easy but going back is a difficult task. To overcome this problem,

we made a doubly linked list using prev and next pointers. With the help of these

pointers, we can move forward and backward very easily. Now we face another

problem that the prev pointer of first node and the next pointer of the last node are

NULL. Therefore, we have to be careful in case of NULL pointers. To remove the

NULL pointers, we made the circular link list by connecting the first and last node.

The program employing the list data structure is not concerned with its

implementation. We do not care how the list is being implemented whether through

an array, singly linked list, doubly linked list or circular linked list. It has been

witnessed that in these four implementations of the list, the interface remained the

same i.e. it implements the same methods like add, get, next, start and remove etc.

This proves that with this encapsulation attained by making a class, we are not

concerned with its internal implementation. The implementation of these abstract data

types can be changed anytime. These abstract data types are implemented using

classes in C++. If the list is implemented using arrays while not fulfilling the

requirements, we can change the list implementation. It can be implemented with the

use of singly-link list or doubly link list. As long as the interface is same, a

programmer can change the internal implementation of the list and the program using

this list will not be affected at all. This is the abstract data type (ADT). What we care

about is the methods that are available for use, with the List ADT i.e. add, get, and

remove etc methods. We have not studied enough examples to understand all the

CS301 – Data Structures Lecture No. 05

Page 49 of 505

benefits of abstract data types. We will follow this theme while developing other

ADT. We will publish the interface and keep the freedom to change the

implementation of ADT without effecting users of the ADT. The C++ classes provide

a programmer an ability to create such ADTs. What benefits can we get with the help

of these ADTs and classes? When we develop an ADT or a class or factory then the

users of this factory are independent of how this factory works internally. Suppose

that we have ordered the car factory (car class) to produce a new car and it replies

after a long time. If we ordered the remove method to remove one node and we are

waiting and it keeps on working and working. Then we might think that its

implementation is not correct. Although, we are not concerned with the internal

implementation of this ADT yet it is necessary to see whether this ADT is useful for

solving our problem or not. It should not become a bottleneck for us. If the method we

are using is too much time consuming or it has some problem in terms of algorithm

used. On one side, we only use the interfaces provided by these ADTs, classes, or

factories as long as they do what they promise. We are not concerned with the internal

details. On the other hand, we have to be careful that these factories or methods

should not take too much time so that these will not be useful for the problem.

This distinction will always be there. Sometimes, the source code of classes is not

provided. We will be provided libraries, as standard libraries are available with the

compiler. These classes are in compiled form i.e. are in object form or in binary form.

On opening these files, you will not see the C++ code, rather binary code. When you

read the assembly language code, it will give some idea what this binary code is

about. You can view the interface methods in the .h file. As an application

programmer, you have to see that the ADTs being used are written in a better way.

The point to be remembered here is that you should not worry about the internal

implementation of these ADTs. If we want to change the internal implementation of

the ADTs, it can be done without affecting the users of these ADTs. While writing a

program, you should check its performance. If at some point, you feel that it is slow,

check the ADTs used at that point. If some ADT is not working properly, you can ask

the writer of the ADT to change the internal implementation of that ADT to ensure

that it works properly.

Stacks

Let’s talk about another important data structure. You must have a fair idea of stacks.

Some examples of stacks in real life are stack of books, stack of plates etc. We can

add new items at the top of the stack or remove them from the top. We can only

access the elements of the stack at the top. Following is the definition of stacks.

“Stack is a collection of elements arranged in a linear order”

Let’s see an example to understand this. Suppose we have some video cassettes. We

took one cassette and put it on the table. We get another cassette and put it on the top

of first cassette. Now there are two cassettes on the table- one at the top of other. Now

we take the third cassette and stack it on the two. Take the fourth cassette and stack it

on the three cassettes.

Now if we want to take the cassette, we can get the fourth cassette which is at the top

and remove it from the stack. Now we can remove the third cassette from the stack

CS301 – Data Structures Lecture No. 05

Page 50 of 505

and so on. Suppose that we have fifty cassettes stacked on each other and want to

access the first cassette that is at the bottom of the stack. What will happen? All the

cassettes will fell down. It will not happen exactly the same in the computer. There

may be some problem. It does not mean that our data structure is incorrect. As we see

in the above example that the top most cassette will be removed first and the new

cassette will be stacked at the top. The same example can be repeated with the books.

In the daily life, we deal with the stacked goods very carefully.

Now we will discuss how to create a stack data structure or a factory, going to create

stack object for us. What will be the attributes of this object? During the discussion on

the list, we came to know that a programmer adds values in the list, removes values

from the list and moves forward and backward. In case of a stack too, we want to add

things and remove things. We will not move forward or backward in the stack. New

items can be added or removed at the top only. We can not suggest the removal of the

middle element of the stack.

Let’s talk about the interface methods of the stacks. Some important methods are:

Method Name Description

push(x) Insert x as the top element of the stack

pop() Remove the top element of the stack and return it.

top() Return the top element without removing it from the stack.

The push(x) method will take an element and insert it at the top of the stack. This

element will become top element. The pop() method will remove the top element of

the stock and return it to the calling program. The top() method returns the top-most

stack element but does not remove it from the stack. The interface method names that

we choose has special objective. In case of list, we have used add, remove, get, set as

the suitable names. However, for stack, we are using push, pop and top. We can

depict the activity from the method name like push means that we are placing an

element on the top of the stack and pushing the other elements down.

The example of a hotel’s kitchen may help understand the concept of stacks in a

comprehensive manner. In the kitchen, the plates are stacked in a cylinder having a

spring on the bottom. When a waiter picks a plate, the spring moves up the other

plates. This is a stack of plates. You will feel that you are pushing the plates in the

cylinder and when you take a plate from the cylinder it pops the other plates. The top

method is used to get the top- most element without removing it.

When you create classes, interfaces and methods, choose such names which depicts
what these method are doing. These names should be suitable for that class or factory.

Let’s discuss the working of stack with the help of a diagram.

CS301 – Data Structures Lecture No. 05

Page 51 of 505

top

push(2)

top

push(5)

top

push(7)

top

push(1)

top

1

top

pop()

top

push(21)

top

21 pop()

top

7 pop()

5 pop()

At the start, the stack is empty. First of all, we push the value 2 in the stack. As a

result, the number 2 is placed in the stack. We have a top pointer that points at the top

element. Then we said push(5). Now see how 2 and 5 are stacked. The number 5 is

placed at the top of number 2 and the pointer top moves one step upward. Then we

pushed the number 7 which is placed on the top and the number 2 and 5 are below.

Similarly, we push number 1. The last figure in the first row shows the stacked values

of the numbers- 1, 7, 5 and 2.

Let’s pop the elements from the stack. The first figure of second row shows the pop

operation. As a result, the number 1 is popped. Than again we push the number 21 on

the stack. The number 7, 5, and 2 are already in the stack and number 21 is pushed at

the top. If we pop now, the number 21 is popped. Now number 7 is at the top. If we

pop again, the number 7 is popped. Pop again and the number 5 is popped and number

2 remains in the stack. Here with the help of this diagram, we are proving that the

values are added at the top and removed at the top in a stack.

The last element to go into the stack is the first to come out. That is why, a stack is

known as LIFO (Last In First Out) structure. We know that the last element pushed in

the stack is at the top which is removed when we call pop. Let’s see some other

scenarios. What happens if we call pop() while there is no element? One possible

way-out is that we have isEmpty() function that returns true if stack is empty and false

otherwise. This is a boolean function that returns false if there is no element in the

stack. Otherwise, it will return true. The second option is this that when we call pop

on an empty stack, it throws an exception. This is a concept of advanced C++.

Exception is also a way to convey that some unusual condition has arisen or

something has gone wrong. Suppose, if we have a division method and try to divide

some number with zero. This method will throw ‘division by zero’ exception.

2

2

1

7

5

2

7

5

2

5

2

21

7

5

2

7

5

2

7

5

2

5

2

CS301 – Data Structures Lecture No. 05

Page 52 of 505

Currently we will not throw an exception but use the isEmpty() method. The user who

is employing the stack is responsible to call the isEmpty() method before calling the

pop. Call the pop method if isEmpty() returns false . Otherwise, there will be a

problem.

Stack Implementation using array
Let’s discuss the implementation of the stack. Suppose we implement the stack using

the arrays. The stack shown in the above diagram may be considered as an array. Here

the array is shown vertically. We can implement the stack using array. The interface

will remain as push and pop methods. The user of the stack does not need to know

that the stack is internally implemented with the help of array. The worst case for

insertion and deletion from an array may happen when we insert and delete from the

beginning of the array. We have to shift elements to the right for insertion and left for

removal of an element. We face the same problem while implementing the list with

the use of the array. If we push and pop the elements from the start of the array for

stack implementation, this problem will arise. In case of push, we have to shift the

stack elements to the right. However, in case of pop, after removing the element, we

have to shift the elements of stack that are in the array to the left. If we push the

element at the end of the array, there is no need to shift any element. Similarly as the

pop method removes the last element of the stack which is at the end of the array, no

element is shifted. To insert and remove elements at the end of the array we need not

to shift its elements. Best case for insert and delete is at the end of the array where

there is no need to shift any element. We should implement push() and pop() by

inserting and deleting at the end of an array.

top

0 1 2 3 4

top = 3

In the above diagram, on the left side we have a stack. There are four elements in the

stack i.e. 1, 7, 5 and 2. The element 1 is the extreme-most that means that it is inserted

in the end whereas 7, 5, and 2 have been added before. As this is a LIFO structure so

the element 1 should be popped first. On the right side we have an array with

positions 0, 1, 2, 3 and so on. We have inserted the numbers 2, 5, 7 and 1. We have

decided that the elements should be inserted at the end of the array. Therefore the

most recent element i.e. 1 is at position 3. The top is the index representing the

position of the most recent element. Now we will discuss the stack implementation in

detail using array.

We have to choose a maximum size for the array. It is possible that the array may

‘fill-up’ if we push enough elements. Now more elements cannot be pushed. Now

what should the user of the stack do? Internally, we have implemented the stack

using array which can be full. To avoid this, we write isFull() method that will return

1

7

5

2

2

5

7

1

CS301 – Data Structures Lecture No. 05

Page 53 of 505

a boolean value. If this method returns true, it means that the stack (array) is full and

no more elements can be inserted. Therefore before calling the push(x), the user

should call isFull() method. If isFull() returns false, it will depict that stack is not full

and an element can be inserted. This method has become the part of the stack

interface. So we have two more methods in our interface i.e. isEmpty() and isFull().

Now we will discuss the actual C++ code of these operations. These methods are part

of stack class or stack factory. We have an array named A while current is its index.

The code of pop() method is as:

int pop()

{

return A[current--];

}

In this method, the recent element is returned to the caller, reducing the size of the

array by 1.

The code of push method is:

void push(int x)

{
A[++current] = x;

}

We know that ++current means that add one to the current and then use it. That also

shows that element x should be inserted at current plus one position. Here we are not

testing that this current index has increased from the array size or not. As discussed

earlier that before using the push method, the user must call isFull() method.

Similarly it is the responsibility of the user to call the isEmpty() method before calling

the pop method. Therefore there is no if statement in the push and pop method.

The code of the top() method is:

int top()

{
return A[current];

}

This method returns the element at the current position. We are not changing the

value of current here. We simply want to return the top element.

int isEmpty()

{

return (current == -1);

}

This method also tests the value of the current whether it is equal to -1 or not. Initially

when the stack is created, the value of current will be -1. If the user calls the
isEmpty() method before pushing any element, it will return true.

CS301 – Data Structures Lecture No. 05

Page 54 of 505

int isFull()

{

return (current == size-1);

}

This method checks that the stack is full or not. The variable size shows the size of the

array. If the current is equal to the size minus one, it means that the stack is full and

we cannot insert any element in it.

We have determined the cost and benefit of all the data structures. Now we will see

how much time these methods take. A quick examination shows that all the five

operations take constant time. In case of list, the find method takes too much time as it

has to traverse the list. Whereas the add and remove methods are relatively quick. The

methods of stack are very simple. There is no complexity involved. We insert element

at one side and also remove from that side not in the middle or some other place.

Therefore we need not to carry out a lot of work. During the usage of the array, the

stack methods push, pop, top, isFull and isEmpty all are constant time operations.

There is not much difference of time between them.

The complete code of the program is:

/* Stack implementation using array */

#include <iostream.h>

/* The Stack class */

class Stack

{

public:

Stack() { size = 10; current = -1;} //constructor

int pop(){ return A[current--];} // The pop function

void push(int x){A[++current] = x;} // The push function

int top(){ return A[current];} // The top function

int isEmpty(){return (current == -1);} // Will return true when stack is empty
int isFull(){ return (current == size-1);} // Will return true when stack is full

private:

int object; // The data element

int current; // Index of the array

int size; // max size of the array

int A[10]; // Array of 10 elements
};

// The main method

int main()

{

Stack stack; // creating a stack object

// pushing the 10 elements to the stack

for(int i = 0; i < 12; i++)

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 05

Page 55 of 505

The output of the program is:

However, a programmer finds the size-related problems in case of an array. What

should we do when the array is full? We can avoid the size limitation of a stack

implemented with an array by using a linked list to hold the stack elements. Further

discussion on this issue will be made in the next lecture.

Stack is full, can't insert new element

Stack is full, can't insert new element
The popped element = 9

The popped element = 8

The popped element = 7

The popped element = 6

The popped element = 5

The popped element = 4

The popped element = 3

The popped element = 2

The popped element = 1

The popped element = 0

Stack is empty, can't pop

Stack is empty, can't pop

{

if(!stack.isFull())

stack.push(i);

else

// checking stack is full or not

// push the element at the top

cout <<"\n Stack is full, can't insert new element";

}

// pop the elements at the stack

for (int i = 0; i < 12; i++)

{

if(!stack.isEmpty()) // checking stack is empty or not

cout << "\n The popped element = " << stack.pop();

else

cout <<"\n Stack is empty, can't pop";

}

}

CS301 – Data Structures Lecture No. 06

Page 56 of 505

Data Structures

Lecture No. 06

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 3

3.3.2, 3.3.3

(Postfix expressions)

Summary

 Stack From the Previous Lecture

 Stack Using Linked List

 Stack Implementation: Array or Linked List

 Use of Stack

 Precedence of Operators

 Examples of Infix to Postfix

Stack From the Previous Lecture
We started discussing Stack data structure and its implementation in the previous

lecture. We also implemented stack structure using an array and wrote code for its

push(), pop() and top() operations. We realized that we have to specify the size of the

array before using it whether we declare it statically or dynamically. Arrays are of

fixed size and when they become full, no more elements can be added to them. In

order to get to know that the array has gone full, we wrote the isFull() method. It

became the responsibility of the user of the stack structure to call isFull() method

before trying to insert an element using the push() method otherwise the whole

program could crash.

isEmpty() method is implemented as a stack can be empty like a list or set structures.

It is important to understand that isFull() method is there in stack implementation

because of limitation of array but isEmpty() method is part of the stack characteristics
or functionality.

As previously in the implementation of list structure, we used linked list while

allocating nodes dynamicallyin order to avoid the fixed sized limitation of array. Now

in this case also, again to overcome the limitation of array, we are going to make use

of linked list in place of array to implement the stack data structure. Let’s see, how we

can implement a stack structure using linked list and how the implementation code

will look like internally.

Stack Using Linked List

We can avoid the size limitation of a stack implemented with an array, with the help

of a linked list to hold the stack elements.

CS301 – Data Structures Lecture No. 06

Page 57 of 505

As needed in case of array, we have to decide where to insert elements in the list and

where to delete them so that push and pop will run at the fastest.

Primarily, there are two operations of a stack; push() and pop(). A stack carries lifo

behavior i.e. last in, first out.

You know that while implementing stack with an array and to achieve lifo behavior,

we used push and pop elements at the end of the array. Instead of pushing and

popping elements at the beginning of the array that contains overhead of shifting

elements towards right to push an element at the start and shifting elements towards

left to pop an element from the start. To avoid this overhead of shifting left and right,

we decided to push and pop elements at the end of the array.

Now, if we use linked list to implement the stack, where will we push the element

inside the list and from where will we pop the element? There are few facts to

consider, before we make any decision:

- For a singly-linked list, insert at start or end takes constant time using the head and

current pointers respectively. As far as insertion is concerned, it is workable and

equally efficient at the start and end.

- Removing an element at the start is constant time but removal at the end requires

traversing the list to the node one before the last. So removing from the start is

better approach rather than from the end.

Therefore, it makes sense to place stack elements at the start of the list because

insertion and removal take constant time. As we don’t need to move back and forth

within the list, therefore, there is no requirement of doubly or circular linked list.

Singly linked list can serve the purpose. Hence, the decision is to insert the element at

the start in the implementation of push operation and remove the element from the

start in the pop implementation.

top

head

Fig 1. Stack using array (on left side) and linked list (on right side)

There are two parts of above figure.On the left hand, there is the stack implemented

using an array. The elements present inside this stack are 1, 7, 5 and 2. The most

recent element of the stack is 1. It may be removed if the pop() is called at this point

of time. On the right side, there is the stack implemented using a linked list. This

1

1

7

5

2

5 7 2

CS301 – Data Structures Lecture No. 06

Page 58 of 505

stack has four nodes inside it which are liked in such a fashion that the very first node

pointed by the head pointer contains the value 1. This first node with value 1 is

pointing to the node with value 7. The node with value 7 is pointing to the node with

value 5 while the node with value 5 is pointing to the last node with value 2. To make

a stack data strcuture using a linked list, we have inserted new nodes at the start of the

linked list.

Let’s see the code below to implement pop() method of the stack.

At line 1, we have declared x as an int and retrieved one element from the node of the

stack that is pointed by the head pointer. Remember, the Node class and its get()

method that returns the value inside the node.

At line 2, p is declared as a pointer of type Node and address inside the head pointer is

being saved inside this p pointer.

At line 3, the address of the next node is being retrieved with the help of the getNext()

method of the Node class and being assigned to head pointer. After this assignment,

the head pointer has moved forward and started pointing to the next element in the

stack.

At line 4, the node object pointed by the pointer p is being deallocated (deleted).

At line 5, the function is returning the value of the node retrieved in step 1.

top

Fig 2. A node removed from the stack after the pop() call

Let’s see the code of the push() method of the stack:

void push(int x)

{

1. Node * newNode = new Node();

2. newNode->set(x);

int

{

1.

2.

3.

4.

5.

}

pop()

int x = head->get();

Node * p = head;
head = head->getNext();

delete p;

return x;

head

5 7 1 2

7

5

2

CS301 – Data Structures Lecture No. 06

Page 59 of 505

9

5 7

In line 1, a new node is created, using the new Node() statement and returned pointer

is assigned to a pointer newNode. So newNode starts pointing to the newly created

Node object.

In line 2, the value 2 is set into the newly created Node object.

In line 3, the next node of the newly created node is set to the node pointed to by the

head pointer using setNext(head).

In line 4, the head pointer is made to point to the newly created node.

top

newNode

head

Fig 3. A node added to the stack after the push(9) call

These are two primary methods of a stack. By using the push() method, we can keep

on pushing elements and using the pop() methods. Elements can be removed from the

stack till the time, it gets empty. As discussed earlier, isEmpty() is the stack

characteristic but isFull() was implemented because of the size limitation of the array.

We are no more using array to implement a stack. Rather, we have used linked list

here for stack implementation. Therefore, isFull() might not be required here. An

interesting question arises here. Can we add infinite elements to the stack now. We

should remember that this program of stack will run on computer that definitely has a

limited memory. Memory or Address space of a computer is the space (physical

memory and disk space) that can be addressed by the computer which is limited

inlcuding the limited physical memory. Disk space is used as the virtual memory (we

will not discuss virtual memory in detail here). A computer with 32-bit addressing can

address upto 232-1 memory locations and similarly a computer with 64-bit addressing

can address upto 264-1 addresses. If this address space becomes full, the stack will

definitely be full. However, the stack implementation is not liable for this fullness of

address space and it is the limitation of a computer address space. Therefore, we don’t

need to call isFull() before pushing the element. Rather, isEmpty() is called before

poping an element from the stack.

Let’s see the remaining methods of the stack while using linked list to implement it.

3. newNode->setNext(head);

4. head = newNode;

}

9

7

5

2

2

int top()

{

CS301 – Data Structures Lecture No. 06

Page 60 of 505

The above-mentioned methods i.e. top() and isEmpty() are very simple functions. One

statement inside the top() is retrieving the top element (pointed to by the head pointer)

from the stack and returning it back by value. It is important to note that top() is not

removing the element from the stack, but only retrieving it. The one statement inside

isEmpty() is a check to see if the head pointer is not pointing to any node and it is

NULL. If the head pointer is NULL that means the stack is empty, the method returns

true otherwise it returns false.

All four operations push(), pop(), top() and isEmpty() take constant time. These are

very simple methods and don’t contain loops. They are also not CPU hungry

operation. Also note that we have not written isFull() while implementing stack with

the linked list.

Stack Implementation: Array or Linked List
Since both implementations support stack operations in constant time, we will see

what are the possible reasons to prefer one implementation to the other.

- Allocating and de-allocating memory for list nodes does take more time than pre-

allocated array. Memory allocation and de-allocation has cost in terms of time,

especially, when your system is huge and handling a volume of requests. While

comparing the stack implementation, using an array versus a linked list, it

becomes important to consider this point carefully.

- List uses as much memory as required by the nodes. In contrast, array requires

allocation ahead of time. In the previous bullet, the point was the time required for

allocation and de-allocation of nodes at runtime as compared to one time

allocation of an array. In this bullet, we are of the view that with this runtime

allocation and de-allocation of nodes, we are also getting an advantage that list

consumes only as much memory as required by the nodes of list. Instead of

allocating a whole chunk of memory at one time as in case of array, we only

allocate memory that is actually required so that the memory is available for other

programs. For example, in case of implementing stack using array, you allocated

array for 1000 elements but the stack, on average, are using 50 locations. So, on

the average, 950 locations remain vacant. Therefore, in order to resolve this

problem, linked list is handy.

- List pointers (head, next) require extra memory. Consider the manipulation of

array elements. We can set and get the individual elements with the use of the

array index; we don’t need to have additional elements or pointers to access them.

But in case of linked list, within each node of the list, we have one pointer element

called next, pointing to the next node of the list. Therefore, for 1000 nodes stack

implemented using list, there will be 1000 extra pointer variables. Remember that

stack is implemented using ‘singly-linked’ list. Otherwise, for doubly linked list,

this overhead is also doubled as two pointer variables are stored within each node

in that case.

- Array has an upper limit whereas list is limited by dynamic memory allocation. In

return head->get();

}

int isEmpty()

{

return (head == NULL);

}

CS301 – Data Structures Lecture No. 06

Page 61 of 505

other words, the linked list is only limited by the address space of the machine.

We have already discussed this point at reasonable length in this lecture.

Use of Stack
Examples of uses of stack include- traversing and evaluating prefix, infix and postfix

expressions.

Consider the expression A+B: we think of applying the operator “+” to the operands

A and B. We have been writing this kind of expressions right from our primary
classes. There are few important things to consider here:

Firstly, + operator requires two operators or in other words “+” is a binary operator.

Secondly, in the expression A+B, the one operand A is on left of the operator while

the other operand B is on the right side. This kind of expressions where the operator is

present between two operands called infix expressions. We take the meanings of this

expression as to add both operands A and B.

There are two other ways of writing expressions:

 We could write +AB, the operator is written before the operands A and B. These

kinds of expressions are called Prefix Expressions.

 We can also write it as AB+, the operator is written after the operands A and B.

This expression is called Postfix expression.

The prefixes pre and post refer to the position of the operator with respect to the two

operands.

Consider another expression in infix form: A + B * C. It consists of three operands A,

B, C and two operator +,* . We know that multiplication () is done before addition

(+), therefore, this expression is actually interpreted as: A + (B * C). The

interpretation is because of the precedence of multiplication (*) over addition (+). The

precedence can be changed in an expression by using the parenthesis. We will discuss

it a bit later.

Let’s see, how can we convert the infix expression A + (B * C) into the postfix form.

Firstly, we will convert the multiplication to postfix form as: A + (B C *). Secondly,

we will convert addition to postfix as: A (B C *) + and finally it will lead to the

resultant postfix expression i.e. : A B C * +. Let’s convert the expression (A + B) * C

to postfix. You might have noticed that to overcome the precedence of multiplication

operator (*) we have used parenthesis around A + B because we want to perform

addition operation first before multiplication.

(A + B) * C infix form

(A B +) * C convert addition

(A B +) C * convert multiplication

A B + C * postfix form

These expressions may seem to be difficult to understand and evaluate at first. But

this is one way of writing and evaluating expressions. As we are normally used to

infix form, this postfix form might be little confusing. If a programmer knows the

algorithm, there is nothing complicated and even one can evaluate the expression

manually.

CS301 – Data Structures Lecture No. 06

Page 62 of 505

Precedence of Operators
There are five binary operators, called addition, subtraction, multiplication, division

and exponentiation. We are aware of some other binary operators. For example, all

relational operators are binary ones. There are some unary operators as well. These

require only one operand e.g. – and +. There are rules or order of execution of

operators in Mathematics called precedence. Firstly, the exponentiation operation is

executed, followed by multiplication/division and at the end addition/subtraction is

done. The order of precedence is (highest to lowest):

Exponentiation

Multiplication/division *, /

Addition/subtraction +, -

For operators of same precedence, the left-to-right rule applies:

A+B+C means (A+B)+C.

For exponentiation, the right-to-left rule applies:

A B C means A (B C)

We want to understand these precedence of operators and infix and postfix forms of

expressions. A programmer can solve a problem where the program will be aware of

the precedence rules and convert the expression from infix to postfix based on the

precedence rules.

Examples of Infix to Postfix
Let’s consider few examples to elaborate the infix and postfix forms of expressions
based on their precedence order:

Infix
Postfix

A + B A B +

12 + 60 – 23 12 60 + 23 –

(A + B)*(C – D) A B + C D – *

A B * C – D + E/F A B C*D – E F/+

In the next lecture we will see, how to convert infix to postfix and how to evaluate

postfix form besides the ways to use stack for these operations.

CS301 – Data Structures Lecture No. 07

Page 63 of 505

Data Structures

Lecture No. 07

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3

3.3.3

Summary

9) Evaluating postfix expressions

10) An example

11) Infix to postfix Conversion

Evaluating postfix expressions

In the previous lecture, we talked about ‘infix and postfix expression’ and tried to

understand how to write the postfix notation of mathematical expressions. A

programmer can write the operators either after the operands i.e. postfix notation or

before the operands i.e. prefix notation. Some of the examples are as under:

Infix Postfix

A + B A B +

12 + 60 – 23 12 60 + 23 –

(A + B)*(C – D) A B + C D – *

A B * C – D + E/F A B C*D – E F/+

The last expression seems a bit confusing but may prove simple by following the rules

in letter and spirit. In the postfix form, parentheses are not used. Consider the infix

expressions as ‘4+3*5’ and ‘(4+3)*5’. The parentheses are not needed in the first but

are necessary in the second expression. The postfix forms are:

4+3*5 435*+

(4+3)*5 43+5*

In case of not using the parenthesis in the infix form, you have to see the precedence
rule before evaluating the expression. In the above example, if we want to add first

then we have to use the parenthesis. In the postfix form, we do not need to use

parenthesis. The position of operators and operands in the expression makes it clear in

which order we have to do the multiplication and addition.

Now we will see how the infix expression can be evaluated. Suppose we have a

postfix expression. How can we evaluate it? Each operator in a postfix expression

refers to the previous two operands. As the operators are binary (we are not talking

about unary operators here), so two operands are needed for each operator. The nature

CS301 – Data Structures Lecture No. 07

Page 64 of 505

of these operators is not affected in the postfix form i.e. the plus operator (+) will

apply on two operands. Each time we read an operand, we will push it on the stack.

We are going to evaluate the postfix expression with the help of stack. After reaching

an operator, we pop the two operands from the top of the stack, apply the operator and

push the result back on the stack. Now we will see an example to comprehend the

working of stack for the evaluation of the postfix form. Here is the algorithm in

pseudo code form. After reading this code, you will understand the algorithm.

We have declared a Stack‘s’. There is a ‘while loop’ along with ‘not end of input’

condition. Here the input is our postfix expression. You can get the expression from

the keyboard and use the enter key to finish the expression. In the next statement, we

get the next element and store it in ‘e’. This element can be operator or operand. The

operand needs not to be single digit. It may be of two digits or even more like 60 or

234 etc. The complete number is stored in the ‘e’. Then we have an ‘if statement’ to

check whether ‘e’ is an operand or not. If ‘e’ is an operand than we wrote s.push(e)

i.e. we pushed the ‘e’ onto the stack. If ‘e’ is not the operand, it may be an operator.

Therefore we will pop the two elements and apply that operator. We pop the stack and

store the operand in ‘op2’. We pop the stack again and store the element in ‘op1’.

Then the operator in ‘e’ is applied to ‘op1’ and ‘op2’ before storing the result in

value. In the end, we push the ‘value’ on the stack. After exiting the loop, a

programmer may have only one element in the stack. We pop this element which is

the final result.

Consider the example of 4+3*2 having a postfix form of 432*+. Here 4, 3, and 2 are

operands whereas + and * are operators. We will push the numbers 4, 3 and 2 on the

stack before getting the operator *. Two operands will be popped from the stack and *

is being applied on these. As stack is a LIFO structure, so we get 2 first and then 3 as

a result of pop. So 2 is store in ‘op1’ and 3 in ‘op2’. Let’s have a look on the program

again. On applying * on these, we will push the result (i.e. 6) on the stack. The ‘while

loop’ will be executed again. In case of getting the next input as operand, we will

push it on the stack otherwise we will pop the two operands and apply the operator on

these. Here the next element is the operator +. So two operands will be popped from

the stack i.e. 6 and 4. We will apply the operator plus on these and push the result (i.e.

10) on the stack. The input is finished. Now we will pop the stack to get the final

Stack s; // declare a stack

while(not end of input) { // not end of postfix expression

e = get next element of input

if(e is an operand)

s.push(e);

else {

op2 = s.pop();

op1 = s.pop();

value = result of applying operator ‘e’ to op1 and op2;

s.push(value);

}

}

finalresult = s.pop();

CS301 – Data Structures Lecture No. 07

Page 65 of 505

result i.e. 10.

An Example

In the earlier example, we have used the stack to solve the postfix expression. Let’s

see another comprehensive example. The postfix expression is:

6 2 3 + - 3 8 2 / + * 2 3 +

We want to evaluate this long expression using stack. Let’s try to solve it on paper.

We have five columns here i.e. input, op1, op2, value and stack. We will run our

pseudo code program. In the start, we read the input as a result we get number 6. As 6

is operand, so it will be pushed on the stack. Then we have number 2 which will also

be pushed on the stack. Now 2 is the most recent element. The next element is the

number 3 that will also be pushed on the stack. Now, there are three elements on the

stack i.e. 3, 2 and 6. The number 3 is the most recent. On popping, we will get the

number 3 first of all. The next element is ‘+’, an operator. Now the else part of our

pseudo code is executed. We will pop two operands from the stack and apply the

operator (+) on these. The number 3 will be stored in variable op2 and number 2 in

op1. The operator (+) will be applied on these i.e. 2+3 and the result is stored in value.

Now we will push the value (i.e. 5) on the stack. Now we have two numbers on the

stack i.e. 5 and 6. The number 5 is the most recent element. The next element is ‘ -‘.

As it is also an operator, so we will pop the two elements from the stack i.e. 5 and 6.

Now we have 5 in op2 and 6 in op1. On applying the operator (-), we will get the

result as 1 (6-5). We can’t say op2 - op1. The result (1) will be pushed on stack. Now

on the stack, we have only one element i.e. 1. Next three elements are operands so we

pushed 3, 8 and 2 on the stack. The most recent element is 2. The next input is an

operator in the expression i.e. ‘/’, we will pop two elements from the stack. The

number 2 will be stored in op2 while number 8 in op1. We apply the operator (/) on

the op1 and op2 i.e. (op1/op2), the result is 4 (i.e. 8/2). We push the result on the

stack. We have, now, three elements i.e. 4, 3, and 1 on the stack. The next element is

operator plus (+). We will pop the two elements i.e. 4 and 3 and will apply the

operator (+). The result (7) will be pushed on the stack. The next input element is

operator multiply (*). We will pop the two elements i.e. 7 and 1 and the result (7*1 =

7) is pushed on the stack. You have noted that whenever we have an operator in the

input expression, we have two or more elements on the stack. As the operators we are

using are binary and we need two operands for them. It will never be the case that you

want to pop two elements from the stack and there is only one or no element on the

stack. If this happens than it means there is an error in the program and you have

popped more values than required. The next input element is 2 that is pushed on the

stack. We have, now, the operator () in the input. So we will pop the two elements,

op2 will hold 2 and op1 will have the number 7. The operator () will be applied on

the operands i.e. (7 2) and the result (49) is pushed on the stack. We have, now, the
number 3 in the element being pushed on the stack. The last element is the operator

plus (+). So we pop the two elements i.e. 49 and 2 and apply the operator on these.

The result (49+3 = 52) is pushed on the stack. The input expression is finished,

resulting in the final result i.e. 52.

This the tabular form of the evaluation of the postfix expression.

CS301 – Data Structures Lecture No. 07

Page 66 of 505

Input op1 op2 value stack

6 6

2 2
6

3 3

2
6

+ 2 3 5 5
6

- 6 5 1 1

3 6 5 1 3
1

8 6 5 1 8

3
1

2 6 5 1 2

8

3
1

/ 8 2 4 4

3
1

+ 3 4 7 7
1

* 1 7 7 7

2 1 7 7 2
7

 7 2 49 49

3 7 2 49 3
49

+ 49 3 52 52

With the help of stack we can easily solve a very big postfix expression. Suppose you

want to make a calculator that is a part of some application e.g. some spreadsheet

program. This calculator will be used to evaluate expressions. You may want to

calculate the value of a cell after evaluating different cells. Evaluation of the infix

form programmatically is difficult but it can be done. We will see another data

structure which being used to solve the expressions in infix form. Currently, we have

to evaluate the values in different cells and put this value in another cell. How can we

do that? We will make the postfix form of the expression associated with that cell.

Then we can apply the above algorithm to solve the postfix expression and the final

result will be placed at that cell. This is one of the usages of the stack.

Infix to postfix Conversion
We have seen how to evaluate the postfix expressions while using the stack. How can

we convert the infix expression into postfix form? Consider the example of a

spreadsheet. We have to evaluate expressions. The users of this spreadsheet will

employ the infix form of expressions. Consider the infix expressions ‘A+B*C’ and

‘(A+B)*C’. The postfix versions are ‘ABC*+’ and ‘AB+C*’ respectively. The order

CS301 – Data Structures Lecture No. 07

Page 67 of 505

of operands in postfix is the same as that in the infix. In both the infix expressions, we

have the order of operands as A, B and then C. In the postfix expressions too, the

order is the same i.e. A, B, followed by C. The order of operands is not changed in

postfix form. However, the order of operators may be changed. In the first expression

‘A+B*C’, the postfix expression is ‘ABC*+’. In the postfix form multiplication

comes before the plus operator. In scanning from left to right, the operand ‘A’ can be

inserted into postfix expression. First rule of algorithm is that if we find the operand

in the infix form, put it in the postfix form. The rules for operators are different. The

‘+’ cannot be inserted in the postfix expression until its second operand has been

scanned and inserted. Keep the expression A+B*C in your mind. What is the second

operand of the plus? The first operand is A and the second operand is the result of

B*C. The ‘+’ has to wait until the ‘*’ has not been performed. You do the same thing

while using the calculator. First you will multiply the B*C and then add A into the

result. The ‘+’ has to be stored away until its proper position is found. When ‘B’ is

seen, it is immediately inserted into the postfix expression. As ‘B’ is the operand, we

will send the operand to the postfix form. Can the ‘+’ be inserted now? In case of

‘A+B*C’, we cannot insert ‘+’ because ‘*’ has precedence. To perform

multiplication, we need the second operand. The first operand of multiplication is ‘B’

while the second one is ‘C’. So at first, we will perform the multiplication before

adding result to ‘A’.

In case of ‘(A+B)*C’, the closing parenthesis indicates that ‘+’ must be performed

first. After sending the A and B to postfix perform, we can perform the addition due

to the presence of the parenthesis. Then C will be sent to the postfix expression. It will

be followed by the multiplication of the C and the result of A + B. The postfix form of

this expression is AB+C*. Sometimes, we have two operators and need to decide

which to apply first like in this case ‘+’ and ‘*’. In this case, we have to see which

operator has higher precedence. Assume that we have a function ‘prcd(op1,op2)’

where op1 and op2 are two operators. The function ‘prcd(op1,op2)’ will return TRUE

if op1 has precedence over op2, FASLE otherwise. Suppose we call this function with

the arguments ‘*’ and ‘+’ i.e. prcd(*, +), it will return true. It will also return true in

case both op1 and op2 are ‘+’ e.g. if we have A+B+C, then it does not matter which +

we perform first. The call prcd(+ , *) will return false as the precedence of * is higher

than the + operator. The ‘+’ has to wait until * is performed.

Now we will try to form an algorithm to convert infix form into postfix form. For this

purpose, a pseudo code will be written. We will also write the loops and if conditions.

The pseudo code is independent of languages. We will be using a stack in this

algorithm. Here, the infix expression is in the form of a string. The algorithm is as

follows:

Stack s;

while(not end of input) {

c = next input character;

if(c is an operand)
add c to postfix string;

else {
while(!s.empty() && prcd(s.top(),c)){

op = s.pop();
add op to the postfix string;

CS301 – Data Structures Lecture No. 07

Page 68 of 505

}

s.push(c);

}

while(!s.empty()) {

op = s.pop();

add op to postfix string;

}

First we will declare a stack ‘s’. The ‘while loop’ will continue till the end of input.

We read the input character and store it in the ‘c’. Here the input character does not

mean one character, but an operand or an operator. Then we have a conditional if

statement. If ‘c’ is an operand, then we will have to add it to postfix string. Whenever

we get an operand in the infix form, it will be added to the postfix form. The order of

operands does not change in the conversion. However, in this case, the order of

operators may change. If ‘c’ is the operator, then we will, at first, check that stack is

not empty besides identifying the precedence of the operators between the input

operator and the operator that is at the top of the stack. In case of the precedence of

the operator that is on the stack is higher, we will pop it from the stack and send to the

postfix string. For example if we have * on the stack and the new input operator is +.

As the precedence of the + operator is less than the * operator, the operands of the

multiplication has already been sent to the postfix expression. Now, we should send

the * operator to the postfix form. The plus operator (+) will wait. When the while

loop sends all such operators to the postfix string, it will push the new operator to the

stack that is in ‘c’. It has to wait till we get the second operand. Then we will again

get the input. On the completion of the input, the while loop will be finished. There

may be a case that input may be completed even at the time when there are still some

elements on the stack. These are operators. To check this, we have another while loop.

This loop checks if the stack is not empty, pops the operator and put it in the postfix

string. Let’s take a look at a comprehensive example to understand it. In case of the

infix expression, A + B * C, we have three columns, one each for input symbol, the

postfix expression and the stack respectively. Now let’s execute the pseudo code. First

of all, we get the ‘A’ as input. It is an operand so we put it on the postfix string. The

next input is the plus operator (+) which will be pushed on the stack. As it is an

operator and we need two operands for it. On having a look at the expression, you

might have figure out that the second operand for the plus operator is B*C. The next

input is the operand B being sent to the postfix expression form. The next thing we

get is the input element as ‘*’. We know that the precedence of * is higher than that of

the +. Let’s see how we can do that according to our pseudo code. The prcd(s.top(),

op) takes two operands. We will get the top element of the stack i.e. + will be used as

first argument. The second argument is the input operator i.e. *. So the function call

will be as prcd(+, *) while the function returns false because the precedence of the

plus operator is not higher than the multiplication operator. So far, we have only one

operand for multiplication i.e. B. As multiplication is also a binary operator, it will

also have to wait for the second operand. It has to wait and the waiting room is stack.

So we will push it on the stack. Now the top element of the stack is *. The next

symbol is ‘C’. Being an operand, C will be added to the postfix expression. At this

point, our input expression has been completed. Our first ‘while loop’ executes till the

end of input. After the end of the input, the loop will be terminated. Now the control

goes to the second while loop which says if there is something on the stack, pop it and

add it the postfix expression. In this case, we have * and + on the stack. The * is at the

CS301 – Data Structures Lecture No. 07

Page 69 of 505

top of the stack. So when we pop, we get * which is at the top of the stack and it will

be added to the postfix expression. In the result of second pop, we get the plus

operator (+) which is also added to the postfix expression. The stack is empty now.

The while loop will be terminated and postfix expression is formed i.e. ABC*+.

Symbol postfix stack

A A

+ A +

B AB +

* AB *
+

C ABC *
+

 ABC* +
 ABC*+

If we have to convert the infix expression into the postfix form, the job is easily done

with the help of stack. The above algorithm can easily be written in C++ or C

language, specially, if you already have the stack class. Now you can convert very big

infix expressions into postfix expressions. Why we have done this? This can be

understood with the help of the example of spreadsheet programming where the value

of cell is the evaluation of some expression. The user of the spreadsheets will use the

infix expressions as they are used to it.

Sometimes we do need the parenthesis in the infix form. We have to evaluate the

lower precedence operator before the higher precedence operator. If we have the

expression (A+B) *C, this means that we have to evaluate + before the multiplication.

The objective of using parenthesis is to establish precedence. It forces to evaluate the

expression first of all. We also have to handle parenthesis while converting the infix

expression into postfix one. When an open parenthesis ‘(‘ is read, it must be pushed

on the stack. This can be done by setting prcd(op,‘(‘) to be FALSE. What is the

reason to put the parenthesis on the stack? It is due to the fact that as long as the

closing parenthesis is not found, the open parenthesis has to wait. It is not a unary or

binary operator. Actually, it is a way to show or write precedence. We can handle the

parenthesis by adding some extra functionality in our prcd function. When we call

prcd(op, ‘(‘), it will return false for all the operators and be pushed on the stack. Also,

prcd(‘(‘,op) is FALSE which ensures that an operator after ‘(‘ is pushed on the stack.

When a ‘)’ is read. All operators up to the first ‘(‘ must be popped and placed in the

postfix string. To achieve this our function prcd(op,’)’) should return true for all the

operators. Both the ‘(‘ and the’)’ will not go to the postfix expression. In postfix

expression, we do not need parenthesis. The precedence of the operators is established

in such a way that there is no need of the parenthesis. To include the handling of

parenthesis, we have to change our algorithm. We have to change the line s.push(c)

to:

if(s.empty() || symb != ‘)’)

s.push(c);

else

s.pop(); // discard the ‘(‘

CS301 – Data Structures Lecture No. 07

Page 70 of 505

If the input symbol is not ‘)’ and the stack is not empty, we will push the operator on

the stack. Otherwise, it is advisable to pop the stack and discard the ‘(‘. The following

functionality has to be added in the prcd function.

prcd(‘(‘, op) = FALSE for any operator

prcd(op, ‘)’) = FALSE for any operator other than ‘)’

prcd(op, ‘)’) = TRUE for any operator other than ‘(‘
prcd(‘)’, op) = error for any operator.

In the next lecture we will see in detail an example regarding the use of parenthesis.

CS301 – Data Structures Lecture No. 08

Page 71 of 505

Data Structures

Lecture No. 08

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3

3.3.3

Summary

 Conversion from infix to postfix

 C++ Templates

 Implementation of Stack

 Function Call Stack

Conversion from infix to postfix

In the previous lecture, we discussed the way to convert an infix notation into a

postfix notation. During the process of conversion, we saw that there may be need of

parenthesis in the infix especially at the times when we want to give a higher

precedence to an operator of lower precedence. For example, if there is a + operator

and * operator in an expression and a programmer wants the execution of addition

before the multiplication. To achieve this object, it is necessary to put parentheses

around the operands of + operator. Suppose, there is the expression A + B * C in

which we want to give the precedence to the + operator over * operator. This

expression will be written as (A + B) * C. Now we are going to discuss the conversion

of infix expression that includes parentheses to the postfix expression. We have

defined the return values for opening ‘(‘and closing ‘)’ parentheses in the precedence

function. Let’s try to understand this process with the help of an example of

converting the infix expression (A + B) * C into a postfix expression. We will see

how our algorithm, discussed earlier, converts this infix expression into a postfix

expression. To carry out the process of conversion we have three columns symbol,

postfix and stack. The column symbol has the input symbols from the expression. The

postfix column has the postfix string (expression) after each step and the stack is used

to put the operators on it. The whole process of converting the infix notation into a

postfix is given in the following table. This process of conversion is completed in

eight steps. Each of the rows of the table depicts one step.

Step No. Symbol Postfix Stack

1 ((

2 A A (

CS301 – Data Structures Lecture No. 08

Page 72 of 505

3 + A (+

4 B AB (+

5) AB+

6 * AB+ *

7 C AB+C *

8 AB+C*

First of all, there is the input symbol ‘(‘(i.e. opening parenthesis). As this is not an

operand, it may be put on the stack. The next input symbol is ‘A’. Being an operand it

goes to the postfix string and the stack remains unchanged. Then there is + operator of

binary type. Moreover, there is one operand in the postfix string. We push this +

operator on the stack and it has to wait for its second operand. Now in the input

symbol, there is an operand ‘B’. We put his operand in the postfix string. Then after

this, there is the closing parenthesis ‘)’ in the input symbol. We know that the

presence of a closing parenthesis in the input means that an expression (within the

parentheses) has been completed. All of its operands and operators are present with in

the parentheses. As studied in the algorithm, we discard a closing parenthesis when it

comes in the input. Then the operators from the stack are popped up and put in the

postfix string. We also pop the opening parenthesis and discard it as we have no need

of opening as well as closing parenthesis in the postfix notation of an expression. This

process is carried out in the 5 th row of the table. The + operator is put in the postfix

string. We also discard the opening parenthesis, as it is not needed in the postfix.

Now the next input symbol is *. We put this operator on the stack. There is one

operand for the * operator i.e. AB+. The * operator being a binary operator, has to

wait for the second operand. ‘C’ is the Next input symbol that is an operand. We put it

in the postfix string. After this, the input string (expression) ends so we come out of

the loop. We check if there is any thing on the stack now? There is * operator in the

stack. We pop the operator and put it into the postfix string. This way, we get the

postfix form of the given infix expression that becomes AB+C*. In this postfix

expression, the + operator is before the * operator. So addition operation is done

before the multiplication. This is mainly due to the fact that in the infix expression,

we have put parentheses to give + operator the precedence higher than the * operator.

Note that there are no parentheses in the postfix form of the given infix expression.

Now we apply the evaluation algorithm on this postfix expression (i.e. AB+C*). The

two operands A and B, will go to the stack. Then operator + will pop these operands

from the stack, will add them and push the result back on the stack. This result

becomes an operand. Next ‘C’ will go to the stack and after this * operator will pop

these two operands (result of addition and C). Their multiplication will lead to the

final result. The postfix notation is simple to evaluate as compared to the infix one. In

postfix, we need not to worry about what operation will be carried first. The operators

in this notation are in the order of evaluation. However, in the infix notation, we have

to force the precedence according to our requirement by putting parentheses in the

expression. With the help of a stack data structure, we can do the conversion and

evaluation of expressions easily.

C++ Templates

We can use C++ templates for stack and other data structures. We have seen that stack

is used to store the operands while evaluating an expression. These operands may be

CS301 – Data Structures Lecture No. 08

Page 73 of 505

integers, floating points and even variables. We push and pop the operands to and

from the stack. In the conversion of an expression, a programmer uses the stack for

storing the operators like +, *, -, and / etc which are single characters. In both cases,

the functionality is the same. We push and pop things on and from the stack. At times,

we check if the stack is empty or not. Thus identical methods are employed while

using stack in evaluating and converting the expressions. However, there may be a

difference in the type of the elements (data) used in these cases. We may define a

stack, which can store different types of data but for the time being we are restricting

ourselves to the stack that can store elements of only one type. In C++ programming,

we will have to create two classes FloatStack and CharStack for operands and

operators respectively. These classes of stack have the same implementation. Thus,

we write the same code twice only with the difference of data type. Is there any

method to write the code for the stack once and then use it for different types of data?

This means is there any way that we can make a stack for storing integers, floating

points, characters or even objects with the same code written once. The language C++

provides us the facility of writing templates. A template can be understood with the

example of a factory that bakes biscuits. The factory may use flour, corn or starch as

ingredients of the product. But the process of baking biscuits is the same whatever

ingredients it uses. There is no difference in the machinery for producing biscuits with

different ingredients. So we call the factory as the template for the biscuits. Similarly

in C++ language, a template is a function or class that is written with a generic data

type. When a programmer uses this function or class, the generic data type is replaced

with the data type, needed to be used in the template function or in the template class.

We only give the data type of our choice while calling a template function or creating

an object of the template class. The compiler automatically creates a version of that

function or class with that specified data type. Thus if we write a template class for

stack, then later on we can use it for creating a stack for integers, floating points or

characters etc. So instead of writing code for different stacks of different data types,

we write one code as a template and reuse it for creating different stacks. We declare

the template class in a separate file in addition to the main program file. This file can

be used in our program by including it in that file. Following is the code of the

template class for stack. This is written in the file Stack.h.

In the above code the line

template <class T>

template <class T>

class Stack

{
public:

Stack();

int empty(void);

int push(T &);

T pop(void);

T peek(void);

~Stack();

private:

int top;
T* nodes;

};

// 1=true, 0=false

// 1=successful,0=stack overflow

CS301 – Data Structures Lecture No. 08

Page 74 of 505

shows that we are going to write a template. Here T is a variable name for generic

data type. We can use any other name but generally T is used (T evolves from

template). A data type will replace this T whenever template is used in a program.

Then we declare member functions of the class. To begin with, there is a constructor

of the class with the same name as that of the class i.e. Stack. It is followed by the

empty () function and then function push that is declared as follows

int push(T &) ;

We have been using the data (element) type int or some other data type in the push()

function. Now there is T written as the data type in the push() function. This means

that the function takes an argument of type T, here T is a generic data type and we will

use a proper data type while calling this function in our program. This data type will

replace T. There are also pop and peek functions that take no arguments but return the

value which is of type T. The peek function is similar to the top function that returns

(shows) the element from the top but does not remove it from the stack.

In the private section of the class, there are two variables. The variable top is used to

point to the top of the stack. The pointer nodes is used to point to nodes of type T. We

allocate dynamic memory using this nodes pointer.

In the definition of this whole class, T is a substitution parameter. While using the
stack class in the program, we will replace this T with a proper data type.

Implementation

Now we will see how to implement this stack class in our program. Following is the

code of the program. We save this code in the file named Stack.cpp.

#include <iostream.h>
#include <stdlib.h>

#include "Stack.h"

#define MAXSTACKSIZE 50

template <class T>

Stack<T>::Stack()

{

top = -1;

nodes = new T[MAXSTACKSIZE];

}

template <class T>

Stack<T>::~Stack()

{
delete nodes;

}

template <class T>

int Stack<T>::empty(void)

{

if(top < 0) return 1;

CS301 – Data Structures Lecture No. 08

Page 75 of 505

In this code, we include different files in which one is Stack.h , written earlier to

declare the template class Stack. We have defined a constant size of the stack to 50 by

writing the line

#define MAXSTACKSIZE 50

Next is the definition of the constructor. Here before the signature of the constructor
function, we have written

template <class T>

Stack<T> :: Stack() ;

This means that we are writing a template function that uses T wherever a data type is

written. As we have declared the Stack class as a template class, <T> will be written

with the class name before the access specifier (i.e. ::) while defining a method of the

class. Then there is the implementation of the constructor in which we assign the

value –1 to top and allocate memory by using the new operator for stack of size

MAXSTACKSIZE of type T and put its starting address in the pointer nodes. It is

pertinent to note that we create an array of type T (i.e. a generic type).

Similarly we define the destructor ~Stack, which frees the memory by deleting the

nodes. Then there are the different methods of the stack i.e. empty(), push(), and

pop(). We define all the methods in the same way as done in case of the constructor. It

means that while writing template <class T> at the start, we use T wherever a data

type can be used. The function empty() returns a Boolean parameter. It returns 1 that

return 0;

}

template <class T>

int Stack<T>::push(T& x)

{

if(top < MAXSTACKSIZE)

{

nodes[++top] = x;

return 1;

}

cout << "stack overflow in push.\n";
return 0;

}

template <class T>

T Stack<T>::pop(void)

{

T x;

if(!empty())

{

x = nodes[top--];

return x;

}

cout << "stack underflow in pop.\n";

return x;

}

CS301 – Data Structures Lecture No. 08

Page 76 of 505

means TRUE if the stack is empty i.e. if top is less than 0. Otherwise it returns zero

i.e. FALSE if the stack is not empty.

We define the push function as under

int Stack<T>::push(T& x)

{

if(top < MAXSTACKSIZE)

{

nodes[++top] = x;

return 1;

}

cout << "stack overflow in push.\n";

return 0;

}

This function takes an argument x by reference. It checks whether there is space in the

stack by checking the value of the top. If top is less than the MAXSTACKSIZE, it

means there is space available in the stack. Then it puts the element x on the stack and

returns 1, indicating that push operation has succeeded. Otherwise, it displays a

message of stack overflow and returns zero which indicates that the element was not

put on the stack.

Next comes the pop method. Here we see that the value returned by this method is of

type T. In the body of the function, we define a local variable of type T and check if

the stack is empty. If it is not empty, we pop the value from the top in variable x and

return it.

Now let’s see the use of this template stack. Here we write the main program in a

separate file including the stack.cpp (we have written before shortly) to use the stack.
Following is the program written in the file main.cpp. This program demonstrates the

implementation of the stack.

In the above code, consider the line

Stack <int> intstack ;

This line means that while creating an object intstack of Stack, the generic data type T

should be replaced by the type int, In other words, it will be a stack for integers. The

compiler will replace T with int wherever it exists in the code, providing a version of

code with data type int. The compiler does this automatically.

#include "Stack.cpp"

int main(int argc, char *argv[])

{

Stack<int> intstack;

Stack<char> charstack;

int x=10, y=20;

char c='C', d='D';

intstack.push(x); intstack.push(y);

cout << "intstack: " << intstack.pop() << ", " << intstack.pop() << "\n";

charstack.push(c); charstack.push(d);

cout << "charstack: " << charstack.pop() << ", " << charstack.pop() << "\n";

}

CS301 – Data Structures Lecture No. 08

Page 77 of 505

Similarly the next line

Stack <char> charstack ;

creates an object of Stack that has name charstack and replaces the type T with char.

It shows that it will be a stack of characters. Here T is replaced with char and a

version of code is provided by the compiler, used for the char data type. Thus we

create two objects of two types (i.e. int and char) of Stack by using the same code of

the template class.

To demonstrate the implementation of Stack, we declare two variables of type int and

two of type char. Then we push and pop these variables on and from the proper stack.

We push the int values on the intstack (which we have created for int data type). The

values of type other than int on the stack intstack can not be pushed as we have

created it to store the int data type. And then we poop these values from the stack and

show on the screen. Similarly we push the char values on the charstack (a stack to

store char values) before displaying these values on the screen with the help of the

pop method to get these values from the stack.

Now we have the three files of our code i.e. stack.h, stack.cpp and main.cpp. Having

these files in the same directory, we compile the main file (main.cpp) and execute it.

Following is the output of the above program.

In the above example, we create two objects of Stack to use for two different data

types. The compiler automatically provides us two versions of the template code, one

for int and the other for char using the same code, written as template. So it is only

due to the use of the template utility, provided by the C++ language only. No other

language including C provides this utility of templates. If we write this program in C,

the code of the functions of Stack has to be written repeatedly for each data type.

Similarly, we will have to write different versions for using different data types. But

in templates, a programmer writes the code once and the compiler automatically

produces the version of the code with the needed data type. We have implemented the

stack by using array. It can also be implemented with the linked list. The use of array

or linked list does not matter here. The implementation of the stack remains the same.

The templates are so important that C++ provides a library in which a large number of

common use functions are provided as templates. This library is a part of the official

standard of C++. It is called STL i.e. Standard Template Library. As a library, it is a

tested code base. We can use these templates and implement different concepts for

our own data types. STL is an important code, pre-developed for us. It is available as

a library. Different data structures like stack, queue etc is also there in STL. We can

write programs by using them. But here in this course, our goal is to know what the

data structures are, what is functioning and how can they be written? So we are

writing and discussing the stack templates. You can use data structures from STL in

the programming courses or in the professional life. You need not to write the stack or

queue from the scratch you can simply use them in your programs from STL.

Function Call Stack

Let’s talk about another example of the stack. We know the functionality of the

intstack: 10, 20

charstack: C, D

CS301 – Data Structures Lecture No. 08

Page 78 of 505

function calls. Whenever a programmer calls a function, he or she passes some

arguments or parameters to the function. The function does work on these arguments

and returns a value to the calling function or program. This value is known as the

return value of the function. We declare some variables inside the function which are

local variables of the function. These variables are demolished when the execution of

the function ends. If there are variables in the function that need to be preserved, we

have to take care of them. For this purpose, we use global variables or return a pointer

to that variable. Now let’s see how a stack is used in function calls.

We are using devC++ compiler that actually uses GCC (glue compiler), a public

domain compiler. Whenever we call a function, the compiler makes a stack that it

uses to fulfill this function call. The compiler puts the entries on the stack in the way

that first of all i.e. on the top (i.e. first entry in the stack) is the return address of the

function where the control will go back after executing the function. After it, the next

entries on the stack are the arguments of the function. The compiler pushes the last

argument of the call list on the stack. Thus the last argument of the call list goes to the

bottom of the stack after the return address. This is followed by the second last

argument of the call list to be pushed on the stack. In this way, the first argument of

the call list becomes the first element on the stack. This is shown in the following

figure.

top------ >

In the calling function, after the execution of the function called, the program

continues its execution form the next line after the function call. The control comes

back here because when the execution of the function ends the compiler pops the

address from the stack which it has pushed when the function call was made. Thus the

control goes at that point in the program and the execution continues in the calling

function or program.

Consider the following code of a function that takes two integer arguments a, b and

returns the average of these numbers.

int i_avg (int a, int b)

{
return (a + b) / 2;

}

To understand the use of stack, look at the assembly language code of the above

function that is written as under.

globl _i_avg

_i_avg:

movl 4(%esp), %eax

addl 8(%esp), %eax # Add the args

last argument

………

………

second argument

first argument

return address

CS301 – Data Structures Lecture No. 08

Page 79 of 505

sarl $1, %eax # Divide by 2

ret # Return value is in %eax

The first statement is globl_i_avg which shows that it’s a global function that can be

called by other functions or programs. After it, there is a label, written as _i_avg:

The next statement is movl 4(%esp), %eax. Here in this statement, there is the use of

stack. Here esp is a register in assembly language that is now a stack pointer for us

(i.e. top). The movl (move long) takes offset 4 from top (4 is number of bytes, we use

4 bytes as in C++ an integer is of 4 bytes.) that means after 4 bytes from the top in the

stack it gets the value and put it in the eax register. We know that the compiler pushes

the arguments of the function in reverse order on the stack. And pushes return address

at the end. Thus the order of stack will be that on the top will be the return address

and immediately after it will be the first argument. Here in the assembly code

generated by the compiler, the compiler pops first argument from offset 4 and puts it

in eax register. The next statement is

addl 8(%esp), %eax

The addl takes offset 8 from the stack pointer that is second argument and adds it to

eax. Thus in the previous two statements, the compiler got the first argument i.e. a

from the stack and the second argument b from the stack, added them before putting

the result in eax. The next statement

sarl $1, %eax

is the division statement of assembly language. This statement divides the value in
eax by 2 and thus eax has the resultant value. The last statement i.e. ret, returns the

value on the top of the stack to the caller function.

So we have seen the use of stack in the execution of a function and how the

arguments are passed to the function, how the functions return its return value and

finally how the control goes back to the caller function .All this process is executed by

using a stack. All the things about the functionality of the function calls are necessary

to understand as these will be needed while going to write our own compilers. We

will read this in the compilers course. The whole process we have discussed about the

use of stack in function calling is known as run time environment.

Different data structures are also used in run time environment of the computer. We

know that an executable program while in run, is loaded in the memory and becomes

a process. This process is given a block of memory which it uses during its execution.

Even the operating system, in which we are working, itself takes memory. Suppose

we are running many programs simultaneously, which for example include browser,

MS Word, Excel and dev-C++. We can also run programs written by us. Every

program which we run takes a block of memory and becomes a process. The

following figure shows a part of memory in which different programs occupy a block

of memory for their execution.

CS301 – Data Structures Lecture No. 08

Page 80 of 505

Process 1

(browser)

Process 3

(Word)

Process 4

(Excel)

Process 2

(Dev-C++)

Windows Os

We can also see the details of all the programs running at a specific time. If we press

the key combination Ctrl-Alt-Del, there appears a window task manager on the

screen. Following is the figure of the task manager. In the figure, there are many

columns i.e. PID (process ID), CPU, CPU time, Memory usage, page faults, I/O

Reads, I/O Writes, I/O Read Bytes. These all things we will read in the course of

Operating Systems in detail.

Here the thing of our interest is the first, second and fifth column. These columns are

CS301 – Data Structures Lecture No. 08

Page 81 of 505

Image Name, PID and Mem Usage (i.e. memory usage). Now look at the row where

explorer.exe is written in the first column. The process ID (PID) of it is 888 and

memory usage is 4696K. This means that the process size of explorer.exe in the

memory is 4696 Kilo Bytes (KB). All the processes in the first column of the task

manager are present in the memory of the computer at that time. The column Image

name has the names of the processes being executed. These have extension .exe but

there may be other executable programs that have extension other than .exe.

The following figure shows the internal memory organization of a process.

This shows that the first part of the memory of the process is for the code. This is the

code generated by the compiler of C++, JAVA or VB etc with respect to the language

in which the actual code was written. Then the static data of the program occupies the

memory. This holds the global variables and different variables of objects. Then in the

memory of the process, there is stack. After it there is heap. The stack and heap are

used in function calls. We have discussed the use of stack in function calls. When we

allocate memory dynamically in our programs, it is allocated from the heap. The use

of heap is a topic related to some programming course or to the operating system

course.

Process 1

(browser)

Process 3

(Word)

Process 4

(Excel)

Process 2

(Dev-C++)

Windows Os

Code

Static data

Stack

Heap

CS301 – Data Structures Lecture No. 09

Page 82 of 505

Data Structures

Lecture No. 09

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3

3.3.3, 3.4.1, 3.4.2

Summary

 Memory Organization

 Stack Layout During a Function Call

 Queues

 Queue Operations

 Implementing Queue

 Queue using Array

 Use of Queues

Memory Organization
By the end of last lecture, we discussed the uses of stack to develop a process from an

executable file and then in function calls. When you run an executable, the operating

system makes a process inside memory and constructs the followings for that purpose.

- A code section that contains the binary version of the actual code of the program

written in some language like C/C++

- A section for static data including global variables

- A stack and

- Finally, a heap

Stack is used in function calling while heap area is utilized at the time of memory

allocation in dynamic manner.

Fig 1. Memory Organization

Process 1

(Browser)

Process 3

(Word)

Process 4

(Excel)

Process 2
(Dev-C++)

Windows OS

Code

Static Data

Stack

Heap

CS301 – Data Structures Lecture No. 09

Page 83 of 505

Stack Layout during a Function Call

sp

At point of call sp

sp

After Call

During Execution of G

Fig 2: Stack Layout; When function F calls function G

The above diagrams depict the layout of the stack when a function F calls a function

G. Here sp stands for stack pointer. At the very left, you will find the layout of the

stack just before function F calls function G. The parameters passed to function F are

firstly inserted inside the stack. These are followed by the local variables of the

function F and finally the memory address to return back after the function F finishes.

Just before function is made to the function G, the parameters being passed to the

function G, are inserted into the stack.

In the next diagram, there is layout of the stack on the right side after the call to the

function G. Clearly, the local variables of the function G are inserted into the stack

after its parameters and the return address. If there are no local variables for a
function, the return address is inserted (pushed) on to the stack.

The layout of the stack, when the function G finishes execution is shown on the right.

You can see that the local variables of function G are no more in the stack. They have

been removed permanently along with the parameters passed to the function G. Now,

it is clear that when a function call is made, all local variables of the called function

and the parameters passed to it, are pushed on to the stack and are destroyed, soon

after the the completion of the called function’s execution.

In C/C++ language, the variables declared as static are not pushed on the stack.

Rather, these are stored in another separate section allocated for static data of a

program. This section for global or static data can be seen in the fig 1 of this lecture.

It is not destroyed till the end of the process’s execution. If a variable, say x is

declared as static inside function G, x will be stored in the static data section in the

process’s memory. Whereas, its value is preserved across G function calls. The

visibility of x is restricted to the function G only. But a static variable declared as a

class data is available to all member functions of the class and a static variable

declared at global scope (outside of any class or function body) is available to all

functions of the program.

Parameters (G)

Local variables (G)

Return address (G)

Parameters (F)

Local variables (F)

Return address (F)

Parameters (G)

Parameters (F)

Local variables (F)

Return address (F)

Parameters (F)

Local variables (F)

Return address (F)

CS301 – Data Structures Lecture No. 09

Page 84 of 505

Now, let’s move on to another data structure called queue.

Queues

A queue is a linear data structure into which items can only be inserted at one end and

removed from the other. In contrast to the stack, which is a LIFO (Last In First Out)

structure, a queue is a FIFO (First In First Out) structure.

The usage of queue in daily life is pretty common. For example, we queue up while

depositing a utility bill or purchasing a ticket. The objective of that queue is to serve

persons in their arrival order; the first coming person is served first. The person, who

comes first, stands at the start followed by the person coming after him and so on. At

the serving side, the person who has joined the queue first is served first. If the

requirement is to serve the people in some sort of priority order, there is a separate

data structure that supports priorities. The normal queue data structure, presently

under discussion, only supports FIFO behavior.

Now, let’s see what are the operations supported by the queue.

Queue Operations
The queue data structure supports the following operations:

enqueue(X) Place X at the rear of the queue.

dequeue() Remove the front element and return it.

front() Return front element without removing it.

isEmpty() Return TRUE if queue is empty, FALSE otherwise

Operation Description

CS301 – Data Structures Lecture No. 09

Page 85 of 505

1

front

7 1 2

Implementing Queue
There are certain points related to the implementation of the queue. Suppose we are

implementing queue with the help of the linked -list structure. Following are the key

points associated with the linked list implementations:

- Insert works in constant time for either end of a linked list.

- Remove works in constant time only.

- Seems best that head of the linked list be the front of the queue so that all removes

will be from the front.

- Inserts will be at the end of the list.

front

rear front
rear

1 7 5 2

Fig 3. Queue implementation using linked list

The above figure shows queue elements on the left with two pointers front and rear.

This is an abstract view of the queue, independent of its implementation method of

array or linked list. On the right side is the same queue ,using linked list and pointers

of front and rear. When dequeue() function is called once, the front element 1 is

removed. The picture of the queue showing one element removal is also depicted

below. Note that front pointer has been moved to the next element 7 in the list afer

removing the front element 1.

After dequeue() is called once

front rear rear

7 5 2

Fig 4. Removal of one element from queue using dequeue()

Now at this stage of the queue, we will call enqueue (9) to insert an element 9 in it. .

The following figure shows that the new element is inserted at the rear end and rear

pointer starts pointing this new node with element 9.

At this point of time, the code of these functions of dequeue() and enqueue() should

not be an issue.

7 5

5

CS301 – Data Structures Lecture No. 09

Page 86 of 505

Queue after enqueue(9) call

front

rear

front

7 5 2 9

Fig 5. Insertion of one element using enqueue(9)

Note that in this queue data structure, the new elements are inserted at rear end and

removed from the front. This is in contrast to stack structure where the elements are

inserted and removed from the same end.

Let’s see the code for queue operations:

In dequeue() operation, at line 3, the front element is retrieved from the queue and

assigned to the int variable x.

In line 4, the front pointer is saved in Node pointer variable p.

In line 5, the front pointer is moved forward by retrieving the address of the next node

by using front->getNext() and assigning it to the front pointer.

In line 6, the node pointed to by the front pointer is deleted by using delete front

statement.

At the end of dequeue() implementation, the value of deleted node that was saved in

the int variable x, is returned back.

The enqueue(int) is used to add an element in the queue. It inserts the element in the

rear of the queue. At line 11, a new Node object is created using the new Node()

statement and the returned starting address of the created object is assigned to the

newNode pointer variable.
In line 12, the value of the passed in parameter x, is set in the newly created node

rear

9 2 5 7

/* Remove element from the front */
1. int dequeue()

2. {

3. int x = front->get();

4. Node* p = front;

5. front = front->getNext();

6. delete p;
7. return x;

8. }
/* Insert an element in the rear */

9. void enqueue(int x)

10. {

11. Node* newNode = new Node();

12. newNode->set(x);

13. newNode->setNext(NULL);

14. rear->setNext(newNode);

15. rear = newNode;

16. }

CS301 – Data Structures Lecture No. 09

Page 87 of 505

/* To retrieve the front element */

int front()

{

return front->get();

}

/* To check if the queue is empty */

int isEmpty()

{

return (front == NULL);

}

object using the set() method.

In line 13, the next pointer in the newly created node is set to NULL.

In line 14, the newly created node is set as the next node of the node currently pointed
by the rear pointer.

Ine line 15, the rear pointer is set to point to the newly created node.

The code of two smaller functions is as under:

The front() method is used to retrieve the front element. This is the oldest element

inserted in the queue. It uses the get() method of the Node class.
The isEmpty() method is used to check whether the queue is empty or not. It checks

the address inside the front pointer, if it is NULL. It will return true indicating that the

queue is empty or vice versa.

While studying stack data structure, we implemented it by using both array and

linked list. For queue, until now we have been discussing about implementing queue
using linked list. Now, let’s discuss implementing queue with the help of an array.

Queue using Array
A programmer keeps few important considerations into view account before

implementing a queue with the help of an array:

If we use an array to hold the queue elements, both insertions and removal at the front

(start) of the array are expensive. This is due to the fact that we may have to shift up

to “n” elements.

For the stack, we needed only one end but for a queue, both are required. To get

around this, we will not shift upon removal of an element.

front rear

1 7 5 2

0 1 2 3

4 5 6 7

Fig 6. Queue implemented using an array

front

0

rear

3

1 7 5 2

CS301 – Data Structures Lecture No. 09

Page 88 of 505

In the above figure, queue implementation using array is shown. As the array size is 8,

therefore, the index of the array will be from 0 to 7. The number of elements inside

array are 1, 7, 5 and 2, placed at start of the array. The front and rear in this

implementation are not pointers but just indexes of arrays. front contains the starting

index i.e. 0 while rear comprises 3.

Let’s see, how the enqueue() works:

enqueue(6)

front rear

1 7 5 2 6

0 1 2 3

front

0

4 5 6 7

rear

4

Fig 7. Insertion of one element 6

As shown in the above diagram, an element i.e. 6 has been inserted in the queue.

Now, the rear index is containing 4 while the front has the same 0 index. Let’s see

the figure of the array when another element 8 is inserted in the queue.

front

enqueue(8)

rear

1 7 5 2 6 8

0 1 2 3 4

front

0

5 6 7

rear

5

Fig 8. Insertion of another element 8

When an element is removed from the queue. It is removed from the front index.

dequeue()

front rear

7 5 2 6 8

0 1 2 3 4

front

1

5 6 7

rear

5

Fig 9. Removal of an element from front

1 7 5 2 6

1 7 5 2 6 8

7 5 2 6 8

CS301 – Data Structures Lecture No. 09

Page 89 of 505

After another call of dequeue() function:

dequeue()

front rear

5 2 6 8

0 1 2 3 4

front

2

5 6 7

rear

5

Fig 10. Removal of another element from front

With the removal of element from the queue, we are not shifting the array elements.

The shifting of elements might be an expensive exercise to perform and the cost is

increased with the increase in number of elements in the array. Therefore, we will

leave them as it is.

front

rear

enqueue(9)

enqueue(12)

5 2 6 8 9 12

0 1 2 3

front

2

4 5 6 7

rear

7

Fig 11. Insertion of elements in the queue

After insertion of two elements in the queue, the array that was used to implement it,

has reached its limit as the last location of the array is in use now. We know that there

is some problem with the array after it attained the size limit. We observed the similar

problem while implementing a stack with the help of an array.

We can also see that two locations at the start of the array are vacant. Therefore, we

should can consider how to use those locations appropriately in to insert more

elements in the array.

Although, we have insert and removal operations running in constantly, yet we

created a new problem that we cannot insert new elements even though there are two

places available at the start of the array. The solution to this problem lies in allowing

the queue to wrap around.

How can we wrap around? We can use circular array to implement the queue. We

know how to make a linked list circular using pointers. Now we will see how can we
make a circular array.

5 2 6 8

5 2 6 8 9 12

CS301 – Data Structures Lecture No. 09

Page 90 of 505

12 5

9 2

8 6

front

5 2

rear

6 8 9 12

0 1

front

7 2 2

6 3 rear

Fig 12. Circular array to implement queue 5 4
7

The number of locations in the above circular array are also eight, starting from index

0 to index 7. The index numbers are written outside the circle incremented in the

clock-wise direction. To insert an element 21 in the array , we insert this element in

the location, which is next to index 7.

front

enqueue(21)

rear

0 1

21
7

12 5

front

2 2

size

8

5 2 6 8 9 12 21
6 9 2

3 rear

noElements

8 6

Fig 13. An element added in circular array 5 4
0 7

Now, we will have to maintain four variables. front has the same index 2 while the,

size is 8. ‘ rear’ has moved to index 0 and noElements is 7. Now, we can see that rear

index has decreased instread of increasing. It has moved from index 7 to 0. front is

containing index 2 i.e. higher than the index in rear. Let’ see, how do we implement

the enqueue() method.

In line 1 of the code, 1 is added in rear and the mod operator (that results in

remainder of the two operands) is applied with size variable. This expression on the

right of assignment in line 1 can result from 0 to 7 as size is containing value 8. This

operator ensures that value of this expression will always be from 0 to 7 and increase

or decrease from this. This resultant is assigned to the rear variable.

In line 2, the x (the value passed to enqueue() method to insert in the queue) is

inserted in the array at the rear index position. Therefore, in the above case, the new

element 21 is inserted at index 0 in the array.

In line 3, noElements is added to accumulate another element in the queue.

void enqueue(int x)

{

1. rear = (rear + 1) % size;

2. array[rear] = x;

3. noElements = noElements + 1;

}

CS301 – Data Structures Lecture No. 09

Page 91 of 505

21 7

12 5

9 2

8 6

21 7

12

9

8 6

Let’s add another element in the queue.

enqueue(7)
0 1

front rear
7

front

2 2

size

8

5 2 6 8 9 12 21 7

6 3 rear

5 4
1

noElements

8

Fig 14. Another element added in circular array

Now, the queue, rather the array has become full. It is important to understand, that

queue does not have such characteristic to become full. Only its implementation array

has become full. To resolve this problem, we can use linked list to implement a queue.

For the moment, while working with array, we will write the method isFull(), to

determine the fullness of the array.

isFull() returns true if the number of elements (noElements) in the array is equal to the

size of the array. Otherwise, it returns false. It is the responsibility of the caller of the

queue structure to call isFull() function to confirm that there is some space left in the

queue to enqueue() more elements.

Similarly isEmpty() looks at the number of elements (noElements) in the queue. If

there is no element, it returns true or vice versa..

Let’s see the dequeue() method.

dequeue()

front rear

0 1

front

7 2 4

size

8

6 8 9 12 21 7
6 3 rear

5 4
1

noElements

8

Fig 15. Element removed from the circular array

int isFull()

{

return noElements == size;

}

int isEmpty()

{

return noElements == 0;

}

CS301 – Data Structures Lecture No. 09

Page 92 of 505

In the first line, we take out an element from the array at front index position and store
it in a variable x. In the second line, front is incremented by 1 but as the array is

circular, the index is looped from 0 to 7. That is why the mod (%) is being used. In the

third line, number of elements (noElements) is reduced by 1 and finally the saved
array element is returned.

Use of Queues
We saw the uses of stack structure in infix, prefix and postfix expressions. Let’s see

the usage of queue now.

Out of the numerous uses of the queues, one of the most useful is simulation. A

simulation program attempts to model a real-world phenomenon. Many popular video

games are simulations, e.g., SimCity, Flight Simulator etc. Each object and action in

the simulation has a counterpart in the real world. Computer simulation is very

powerful tool and it is used in different high tech industries, especially in engineering

projects. For example, it is used in aero plane manufacturing. Actually Computer

Simulation is full-fledged subject of Computer Science and contains very complex

Mathematics, sometimes. For example, simulation of computer networks, traffic

networks etc.

If the simulation is accurate, the result of the program should mirror the results of the

real-world event. Thus it is possible to understand what occurs in the real-world
without actually observing its occurrence.

Let us look at an example. Suppose there is a bank with four tellers.
A customer enters the bank at a specific time (t1) desiring to conduct a transaction.

Any one of the four tellers can attend to the customer. The transaction (withdraws,

deposit) will take a certain period of time (t2). If a teller is free, the teller can process

the customer’s transaction immediately and the customer leaves the bank at t1+t2. It is

possible that none of the four tellers is free in which case there is a line of customers

at each teller. An arriving customer proceeds to the back of the shortest line and waits

for his turn. The customer leaves the bank at t2 time units after reaching the front of

the line.

The time spent at the bank is t2 plus time waiting in line.

So what we want to simulate is the working environment of the bank that there are

specific number of queues of customers in the bank in front of the tellers. The tellers

are serving customers one by one. A customer has to wait for a certain period of time

before he gets served and by using simulation tool, we want to know the average

waiting time of a bank customer. We will talk about this simulation in the next lecture

and will do coding also in order to understand it well.

int dequeue()

{

int x = array[front];

front = (front + 1) % size;

noElements = noElements - 1;

return x;

}

CS301 – Data Structures Lecture No. 10

Page 93 of 505

Data Structures

Lecture No. 10

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 3,

6

3.4.3, 6.1

Summary

12) Queues

13) Simulation Models

14) Priority Queue

15) Code of the Bank simulation

Queues

In the previous lecture, we discussed the queue data structure and demonstrated its

implementation by using array and link list. We also witnessed the usefulness of

queue as data structure in the simulation example. This concept can be further

elaborated with a daily life example relating to banking sector. Suppose, customers

want to deposit or withdraw money from a bank, having four cashiers or tellers. The

teller helps you in depositing the money or withdrawing the money from the same

window. This window is known as teller window. The customer needs some service

from the bank like depositing the money, bill etc. This transaction needs some time

that may be few minutes. A person enters the bank and goes to the teller who is free

and requests him to do the job. After the completion of the transaction, the person

goes out of the bank. Now we will discuss a scenario when there is a lot of rush of

customers. The tellers are just four. Now the tellers are busy and the new customers

will form a queue. In this example, we need a queue in front of each of the tellers. A

new customer enters the bank and analyzes the four queues and wants to join the

shortest queue. This person has to wait for the persons in front of him to be served.

Another person may come behind him. In this simulation, we will restrict the person

from changing the queue. A person comes into the bank at 10 O clock. His transaction

time is 5 minutes. He has to wait for another fifteen minutes in the queue. After this,

the teller serves him in 5 min. This person comes at 10 am and waits for fifteen

minutes. As the transaction time is 5 minutes, so he will leave the bank at 1020. Now

this is the situation of simulation and we have to write a program for this. We can go

to some bank and analyze this situation and calculate the time. At the end of the day,

we can calculate the average time for each of the customer. This time can be 30

minutes. Here we will simulate this situation with the help of a computer program.

This is the real life example. Let’s see the picture of simulations to understand what is

happening in the bank.

In the picture below, we have four tellers and four queues, one for each of the tellers.
Each teller is serving a customer. When the transaction of a customer is completed, he

will leave the bank.

CS301 – Data Structures Lecture No. 10

Page 94 of 505

teller teller teller teller

A person enters the bank. He sees that all the four tellers are busy and in each queue

there are two persons waiting for their turn. This person chooses the queue no. 3.

Another person enters the bank. He analyzed all the queues. The queue no 3 is the

biggest and all other are having 2 persons in the queue. He chooses the queue no 1.

teller teller teller teller

Now we have three persons waiting in queue no 1 and 3 and two persons waiting in

queue no 2 and 4. The person in queue no.1 completes his transaction and leaves the

bank. So the person in the front of the queue no. 1 goes to the teller and starts his

transaction. Similarly the person at queue No. 3 finishes his transaction and leaves the

premises. The person in front of queue number 3 goes to the teller.

Another person enters the bank and goes to the queue No. 1. This activity goes on.

The queues become bigger and shorter. The persons coming in the bank have to wait.

If the queues are shorter, people have to wait for less time. However, if the queues are

CS301 – Data Structures Lecture No. 10

Page 95 of 505

longer, people have to wait for more time. The transactions can also take much more

time, keeping the people waiting. Suppose four persons come with big amount and

their transaction takes too much time. These are all parameters which we can

incorporate in our simulation making it real. For this, we have carry out more

programming. With the introduction of these parameters in the simulation, it will be

more close to the real life situation. Simulation, being a very powerful technique, can

yield the results, very close to some real life phenomenon.

Simulation Models

Let’s discuss little bit about the simulation models. Two common models of

simulation are time-based simulation and event-based simulation. In time-based

simulation, we maintain a timeline or a clock. The clock ticks and things happen when

the time reaches the moment of an event.

Suppose we have a clock in the computer. The minute hand moves after every minute.

We know the time of the customer’s entry into the bank and are aware that his

transaction takes 5 minutes. The clock is ticking and after 5 minutes, we will ask the

customer to leave the bank. In the program, we will represent the person with some

object. As the clock continues ticking, we will treat all the customers in this way.

Note that when the customer goes to some teller, he will take 5 minutes for his

transaction. During this time, the clock keeps on ticking. The program will do nothing

during this time period. Although some other customer can enter the bank. In this

model, the clock will be ticking during the transaction time and no other activity will

take place during this time. If the program is in some loop, it will do nothing in that

loop until the completion of the transaction time.

Now consider the bank example. All tellers are free. Customer C1 comes in 2 minutes

after the opening of the bank. Suppose that bank opens at 9:00 am and the customer

arrives at 9:02 am. His transaction (withdraw money) will require 4 minutes.

Customer C2 arrives 4 minutes after the bank opens (9:04 am). He needs 6 minutes

for transaction. Customer C3 arrives 12 minutes after the bank opens and needs 10

minutes for his transaction.

We have a time line and marks for every min.

Time (minutes)

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15

C3 in

C1 comes at 2 min, C2 enters at 4 min. As C1 needs 4 min for his transaction, so he

leaves at 6 min. C2 requires 6 min for the processing so C2 leaves at 10 min. Then C3

enters at 12 min and so on. This way, the activity goes on. Therefore, we can write a

C1 in C1 out

C2 in C2 out

CS301 – Data Structures Lecture No. 10

Page 96 of 505

routine of the clock. We take a variable clock representing the clock. The clock will

run for 24 hrs. Banks are not open for 24 hrs but we will run our loop for 24 hrs. The

pseudo code is as under:

clock = 0;

while (clock <= 24*60) { // one day

read new customer;

if customer.arrivaltime == clock

insert into shortest queue;

check the customer at head of all four queues.

if transaction is over

remove from queue.

clock = clock + 1;

}

The variable clock is initialized to zero. The while loop runs for 24 hrs. Then we read

a new customer. This information may be coming from some file. The if statement is

checking the arrival time of the customer. He comes 10 minutes after the opening of

the bank. So when this time is equal to the clock, we insert the customer in the

shortest queue. Then we will check the transaction time of all the four customers at

each teller. If the transaction time of any customer ends, we will remove it from the

queue and he will leave the bank. In the end, we increment the clock with one minute.

As seen in the above statements, some activity takes place when the clock reaches at

the event time (that is the time to enter the bank or leave the bank arrives). If the

customer’s arrival time has not come, the first if statement becomes false and we do

nothing. Similarly if the transaction of customer is not finished, the second if

statement becomes false. Then this while loop will simply add one min to the clock.

This is the clock- based (time- based) simulation.

Let’s discuss the other type of simulation i.e. the event-based simulation. Don’t wait

for the clock to tick until the next event. Compute the time of next event and maintain

a list of events in increasing order of time. Remove an event from the list in a loop

and process it. Let’s see the time line again.

CS301 – Data Structures Lecture No. 10

Page 97 of 505

Time (minutes)

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15

Event 1: 2 mins C1 in

Event 2: 4 mins C2 in

Event 3: 6 mins C1 out

Event 4: 10 mins C2 out

Event 5: 12 mins C3 in

C3 in

The customer C1 comes at 2 min and leaves at 6 min. Customer C2 comes at 4 min

and leaves at 10 min and so on. We have written the events list in the above figure .

Do not see the clock but see the events on time. Event 1 occurs at 2 min that is the

customer C1 enters the bank 2 minutes after its opening. Event 2 is that C2 enters at 4

min. Event 3 is that the customer C1 leaves the bank at 6 min. Event 4 is that the C2

leaves the bank at 10 min and event 5 is that C3 enters the bank at 12 min. Here we

have a list of events. How can we process them? We will make a queue of these

events. Remove the event with the earliest time from the queue and process it. Insert

the newly created events in the queue. A queue where the de-queue operation depends

not on FIFO, is called a priority queue.

Priority Queue

As stated earlier, the queue is a FIFO (First in first out) structure. In daily life, you

have also seen that it is not true that a person, who comes first, leaves first from the

queue. Let’s take the example of traffic. Traffic is stopped at the signal. The vehicles

are in a queue. When the signal turns green, vehicles starts moving. The vehicles

which are at the front of the queue will cross the crossing first. Suppose an ambulance

comes from behind. Here ambulance should be given priority. It will bypass the queue

and cross the intersection. Sometimes, we have queues that are not FIFO i.e. the

person who comes first may not leave first. We can develop such queues in which the

condition for leaving the queue is not to enter first. There may be some priority. Here

we will also see the events of future like the customer is coming at what time and

leaving at what time. We will arrange all these events and insert them in a priority

queue. We will develop the queue in such a way that we will get the event which is

going to happen first of all in the future. This data structure is known as priority

queue. In a sense, FIFO is a special case of priority queue in which priority is given to

the time of arrival. That means the person who comes first has the higher priority

while the one who comes later, has the low priority. You will see the priority queue

being used at many places especially in the operating systems. In operating systems,

we have queue of different processes. If some process comes with higher priority, it

C1 in C1 out

C2 in C2 out

CS301 – Data Structures Lecture No. 10

Page 98 of 505

will be processed first. Here we have seen a variation of queue. We will use the

priority queue in the simulation. The events will be inserted in the queue and the event

going to occur first in future, will be popped.

What are the requirements to develop this simulation? We need the C++ code for the

simulation. There will be a need of the queue data structure and obviously, the priority

queue. Information about the arrival of the customers will be placed in an input file.

Each line of the file contains the items (arrival time, transaction duration).

Here are a few lines from the input file.

00 30 10 <- customer 1

00 35 05 <- customer 2

00 40 08

00 45 02

00 50 05

00 55 12

01 00 13

01 01 09

The first line shows the customer 1. “00 30 10” means Customer 1 arrives 30 minutes

after the opening of the bank. He will need 10 minutes for his transaction. The last

entry “01 01 09” means customer arrives one hour and one minute after the bank

opened and his transaction will take 9 minutes and so on. The file contains similar

information about the other customers. We will collect the events now. The first event

to occur is the arrival of the first customer. This event is placed in the priority queue.

Initially, the four teller queues are empty. The simulation proceeds as follows: when

an arrival event is removed from the priority queue, a node representing the customer

is placed on the shortest teller queue. Here we are trying to develop an algorithm

while maintaining the events queue.

After the opening of the bank, the arrival of the first customer is the first event. When

he enters the bank all the four tellers are free. Suppose he goes to the first teller and

starts his transaction. After the conclusion of his transaction, he leaves the bank. With

respect to events, we have only two events, one is at what time he enters the bank and

other is at what time he leaves the bank. When other customers arrive, we have to

maintain their events.

If the customer is the only one on a teller queue, an event for his departure is placed

on the priority queue. At the same time, the next input line is read and an arrival event

is placed in the priority queue. When a departure event is removed from the event

priority queue, the customer node is removed from the teller queue. Here we are

dealing with the events, not with the clock. When we come to know that a person is

coming at say 9:20am, we make an event object and place it in the priority queue.

Similarly if we know the time of leaving of the customer from the bank, we will make

an event and insert it into the priority queue. When the next customer in the queue is

served by the teller, a departure event is placed on the event priority queue. When the

other customer arrives, we make an event object and insert it into the priority queue.

Now the events are generated and inserted when the customer arrives. But the de-

queue is not in the same fashion. When we de-queue, we will get the event which is

CS301 – Data Structures Lecture No. 10

Page 99 of 505

going to occur first.

When a customer leaves the bank, the total time is computed. The total time spent by

the customer is the time spent in the queue waiting and the time taken for the

transaction. This time is added to the total time spent by all customers. At the end of

the simulation, this total time divided by the total customers served will be average

time consumed by customers. Suppose that 300 customers were served, then we will

divide the total time by 300 to get the average time. So with the help of simulation

technique, we will get the result that x customers came today and spent y time in the

bank and the average time spent by a customer is z.

Code of the Bank Simulation

Let’s have a look on the C+ code of this simulation.

#include <iostream>
#include <string>

#include <strstream.h>

#include "Customer.cpp"

#include "Queue.h"

#include "PriorityQueue.cpp"

#include "Event.cpp"

Queue q[4]; // teller queues

PriorityQueue pq; //eventList;

int totalTime;

int count = 0;

int customerNo = 0;

main (int argc, char *argv[])

{

Customer* c;

Event* nextEvent;

// open customer arrival file

ifstream data("customer.dat", ios::in);

// initialize with the first arriving customer.

ReadNewCustomer(data);

While(pq.length() > 0)

{

nextEvent = pq.remove();

c = nextEvent->getCustomer();

if(c->getStatus() == -1){ // arrival event

int arrTime = nextEvent->getEventTime();

int duration = c->getTransactionDuration();

int customerNo = c->getCustomerNumber();

processArrival(data, customerNo,

CS301 – Data Structures Lecture No. 10

Page 100 of 505

We have included lot of files in the program. Other than the standard libraries, we

have Customer.cpp, Queue.h, PriorityQueue.cpp and Event.cpp. With the help of

these four files, we will create Customer object, Queue object, PriorityQueue object

and Event object. You may think that these are four factories, creating objects for us.

As there are four tellers, so we will create equal number of queues (Queue q[4]).

Then we create a priority queue object pq from the PriorityQueue factory. We declare

totalTime, count and customerNo as int. These are global variables.

In the main method, we declare some local variables of customer and event.

Afterwards, the customer.dat file for the input data is opened as:

ifstream data("customer.dat", ios::in);

We read the first customers data from this file as:

readNewCustomer(data);

Here data is the input file stream associated to customer.dat. We will read the arrival

time and time of transaction from the file of the first customer. After reading it, we

will process this information.

Now there is the while loop i.e. the main driver loop. It will run the simulation. First

thing to note is that it is not clock-based which is that the loop will execute for 24

hours. Here we have the condition of priority queue’s length. The variable pq

represents the event queue. If there are some events to be processed, the queue pq will

not be empty. Its length will not be zero. We get the next event from the priority

queue, not from the queue. The method pq.remove() (de-queue method) will give us

the event which is going to happen first in future. The priority of events is according

the time. In the event object we have the customerNo. In the if statement, we check

the status of the customer. If the status is –1, it will reflect that this is the new

customer arrival event.

We know that when a new customer enters the bank, he will look at the four tellers

and go to the teller where the queue is smallest. Therefore in the program, we will

check which is the smallest queue and insert the customer in that queue. If the event is

about the new customer, the if statement returns true. We will get its arrival time,

duration and customer number and assign it to the variables arrTime, duration and

customerNo respectively. We will call the method processArrival() and pass it the

above information.

arrTime, duration , nextEvent);

}

else { // departure event

int qindex = c->getStatus();

int departTime = nextEvent->getEventTime();

processDeparture(qindex, departTime, nextEvent);

}

}

CS301 – Data Structures Lecture No. 10

Page 101 of 505

If the status of the customer is not equal to –1, it means that the customer is in one of

the four queues. The control will go to else part. We will get the status of the

customer which can be 0, 1, 2 and 3. Assign this value to qindex. Later on, we will see

how these values are assigned to the status. We will get the departure time of the

customer and call the processDeparture() method.

In the main driver loop, we will get the next event from the event queue. In this case,

events can be of two types i.e. arrival event and the departure event. When the person

enters the bank, it is the arrival event. If any queue is empty, he will go to the teller.

Otherwise, he will wait in the queue. After the completion of the transaction, the

customer will leave the bank. It is the departure event.

Let’s discuss the function readNewCustomer(). This function is used to read the data

from the file.

Here, we have used the >> to read the hour, minute and duration from the file. Then

we create a customer object c from the customer factory with the new keyword. We

pass the customerNo, arrival time and transaction duration to the constructor of the

customer object. After the object creation, it is time to set its status to –1. This means

that it is an arriving customer. Then we create an event object e passing it the

customer c and the arrival time. We insert this event into the priority queue pq. If

there is no more data to read, we go into the else part and close the data file.

Let’s see the function processArrival(). We have decided that when the customer

arrives and no teller is available, he will go to the shortest queue.

void readNewCustomer(ifstream& data)

{

int hour,min,duration;

if (data >> hour >> min >> duration) {
customerNo++;

Customer* c = new Customer(customerNo,

hour*60+min, duration);
c->setStatus(-1); // new arrival

Event* e = new Event(c, hour*60+min);

pq.insert(e); // insert the arrival event

}

else {

data.close(); // close customer file

}

}

int processArrival(ifstream &data, int customerNo, int arrTime, int duration,

Event* event)

{

int i, small, j = 0;

// find smallest teller queue

small = q[0].length();
for(i=1; i < 4; i++)

if(q[i].length() < small){

CS301 – Data Structures Lecture No. 10

Page 102 of 505

First of all, we will search for the smallest queue. For this purpose, there is a for loop

in the method. We will check the length of all the four queues and get the smallest

one. We store the index of the smallest queue in the variable j. Then we create a

customer object. We set its status to j, which is the queue no. Then we insert the

customer in the smallest queue of the four. The customer may be alone in the queue.

In this case, he does not need to wait and goes directly to the teller. This is the real life

scenario. When we go to bank, we also do the same. In the banks, there are queues

and everyone has to enter in the queue. If the queue is empty, the customers go

straight to the teller. Here we are trying to simulate the real life scenario. Therefore if

the length of the queue is one, it will mean that the customer is alone in the queue and

he can go to the teller. We calculate his departure time by adding the arrival time and

transaction time. At this time, the person can leave the bank. We create a departure

event and insert it into the priority queue. In the end, we read a new customer. This is

the way; a programmer handles the new customers. Whenever a new person enters the

bank, we create an event and insert it into the smallest queue. If he is alone in the

queue, we create a departure event and insert it into the priority queue. In the main

while loop, when we remove the event, in case of first future event, it will be

processed. After the completion of the transaction, the person leaves the bank.

We may encounter another case. There may be a case that before leaving the bank,

more persons arrive and they have to wait in the queue for their turn. We handle this

scenario in the departure routine. The code is:

small = q[i].length(); j = i;

}

// put arriving customer in smallest queue

Customer* c = new Customer(customerNo, arrTime, duration);

c->setStatus(j); // remember which queue the customer goes in

q[j].enqueue(c);

// check if this is the only customer in the.

// queue. If so, the customer must be marked for

// departure by placing him on the event queue.

if(q[j].length() == 1) {

c->setDepartureTime(arrTime+duration);

Event* e = new Event(c, arrTime+duration);
pq.insert(e);

}

// get another customer from the input

readNewCustomer(data);
}

int processDeparture(int qindex, int departTime, Event* event)

{

Customer* cinq = q[qindex].dequeue();

CS301 – Data Structures Lecture No. 10

Page 103 of 505

In this method, we get the information about the qindex, departTime and event from

the main method. We get the customer by using the qindex. Then we calculate the

wait time of the customer. The wait time is the difference of departure time and the

arrival time. The total time holds the time of all the customers. We added the wait

time to the total time. We incremented the variable count by one. After the departure

of this customer, next customer is ready for his transaction. The if statement is doing

this. We check the length of the queue, in case of presence of any customer in the

queue, we will check the customer with the front() method. We set its departure time

(etime) by adding the depart time of the previous customer and his transaction time.

Then we create an event and insert it in the priority queue.

In the end, we calculate the average time in the main loop and print it on the screen.

Average time is calculated by dividing the total time to total customer.

You may be thinking that the complete picture of simulation is not visible. How will

we run this simulation? Another important tool in the simulation is animation. You

have seen the animation of traffic. Cars are moving and stopping on the signals.

Signals are turning into red, green and yellow. You can easily understand from the

animation. If the animation is combined with the simulation, it is easily understood.

We have an animated tool here that shows the animation of the events. A programmer

can see the animation of the bank simulation. With the help of this animation, you can
better understand the simulation.

In this animation, you can see the Entrance of the customers, four tellers, priority

queue and the Exit. The customers enter the queue and as the tellers are free. They go

to the teller straight. Customer C1<30, 10> enters the bank. The customer C1 enters

after 30 mins and he needs 10 mins for the transaction. He goes to the teller 1. Then

int waitTime = departTime - cinq->getArrivalTime();

totalTime = totalTime + waitTime;

count = count + 1;

// if there are any more customers on the queue, mark the

// next customer at the head of the queue for departure

// and place him on the eventList.

if(q[qindex].length() > 0) {

cinq = q[qindex].front();

int etime = departTime + cinq->getTransactionDuration();

Event* e = new Event(cinq, etime);

pq.insert(e);

}

}

// print the final average wait time.

double avgWait = (totalTime*1.0) / count;

cout << "Total time: " << totalTime << endl;

cout << “Customer: " << count << endl;

cout << "Average wait: " << avgWait << endl;

CS301 – Data Structures Lecture No. 10

Page 104 of 505

customer C2 enters the bank and goes to teller 2. When the transaction ends, the

customer leaves the bank. When tellers are not free, customer will wait in the queue.

In the event priority queue, we have different events. The entries in the priority queue

are like arr, 76 (arrival event at 76 min) or q1, 80 (event in q1 at 80 min) etc. Let’s

see the statistics when a customer leaves the bank. At exit, you see the customer

leaving the bank as C15<68, 3><77, 3>, it means that the customer C15 enters the

bank at 68 mins and requires 3 mins for his transaction. He goes to the teller 4 but the

teller is not free, so the customer has to wait in the queue. He leaves the bank at 77

mins.

This course is not about the animation or simulation. We will solve the problems,

using different data structures. Although with the help of simulation and animation,

you can have a real sketch of the problem.

CS301 – Data Structures Lecture No. 11

Page 105 of 505

Data Structures

Lecture No. 11

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 4

4.1.1, 4.2.1

Summary

 Implementation of Priority Queue

 Tree

 Binary Tree

 Terminologies of a Binary Tree

 Strictly Binary Tree

 Level

 Complete Binary Tree

 Level of a Complete Binary Tree

 Tips

In the previous lecture, we demonstrated the technique of data structure priority queue

with the help of the example from the banking system. Data structure priority queue is

a variation of queue data structure to store the events. We have witnessed this

simulation by animation. The simulation and animation help a programmer to

understand the functionality of a program. As these are not the part of the current

course, so we will study simulation and animation in detail in the coming courses.

A queue is a FIFO structure (i.e. first in first out). But there are its variations

including the priority queue, discussed in the previous lecture. In priority queue, we

were adding data to a queue but did not get the data from the queue by First In, First

Out (FIFO) rule. We put events in the queue and got these from the queue with

respect to the time of occurrence of the event. Thus we get the items from a priority

queue in a particular order with respect to a priority given to the items (events). The

priority queue is also an important data structure. Let’s see its implementation.

Implementation of Priority Queue

In the priority queue, we put the elements in the queue to get them from the queue
with a priority of the elements. Following is the C++ code of the priority queue.

#include "Event.cpp"
#define PQMAX 30

class PriorityQueue

{

CS301 – Data Structures Lecture No. 11

Page 106 of 505

In this code, the file Events.cpp has been included. Here we use events to store in the

queue. To cater to the need of storing other data types too, we can write the

PriorityQueue class as a template class.

In the above code, we declare the class PriorityQueue. Then there is the public part of

the class. In the public part, at first a programmer encounters the constructor of the

class. In the constructor, we assign the value 0 to size and –1 to rear variables. A

destructor, whose body is empty, follows this. Later, we employ the method full()

public:

PriorityQueue()

{

size = 0; rear = -1;

};

~PriorityQueue() {};

int full(void)

{

return (size == PQMAX) ? 1 : 0;

};

Event* remove()

{

if(size > 0)

{

Event* e = nodes[0];

for(int j=0; j < size-2; j++)

nodes[j] = nodes[j+1];

size = size-1; rear=rear-1;

if(size == 0) rear = -1;

return e;

}

return (Event*)NULL;

cout << "remove - queue is empty." << endl;

};

int insert(Event* e)

{

if(!full())

{

rear = rear+1;

nodes[rear] = e;

size = size + 1;

sortElements(); // in ascending order
return 1;

}

cout << "insert queue is full." << endl;

return 0;

};

int length() { return size; };

};

CS301 – Data Structures Lecture No. 11

Page 107 of 505

which checks the size equal to the PQMAX to see whether the queue is full. If the size

is equal to PQMAX, the function returns 1 i.e. TRUE. Otherwise, it returns 0 i.e.

FALSE. We are going to implement the priority queue with an array. We can also use

linked list to implement the priority queue. However, in the example of simulation

studied in the previous lecture, we implemented the queue by using an array. We have

seen in the simulation example that there may be a maximum of five events. These

events include one arrival event and four departure events. That means four queues

from where the customers go to the teller and one to go out of the bank after the

completion of the transaction. As we know that there is a need of only five queues, so

it was decided to use the array instead of dynamic memory allocation and

manipulating the pointers.

In the remove() method, there are some things which are the property of the priority

queue. We don’t have these in the queue. In this method, first of all we check the size

of the priority queue to see whether there is something in the queue or not. If size is

greater than 0 i.e. there are items in the queue then we get the event pointer (pointer to

the object Event) e from the first position (i.e. at index 0) of the array, which we are

using internally to implement the queue. At the end of the method, we return this

event object e. This means that we are removing the first object from the internal

array. We already know that the removal of an item from the start of an array is very

time consuming as we have to shift all the remaining items one position to the left.

Thus the remove() method of the queue will execute slowly. We solved this problem

by removing the item from the position where the front pointer is pointing. As the

front and rear went ahead and we got empty spaces in the beginning, the circular

array was used. Here, the remove() method is not removing the element from the

front. Rather, it is removing element from the first position (i.e. index 0). Then we

execute a for loop. This for loop starts from 0 and executes to size-2. We can notice

that in this for loop, we are shifting the elements of the array one position left to fill

the space that has been created by removing the element from the first position. Thus

the element of index 1 becomes at index 0 and element of index 2 becomes at index 1

and so on. Afterwards, we decrease size and rear by 1. By decreasing the size 1 if it

becomes zero, we will set rear to –1. Now by the statement

return e ;

We return the element (object e), got from the array. The outer part of the if block

return (Event*)NULL;

cout << "remove - queue is empty." << endl;

is executed if there is nothing in the queue i.e. size is less than 0. Here we return

NULL pointer and display a message on the screen to show that the queue is empty.

Now let’s look at the insert() method. In this method, first of all we check whether the

array (we are using internally) is full or not. In case, it is not full, we increase the

value of rear by 1. Then we insert the object e in the nodes array at the position rear.

Then the size is increased by 1 as we have inserted (added) one element to the queue.

Now we call a method sortElements() that sorts the elements of the array in an order.

We will read different algorithms of sorting later in this course.

We have said that when we remove an element from a priority queue, it is not

according to the FIFO rule. We will remove elements by some other rule. In the

simulation, we had decided to remove the element from the priority queue with

CS301 – Data Structures Lecture No. 11

Page 108 of 505

respect to the time of occurrence of an event (arrival or departure). We will remove

the element (event) whose time of occurrence is before other events. This can be

understood from the example of the traffic over a bridge or crossing. We will give

higher priority to an ambulance as compared to a bus. The cars will have the lower

priority. Thus when a vehicle has gone across then after it we will see if there is any

ambulance in the queue. If it is there, we will remove it from the queue and let go

across the bridge. Afterwards, we will allow a bus to go and then the cars. In our

simulation example, we put a number i.e. time of occurrence, with the object when we

add it to the queue. Then after each insertion, we sort the queue with these numbers in

ascending order. Thus the objects in the nodes array get into an order with respect to

the time of their occurrence. After sorting, the first element in the array is the event,

going to be occurring earliest in the future. Now after sorting the queue we return 1

that shows the insert operation has been successful. If the queue is full, we display a

message to show that the queue is full and return 0, indicating that the insert operation

had failed.
Then there comes the length() method, having a single statement i.e.

return size ;

This method returns the size of the queue, reflecting the number of elements in the

queue. It is not the size of the array used internally to store the elements of the queue.

We have seen the implementation of the priority queue by using an array. We will use

the priority queue in some other algorithms later. Now, we will see another

implementation of the priority queue using some thing other than array, which is

much better than using an array. This will be more efficient. Its remove and insert

methods will be faster than the ones in array technique. Here in the simulation, we

were making only five queues for the events. Suppose, if these go to hundreds or

thousands, a lot of time will be spent to remove an element from the queue. Similarly,

when an element is added, after adding the element, to sort the whole array will be a

time consuming process. Thus the application, with the use of the priority queue, will

not be more efficient with respect to the time.

Tree

Now let’s talk about a data structure called tree. This is an important data structure.

This data structure is used in many algorithms. We will use it in most of our

assignments. The data structures that we have discussed in previous lectures are linear

data structures. The linked list and stack are linear data structures. In these structures,

the elements are in a line. We put and get elements in and from a stack in linear order.

Queue is also a linear data structure as a line is developed in it. There are a number of

applications where linear data structures are not appropriate. In such cases, there is

need of some non-linear data structure. Some examples will show us that why non-

linear data structures are important. Tree is one of the non-linear data structures.

Look at the following figure. This figure (11.1) is showing a genealogy tree of a
family.

CS301 – Data Structures Lecture No. 11

Page 109 of 505

In this genealogy tree, the node at the top of the tree is Muhammad Aslam Khan i.e.

the head of the family. There are three nodes under this one. These are Sohail Aslam,

Javed Aslam and Yasmeen Aslam. Then there are nodes under these three nodes i.e.

the sons of these three family members. You may have seen the tree like this of some

other family. You can make the tree of your family too. The thing to be noted in this

genealogical tree is that it is not a linear structure like linked list, in which we have to

tell that who is the father and who is the son. We make it like a tree. We develop the

tree top-down, in which the father of the family is on the top with their children

downward. We can see the similar tree structure of a company. In the tree of a

company, the CEO of the company is on the top, followed downwardly by the

managers and assistant managers. This process goes downward according to the

administrative hierarchy of the company. Our tree structure is different from the

actual tree in the way that the actual tree grows from down to up. It has root downside

and the leaves upside. The data structure tree is opposite to the real tree as it goes

upside down. This top-down structure in computer science makes it easy to

understand the tree data structure.

There may be situations where the data, in our programs or applications, is not in the

linear order. There is a relationship between the data that cannot be captured by a

linked list or other linear data structure. Here we need a data structure like tree.

In some applications, the searching in linear data structures is very tedious. Suppose

we want to search a name in a telephone directory having 100000 entries. If this

directory is in a linked list manner, we will have to traverse the list from the starting

position. We have to traverse on average half of the directory if we find a name. We

may not find the required name in the entire directory despite traversing the whole

list. Thus it would be better to use a data structure so that the search operation does

not take a lot of time. Taking into account such applications, we will now talk about a

special tree data structure, known as binary tree.

Binary Tree

The mathematical definition of a binary tree is

“A binary tree is a finite set of elements that is either empty or is partitioned into three

disjoint subsets. The first subset contains a single element called the root of the tree.

The other two subsets are themselves binary trees called the left and right sub-trees”.

Each element of a binary tree is called a node of the tree.

Following figure shows a binary tree.

Omer Sara Ahmed Fahd Asim Qasim Saad Haaris

Yasmeen Aslam Javed Aslam Sohail Aslam

Muhammad Aslam Khan

T

.

CS301 – Data Structures Lecture No. 11

Page 110 of 505

Fig 11.2: A Binary Tree

There are nine nodes in the above figure of the binary tree. The nine nodes are A, B,

C, D, E, F, G, H, and I. The node A is at the top of the tree. There are two lines from

the node A to left and right sides towards node B and C respectively. Let’s have a

look at the left side of the node A. There are also two lines from node B to left and

right, leading to the nodes D and E. Then from node, E there is only one line that is to

the left of the node and leads to node G. Similarly there is a line from node C towards

the node F on right side of the node C. Then there are two lines from node F that leads

to the nodes H and I on left and right side respectively.

Now we analyze this tree according to the mathematical definition of the binary tree.

The node A is the root of the tree. And tree structure (i.e. the nodes B, D, E, G and

their relation) on the left side of the node A is a sub-tree, called the Left subtree.

Similarly the nodes (C, F, H and I) on the right side of the node A comprise the sub-

tree termed as Right subtree. Thus we made three parts of the tree. One part contains

only one node i.e. A while the second part has all the nodes on left side of A, called as

Left subtree. Similarly the third part is the Right subtree, containing the nodes on right

side of A. The following figure depicts this scenario.

A

B C

D E
F

H I
G

CS301 – Data Structures Lecture No. 11

Page 111 of 505

Fig 11.3: Analysis of a binary tree

The same process of sub classing the tree can be done at the second level. That means

the left and right subtrees can also be divided into three parts similarly. Now consider

the left subtree of node A. This left subtree is also a tree. The node B is the root of this

tree and its left subtree is the node D. There is only one node in this left subtree. The

right subtree of the node B consists of two nodes i.e. E and G. The following figure

shows the analysis of the tree with root B.

Root
A

B C

D E
F

H I
G

Left subtree Right subtree

CS301 – Data Structures Lecture No. 11

Page 112 of 505

Fig 11.4: Analysis of a binary tree

On going one step down and considering right subtree of node B, we see that E is the

root and its left subtree is the single node G. There is no right subtree of node E or we

can say that its right subtree is empty. This is shown in the following figure.

Fig 11.5: Analysis of a binary tree

A

B C

D E
F

H I
G

Leftsubtree

Root

A

B C

D E
F

H I
G

Right subtree

Left subtree

Root

CS301 – Data Structures Lecture No. 11

Page 113 of 505

Now the left sub tree of E is the single node G. This node G can be considered as the

root node with empty left and right sub trees.

The definition of tree is of recursive nature. This is due to the fact that we have seen

that which definition has been applied to the tree having node A as root, is applied to

its subtrees one level downward. Similarly as long as we go down ward in the tree the

same definition is used at each level of the tree. And we see three parts i.e. root, left

subtree and right subtree at each level.

Now if we carry out the same process on the right subtree of root node A, the node C

will become the root of this right subtree of A. The left subtree of this root node C is

empty. The right subtree of C is made up of three nodes F, H and I. This is shown in

the figure below.

Fig 11.6: Analysis of a binary tree

Now we apply the same recursive definition on the level below the node C. Now the

right subtree of the node C will be considered as a tree. The root of this tree is the

node F. The left and right subtrees of this root F are the nodes H and I respectively.

The following figure depicts this.

A

B C

D E
F

H I
G

Right subtree

Root

CS301 – Data Structures Lecture No. 11

Page 114 of 505

Fig 11.7: Analysis of a binary tree

We make (draw) a tree by joining different nodes with lines. But we cannot join any

nodes whichever we want to each other. Consider the following figure.

Fig 11.8: A non-tree structure

A

B C

D E
F

H I
G

Right subtree Left subtree

Root

A

B C

D E
F

H I
G

CS301 – Data Structures Lecture No. 11

Page 115 of 505

It is the same tree, made earlier with a little modification. In this figure we join the

node G with D. Now this is not a tree. It is due to the reason that in a tree there is

always one path to go (from root) to a node. But in this figure, there are two paths

(tracks) to go to node G. One path is from node A to B, then B to D and D to G. That

means the path is A-B-D-G. We can also reach to node G by the other path that is the

path A-B-E-G. If we have such a figure, then it is not a tree. Rather, it may be a graph.

We will discuss about graphs at the end of this course.

Similarly if we put an extra link between the nodes A and B, as in the figure below,

then it is also no more a tree. This is a multiple graph as there are multiple (more than
1) links between node A and B.

Fig 11.9: A non-tree structure

Similarly if we put other links between different nodes, then the structure thus

developed will not be a tree. The following figure is also an example of a structure

that is not a tree as there are multiple links between the different nodes.

A

B C

D E
F

H I
G

CS301 – Data Structures Lecture No. 11

Page 116 of 505

G

Fig 11.10: A non-tree structure

Terminologies of a binary tree

Now let’s discuss different terminologies of the binary tree. We will use these
terminologies in our different algorithms. Consider the following figure.

Fig 11.11: Terminologies used in a binary tree

A

B C

D E
F

H I

A

B C

D E
F

H I
G

Leaf nodes
Leaf nodes

Left descendant Right descendant

Parent

CS301 – Data Structures Lecture No. 11

Page 117 of 505

We have discussed that the node on the top is said root of the tree. If we consider the

relationship of these nodes, A is the parent node with B and C as the left and right

descendants respectively. C is the right descendant of A. Afterwards, we look at the

node B where the node D is its left descendant and E is its right descendant. We can

use the words descendant and child interchangeably. Now look at the nodes D, G, H

and I. These nodes are said leaf nodes as there is no descendant of these nodes. We

are just introducing the terminology here. In the algorithms, we can use the words root

or parent, child or descendant. So the names never matter.

Strictly Binary Tree

There is a version of the binary tree, called strictly binary tree. A binary tree is said to

be a strictly binary tree if every non-leaf node in a binary tree has non-empty left and

right subtrees.

Now consider the previous figure 11.11. We know that a leaf node has no left or right

child. Thus nodes D, G, H and I are the leaf nodes. The non-leaf nodes in this tree are

A, B, C, E and F. Now according to the definition of strictly binary tree, these non -

leaf nodes (i.e. A, B, C, E and F) must have left and right subtrees (Childs). The node

A has left child B and right child C. The node B also has its left and right children that

are D and E respectively. The non-leaf node C has right child F but not a left one.

Now we add a left child of C that is node J. Here C also has its left and right children.

The node F also has its left and right descendants, H and I respectively. Now the last

non-leaf node E has its left child, G but no right one. We add a node K as the right

child of the node E. Thus the tree becomes as shown below in the figure 11.12.

Fig 11.12: A Strictly binary tree

Now all the non-leaf nodes (A, B, C, E and F) have their left and right children so

according to the definition, it is a strictly binary tree.

A

B C

D E J F

H
G

K I

CS301 – Data Structures Lecture No. 11

Page 118 of 505

Level

The level of a node in a binary tree is defined as follows:

 Root has level 0,

 Level of any other node is one more than the level its parent (father).

 The depth of a binary tree is the maximum level of any leaf in the tree.

To understand level of a node, consider the following figure 11.13. This figure shows

the same tree of figure 11.2, discussed so far.

A 0 Level 0

B 1 C 1-------------------- Level 1

D 2 E 2
F

2 -------- Level 2

H I

G 3 3 3 -Level 3

Fig 11.13: Level of nodes of a tree

In the above figure, we have mentioned the level of each node. The figure also shows

that the root node has level 0. We have talked in the definition of the level that the

level of a node, other than root, is one more than the level of its parent. Now in the

tree, the parent of nodes B and C is node A with level 0. Now by definition, the level

of B and C will be 1 (i.e. level of A + 1). Now if go downward in the tree and see the

nodes D, E and F, the parent node of D and E is B the level of which is 1. So the level

of D and E is 2 (i.e. 1 + 1). Similarly the level of F is 2 as the level of its parent (i..e.

C) is 1. In the same way, we can easily understand that the level of G, H and I is 3 as

the parent nodes of these (E and F) have level 2. Thus we see that tree has multi levels

in the downward direction. The levels of the tree increase, as the tree grows

downward more. The number of nodes also increases.

Now let’s talk why we call it a binary tree. We have seen that each node has a

maximum of two subtrees. There might be two, one or no subtree of a node. But it

cannot have more than two. So, we call such a tree a binary one due to the fact that a

node of it can have a maximum of two subtrees. There are trees whose nodes can have

more than two subtrees. These are not binary trees. We will talk about these trees

later.

By seeing the level of a tree, we can tell the depth of the tree. If we put level with

each node of the binary tree, the depth of a binary tree is the maximum level. In the

CS301 – Data Structures Lecture No. 11

Page 119 of 505

figure 11.13, the deepest node is at level 3 i.e. the maximum level is 3. So the depth

of this binary tree is 3.

Complete Binary Tree

Now, if there are left and right subtrees for each node in the binary tree as shown

below in figure 11.14, it becomes a complete binary tree.

Fig 11.14: A Complete Binary Tree

The definition of the complete binary tree is

“A complete binary tree of depth d is the strictly binary tree all of whose leaves are at

level d”.

Now look at the tree, the leaf nodes of the tree are at level 3 and are H, I, J, K, L, M,

N and O. There is no such a leaf node that is at some level other than the depth level d

i.e. 3. All the leaf nodes of this tree are at level 3 (which is the depth of the tree i.e. d).

So this is a complete binary tree. In the figure, all the nodes at level 3 are highlighted.

We know that the property of the binary tree is that its node can have a maximum of

two subtrees, called as left and right subtrees. The nodes increase at each level, as the

tree grows downward. In a complete binary tree, the nodes increase in a particular

order. If we reconsider the previous tree (figure 11.14), we note that the number of

node at level 0 is 1. We can say it 20, as 20 is equal to 1. Down to this, the node is the

level 1 where the number of nodes is 2, which we can say 21, equal to 2. Now at the

next level (i.e. level 2), the number of nodes is 4 that mean 2 2. Finally the number of

nodes at level 3 is 8, which can be called as 23. This process is shown pictorially in

the following figure 11.15.

A
0

B 1 C 1

D
2

E
2

F
2

G
2

H I J K L M N O

3 3 3 3 3 3 3 3

CS301 – Data Structures Lecture No. 11

Page 120 of 505

A --------- Level 0: 20 nodes

B ---------- Level 1: 21 nodes ---------- C

D -------------- E Level 2: 22 nodes F -------------------------- G

H I J K L M N O

-

 Level 3: 23 nodes

Fig 11.15: Number of nodes at each level in a complete binary tree

By observing the number of nodes at a particular level, we come to the conclusion

that the number of nodes at a level is equal to the level number raising to the power of

two. Thus we can say that in a complete binary tree at a particular level k, the number

of nodes is equal to 2k. Note that this formula for the number of nodes is for a

complete binary tree only. It is not necessary that every binary tree fulfill this

criterion. Applying this formula to each level while going to the depth of the tree (i.e.

d), we can calculate the total number of nodes in a complete binary tree of depth d by

adding the number of nodes at each level. This can be written as the following

summation.

20+ 21+ 22 + ……… + 2d = d j=0 2j = 2d+1 – 1

Thus according to this summation, the total number of nodes in a complete binary tree

of depth d will be 2d+1 – 1. Thus if there is a complete binary tree of depth 4, the

total number of nodes in it will be calculated by putting the value of d equal to 4. It
will be calculated as under.

24+1 - 1 = 25 – 1 = 32 – 1 = 31

Thus the total number of nodes in the complete binary tree of depth 4 is 31.

CS301 – Data Structures Lecture No. 11

Page 121 of 505

We know that the total number of nodes (leaf and non-leaf) of a complete binary tree

of depth d is equal to 2d+1 – 1. In a complete binary tree, all the leaf nodes are at the

depth level d. So the number of nodes at level d will be 2d . These are the leaf nodes.

Thus the difference of total number of nodes and number of leaf nodes will give us

the number of non-leaf (inner) nodes. It will be (2d+1 – 1) – 2d i.e. 2d – 1. Thus we

conclude that in a complete binary tree, there are 2d leaf nodes and 2d – 1 non-leaf

(inner) nodes.

Level of a Complete Binary Tree

We can conclude some more results from the above mathematical expression. We can

find the depth of a complete binary tree if we know the total number of nodes. If we

have a complete binary tree with n total nodes, then by the equation of the total

number of nodes we can write

Total number of nodes = 2d+1 – 1 = n

To find the value of d, we solve the above equation as under

2d+1 – 1 = n

2d+1 = n + 1

d + 1 = log2 (n + 1)

d = log2 (n + 1) – 1

After having n total nodes, we can find the depth d of the tree by the above equation.

Suppose we have 100,000 nodes. It means that the value of n is 100,000, reflecting a

depth i.e. d of the tree will be log2 (100000 + 1) – 1, which evaluates to 20. So the

depth of the tree will be 20. In other words, the tree will be 20 levels deep. The

significance of all this discussion about the properties of complete binary tree will

become evident later.

Operations on Binary Tree

We can define different operations on binary trees.

If p is pointing to a node in an existing tree, then

 left(p) returns pointer to the left subtree

 right(p) returns pointer to right subtree

 parent(p) returns the father of p

 brother(p) returns brother of p.

 info(p) returns content of the node.

We will discus these methods in detail in next lecture.

Tips

 A priority queue is a variation of queue that does not follow FIFO rule.

 Tree is a non-linear data structure.

CS301 – Data Structures Lecture No. 11

Page 122 of 505

 The maximum level of any leaf in a binary tree is called the depth of the tree.

 Other than the root node, the level of each node is one more than the level of

its parent node.

 A complete binary tree is necessarily a strictly binary tree but not vice versa.

 At any level k, there are 2k nodes at that level in a complete binary tree.

 The total number of nodes in a complete binary tree of depth d is 2d+1 – 1.

 In a complete binary tree there are 2d leaf nodes and 2d – 1 non-leaf nodes.

CS301 – Data Structures Lecture No. 12

Page 123 of 505

Data Structures

Lecture No. 12

Reading Material
Data Structures And Algorithm analysis in C++ Chapter 4

4.2, 4.3(4.3.2, 4.3.4)

Summary

 Operations on Binary Tree

 Applications of Binary Tree

 Searching for Duplicates

 C++ Implementation of Binary Tree

 Trace of insert

Operations on Binary Tree
In the last lecture, we talked about the uses of binary tree, which is an abstract data

type. We discussed about the functions to find the information inside a node, the

parent, the siblings(brothers), the left and right children of a node. In this lecture, we

will talk about the algorithms and implementation of those functions.

When we discuss about an abstract data type, firstly we focus what it can do for us

and don’t bother about the how part. The how part or implementation is thought out
later.

While implementing these abstract data types, the implementation is hidden in a class

so it is abstract to the user. The user only needs to be aware of the interface. But there

can be situations when the users may like to know about the implementation detail,

for example, when a data type is performing quite slower than promised.

For now, we start our discussion from the methods of tree data type. Consider a tree

has been formed already, following methods will be used to perform different

operations on a node of this tree:

Operation Description

left(p) Returns a pointer to the left sub-tree

right(p) Returns a pointer to the right sub-tree

parent(p) Returns the father node of p

brother(p) Returns the brother node of p

info(p) Returns the contents of node p

These methods have already been discussed at the end of the previous lecture,

however, few more methods are required to construct a binary tree:

CS301 – Data Structures Lecture No. 12

Page 124 of 505

, , , , 18 , , ,

, , , , 18 , , ,

Operation Description

setLeft(p, x) Creates the left child node of p and set

the value x into it.

setRight(p, x) Creates the right child node of p, the
child node contains the info x.

All these methods are required to build and to retrieve values from a tree.

Applications of Binary Tree
Let’s take few examples to understand how the tree data type is used and what are its
benefits. We will also develop some algorithms that may by useful in future while

working with this data type.

Binary tree is useful structure when two-way decisions are made at each point.

Suppose we want to find all duplicates in a list of the following numbers:

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

This list may comprise numbers of any nature. For example, roll numbers, telephone

numbers or voter’s list. In addition to the presence of duplicate number, we may also

require the frequency of numbers in the list. As it is a small list, so only a cursory

view may reveal that there are some duplicate numbers present in this list. Practically,

this list can be of very huge size ranging to thousands or millions.

Searching for Duplicates

One way of finding duplicates is to compare each number with all those that precede

it. Let’s see it in detail.

14 15 4 9 7 4, 3 5 16 4 20 17 9 14 5

14 15 4 9 7 4, 3 5 16 4 20 17 9 14 5

Fig 12.1: Search for Duplicates

Suppose, we are looking for duplicates for the number 4, we will start scanning from

the first number 14. While scanning, whenever we find the number 4 inside, we

remember the position and increment its frequency counter by 1. This comparison

will go on till the end of the list to get the duplicates or fequence of the number 4.

You might have understood already that we will have to perform this whole scanning

of list every time for each number to find duplicates. This is a long and time

consuming process.

So this procedure involves a large number of comparisons, if the list of numbers is
large and is growing.

A linked list can handle the growth. But it can be used where a programmer has no

idea about the size of the data before hand. The number of comparisons may still be

large. The comparisons are not reduced after using linked list as it is a linear data

CS301 – Data Structures Lecture No. 12

Page 125 of 505

structure. To search a number in a linked list, we have to begin from the start of the

list to the end in the linear fashion, traversing each node in it. For optimizing search

operation in a list, there is no real benefit of using linked list. On the contrary, the

search operation becomes slower even while searching in an array because the linked

list is not contiguous like an array and traversing is done in the linked list with the

help of pointers.

So, the solution lies in reducing the number of comparisons. The number of

comparisons can be drastically reduced with the help of a binary tree. The benefits of

linked list are there, also the tree grows dynamically like the linked list.

The binary tree is built in a special way. The first number in the list is placed in a

node, designated as the root of the binary tree. Initially, both left and right sub-trees of

the root are empty. We take the next number and compare it with the number placed

in the root. If it is the same, this means the presence of a duplicate. Otherwise, we

create a new tree node and put the new number in it. The new node is turned into the

left child of the root node if the second number is less than the one in the root. The

new node is turned into the right child if the number is greater than the one in the

root.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.2: First number in the list became the root

In the above figure, the first number in the list 14 is placed in a node , making it the

root of the binary tree. You can see that it is not pointing to any further node.

Therefore, its left and right pointers are NULL at this point of tree construction time.

Now, let’s see, how do we insert the next element into it.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.3: A new node is created to insert it in the binary tree

As a first step to add a new node in the tree, we take the next number 15 in the list and

compare it with 14, the number in the root node. As they are different, so a new node

is created and the number 15 is set into it.

14

15 14

CS301 – Data Structures Lecture No. 12

Page 126 of 505

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.4: The second node is added into the tree

The next step is to add this node in the tree. We compare 15, the number in the new

node with 14, the number in the root node. As number 15 is greater than number 14,

therefore, it is placed as right child of the root node.

The next number in the list i.e. 4, is compared with 14, the number in the root node.

As the number 4 is less than number 14, so we see if there is a left child of the root

node to compare the number 4 with that. At this point of time in the tree, there is no

further left child of the root node. Therefore, a new node is created and the number 4

is put into it.

The below figure shows the newly created node.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.5: A new node is created and number 4 put into it

Next, the newly created node is added as the left child of the root node. It is shown in

the figure below.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.6: The node is added as the left child of the root node

14

15

4 14

15

14

4 15

CS301 – Data Structures Lecture No. 12

Page 127 of 505

The next number in the list is 9. To add this number in the tree, we will follow the

already defined and experimented procedure. We compare this number first with the

number in the root node of the tree. This number is found to be smaller than the

number in the root node. Therefore, left sub-tree of the root node is sought. The left

child of the root node is the one with number 4. On comparison, number 9 is found

greater than the number 4. Therefore, we go to the right child of the node with number

4. At the moment, there is no further node to the right of it, necessitating the need of

creating a new node. The number 9 is put into it and the new node is added as the

right child of the node with number 4. The same is shown in the figure given below.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.7: A new node is added in the tree

We keep on adding new nodes in the tree in line with the above practiced rule and

eventually, we have the tree shown in the below figure.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Fig 12.8: Binary tree of whole list of numbers

It is pertinent to note that this is a binary tree with two sub-nodes or children of each

node. We have not seen the advantage of binary tree, the one we were earlier talking

about i.e. it will reduce the number of comparisons. Previously, we found that search

operation becomes troublesome and slower as the size of list grows. We will see the

benefit of using binary tree over linked list later. Firstly, we will see how the tree is

14

4 15

9

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 12

Page 128 of 505

implemented.

C++ Implementation of Binary Tree
See the code below for the file treenode.cpp.

/* This file contains the TreeNode class declaration. TreeNode contains the

functionality for a binary tree node */

1. #include <stdlib.h>

2.
3. template <class Object>

4.

5. class TreeNode

6. {
7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41

42.

43.

public:

// constructors

TreeNode()

{

this->object
this->left =

};

= NULL;

this->right = NULL;

TreeNode(Object *

{

this->object

this->left =
};

object)

= object;

this->right = NULL;

Object * getInfo()

{

return this->object;

};

void

{

setInfo(Object * object)

this->object = object;

};

TreeNode * getLeft()

{

return left;

};

void

{
setLeft(TreeNode * left)

this->left = left;

};

TreeNode * getRight()

{

return right;

CS301 – Data Structures Lecture No. 12

Page 129 of 505

For implementation, we normally write a class that becomes a factory for objects of

that type. In this case too, we have created a class TreeNode to be used to create nodes

of the binary tree. As we want to use this class for different data types, therefore, we

will make it a template class, the line 2 is doing the same thing. Inside the class body,

we start with the private data members given at the bottom of the class declaration. At

line 59, the object is a private data element of Object *, used to store the tree element

(value) inside the node of the tree. left is a private data member of type TreeNode*, it

is used to store a pointer to the left sub-tree. right is a private data member of type

TreeNode*, employed to store a pointer to the right sub-tree.

Now, we go to the top of the class declaration to see the public functions. At line 9, a

public parameter-less constructor is declared. The data members have been initialized

in the constructor. At line 11, the object data member is initialized to NULL. Similarly

left and right data members are initialized to NULL at line 12.

There is another constructor declared at line 15- that takes object value as a parameter

to construct a TreeNode object with that object value. While the pointers for right and

left sub-trees are pointing to NULL.

At line 21, there is method getInfo(), which returns the object i.e. the element of the
TreeNode object.
At line 26, the method setInfo(Object *) sets the value of the object data member to

the value passed to it as the argument.

The method getLeft() returns the pointer to the left sub-tree. Similarly, the getRight()

returns the right sub-tree. Note that both of these methods return a pointer to the

object of type TreeNode.

The setLeft(TreeNode *) method is used to set the pointer left to left sub-tree.

Similarly, setRight(TreeNode *) is used to set the pointer right to right sub-tree. Both

of these methods accept a pointer of type TreeNode.

The isLeaf() method at line 51, is to see whether the current node is a leaf node or not.
The method returns 1 if it is leaf node. Otherwise, it returns 0.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

};

void setRight(TreeNode * right)

{

this->right = right;

};

int

{

isLeaf()

if(this->left == NULL && this->right == NULL)

return 1;

return 0;

};

private:
Object * object;

TreeNode * left;

TreeNode * right;

62. }; // end class TreeNode

CS301 – Data Structures Lecture No. 12

Page 130 of 505

Using the above TreeNode, nodes for the binary tree can be created and linked up

together to form a binary tree. We can write a separate method or a class to carry out

the node creation and insertion into tree.

Let’s use this class by writing couple of functions. Below is the code of main program

file containing the main() and insert() functions.

We have used the same list of numbers for discussion in this lecture. It is given at line

7 in the code. It is the same, only the last number is –1. This is used as delimiter or

marker to indicate that the list has finished.

At line 8, we are creating a new TreeNode object i.e. a root node as the name implies.

1. #include <iostream>

2. #include <stdlib.h>
3. #include "TreeNode.cpp"

4.

5. int

6. {
7.

8.

9.

10.

11.

12.

13.

14. }

15.

main(int argc, char * argv[])

int x[] = {14,15,4,9,7,18,3,5,16,4,20,17,9,14,5,-1};

TreeNode <int> * root = new TreeNode<int>();
root->setInfo(&x[0]);

for(int i = 1; x[i] > 0; i++)

{

insert(root, &x[i]);

}

16. void insert (TreeNode <int> * root, int * info)

17. {

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

TreeNode <int> * node = new TreeNode <int> (info);
TreeNode <int> * p, * q;

p = q = root;

while(*info != *(p->getInfo()) && q != NULL)

{

p = q;

if(*info < *(p->getInfo()))

q = p->getLeft();

else

q = p->getRight();

}

if(*info == *(p->getInfo()))

{

cout << "attempt to insert duplicate: " << *info << endl;

delete node;

}

else if(*info < *(p->getInfo()))

p->setLeft(node);

else

p->setRight(node);

39. } // end of insert

CS301 – Data Structures Lecture No. 12

Page 131 of 505

This node will contain an int type element as evident from the syntax.

At line 9, the first number in the list is set into the root node. At line 10, the for loop is

started, which is inserting all the elements of the list one by one in the tree with the

use of the insert() function. Most of the time, this loop will be reading the input

numbers from the users interactively or from a file. It it is Windows application then a

form can by used to take input from the user. In this implementation, our objective is

to insert numbers in the tree and see the duplicates, so hard coding the numbers within

our program will serve the purpose.

The insert() method starts from line 16. It is accepting two parameters. The first

parameter is pointer to a TreeNode object, containing a value of int type while second

is the info that is an int *.

In the first line of the function, line 18, a new node has been by calling the

parameterized constructor of the TreeNode class.

Then at line 19, two pointer variables p and q are declared.
In line 20, we are initializing variables p and q to the root node.

In line 21, the while loop is being started, inside the while loop we are checking the

equality of the number inside the node (being pointed to by pointer p) with the

number being passed. The control is entered into the loop, if both the numbers are not

equal and q is not pointing to NULL. This while loop will be terminated if the

numbers in the two nodes are equal or end of a sub-tree is reached.

At line 23 inside the loop, p is assigned the value of q.

At line 24 inside the loop, if the number inside the node is smaller than the number in
the node pointed to by the pointer p. Then at line 25, we are getting the left sub-tree

address (left) and assigning it to the pointer q.

Otherwise, if this not the case, means the number in the node to be inserted is not

smaller than the number in the node pointed to by the pointer p. Then at line 27, the
right sub-tree address is retrieved and assigned to pointer q.

At line 30, the comparison is made to see if the both the values are equal (number in

the node to be inserted and the number inside the node pointed to by the pointer p). In

case they are equal, it displays a message with the number informing that a duplicate

number has been found. This also means that the upper while loop was terminated

because of equality of the two numbers. In the line 33, the newly created node is

deleted afterwards.

At line 35, we are checking if the number in the newly constructed node is less than

the number in the node at the end of a sub-tree. If this is so then the newly constructed

node is inserted to the left of the tree node. The insertion code is at line 36.

If the number in the newly constructed node is greater than the number in the tree

node, the newly constructed node will be inserted to the right of the tree node as

shown on line 38. To make it clearer, let’s see the same thing, the insert() method

pictorially.

Trace of insert
We will take the tree and the figure, we constructed above. At this time, we want to

insert some new numbers in the tree as given in the figure below:

CS301 – Data Structures Lecture No. 12

Page 132 of 505

Fig 12.9: Start of insertion of new node in the tree

Initially the pointers p and q are pointing to the start (root) of the tree. We want to

insert the number 17 in the tree. We compare the number in the root node (14) with

number 17. Because number 17 is greater than the number 14, so as we did in the

while loop in the function above, we will move toward the right sub-tree. In the next

picture below, we can see that the pointer q has moved to the right sub-tree of the

root.

17, 9, 14, 5

Fig 12.10: Insertion of a new node in progress

After moving the pointer q forward, we make the pointer p point to the same node.

We do this operation as the first step inside the while loop. It can be seen at line 23

above. So following will be the latest position of pointers in the tree.

17

p

q 14

4 15

3 9 18

7 16 20

5
17, 9, 14, 5

17
p 14

4 q 15

3 9 18

7 16 20

5

CS301 – Data Structures Lecture No. 12

Page 133 of 505

17

17

17, 9, 14, 5

Fig 12.11: Insertion of a new node in progress

Now, the number 15 in the tree node is compared with new number 17. Therefore, the

pointer q is again moved forward to the right child node i.e. the node with number 18.

In the next step, we move forward the p pointer also. The following figure depicts the

current picture of the tree:

17, 9, 14, 5

Fig 12.12: Insertion of a new node in progress

The previous process is repeated again (while loop is the repeating construct) that the

number 17 is compared with the number 18. This time the left child node is traversed

and q pointer starts pointing the node with number 16 inside. In the next step, p is

moved forward to point to the same node as q.

The same comparison process starts again, number 17 is found to be greater than the

number 16, therefore, the right child is seek. But we see that the current tree node

does not have right child node, so it returns NULL. Following figure depicts it.

14

4 p 15

3
q

9 18

7 16 20

5

14

4 15

3 9 p 18

q

7
16

20

5

CS301 – Data Structures Lecture No. 12

Page 134 of 505

17

17, 9, 14, 5

Fig 12.13: Insertion of a new node in progress

Above shown (q is pointing to NULL) is the condition that causes the while loop in
the code above to terminate. Later we insert the new node as the right child of the

current node.

 p->setRight(node) ;

Fig 12.14: A new node is inserted in the tree

It is recommended to execute this algorithm manually to insert the remaining numbers

in the tree. This will make the understanding more clear. This tree algorithm is going

to be used rigorously in the future and complete understanding of it will make the

complex future implementations easier to comprehend. The specific advantages of

using binary tree over linked list will be discussed in more detail in the next lecture.

14

4 15

3 9 18

7 20
p 16

5
q

14

4 15

3 9 18

7 20

p 16

5

17
17, 9, 14, 5

node

CS301 – Data Structures Lecture No. 13

Page 135 of 505

Data Structures

Lecture No. 13

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3, 4.6

Summary

 Cost of Search

 Binary Search Tree (BST)

 Traversing a Binary Tree

 C++ code

 Example

 Exercise

In the previous lecture, we had written and demonstrated the use of C++ code of

insert routine for a tree through an example. We also saw how a new node is inserted

into a binary tree. If the to-be-inserted number (node) is already in the tree i.e. it

matches a number already present in the tree, we display a message that the number is

already in the tree. In the last lecture, the advantages of the tree data structure vis-à-

vis linked list data structure were also discussed. In a linked list, a programmer has to

search the whole list to find out a duplicate of a number to be inserted. It is very

tedious job as the number of stored items in a linked list is very large. But in case of

tree data structure, we get a dynamic structure in which any number of items as long

as memory is available, can be stored. By using tree data structure, the search

operation can be carried out very fast. Now we will see how the use of binary tree can

help in searching the duplicate number in a very fast manner.

Cost of Search

Consider the previous example where we inserted the number 17 in the tree. We

executed a while loop in the insert method and carried out a comparison in while loop.

If the comparison is true, it will reflect that in this case, the number in the node where

the pointer p is pointing is not equal to 17 and also q is not NULL. Then we move p

actually q to the left or right side. This means that if the condition of the while loop is

true then we go one level down in the tree. Thus we can understand it easily that if

there is a tree of 6 levels, the while loop will execute maximum 6 times. We conclude

from it that in a given binary tree of depth d, the maximum number of executions of

the while loop will be equal to d. The code after the while loop will do the process

depending upon the result of the while loop. It will insert the new number or display a

message if the number was already there in the tree.

CS301 – Data Structures Lecture No. 13

Page 136 of 505

Now suppose we have another method find. This method does not insert a new

number in the tree. Rather, it traverses a tree to find if a given number is already

present in the tree or not. The tree which the find method traverses was made in such

an order that all the numbers less than the number at the root are in the left sub-tree of

the root while the right sub-tree of the root contains the numbers greater than the

number at the root. Now the find method takes a number x and searches out its

duplicate in the given tree. The find method will return true if x is present in the tree.

Otherwise, it will return false. This find method does the same process that a part of

the insert method performs. The difference is that the insert method checks for a

duplicate number before putting a number in the tree whereas the find method only

finds a number in the tree. Here in the find method, the while loop is also executed at

maximum equal to the number of levels of the tree. We do a comparison at each level

of the tree until either x is found or q becomes NULL. The loop terminates in case, the

number is found or it executes to its maximum number, i.e. equal to the number of

levels of the tree.

In the discussion on binary tree, we talked about the level and number of nodes of a

binary tree. It was witnessed that if we have a complete binary tree with n numbers of

nodes, the depth d of the tree can be found by the following equation:

d = log2 (n + 1) – 1

Suppose we have a complete binary tree in which there are 100,000 nodes, then its

depth d will be calculated in the following fashion.

d = log2 (100000 + 1) – 1 = log2 (100001) – 1= 20

The statement shows that if there are 100,000 unique numbers (nodes) stored in a

complete binary tree, the tree will have 20 levels. Now if we want to find a number x

in this tree (in other words, the number is not in the tree), we have to make maximum

20 comparisons i.e. one comparison at each level. Now we can understand the benefit

of tree as compared to the linked list. If we have a linked list of 100,000 numbers,

then there may be 100,000 comparisons (supposing the number is not there) to find a

number x in the list.

Thus in a tree, the search is very fast as compared to the linked list. If the tree is

complete binary or near-to-complete, searching through 100,000 numbers will require

a maximum of 20 comparisons or in general, approximately log2(n). Whereas in a

linked list, the comparisons required could be a maximum of n.

Tree with the linked structure, is not a difficult data structure. We have used it to

allocate memory, link and set pointers to it. It is not much difficult process. In a tree,

we link the nodes in such a way that it does not remain a linear structure. If instead of

100,000, we have 1 million or 10 million or say, 1 billion numbers and want to build a

complete binary tree of these numbers, the depth (number of levels) of the tree will be

log2 of these numbers. The log2 of these numbers will be a small number, suppose 25,

30 or 40. Thus we see that the number of level does not increase in such a ratio as the

number of nodes increase. So we can search a number x in a complete binary tree of 1

billion nodes only in 30-40 comparisons. As the linked list of such a large number

grows large, the search of a number in such a case will also get time consuming

CS301 – Data Structures Lecture No. 13

Page 137 of 505

process. The usage of memory space does not cause any effect in the linked list and

tree data structures. We use the memory dynamically in both structures. However,

time is a major factor. Suppose one comparison takes one micro second, then one

billion seconds are required to find a number from a linked list (we are supposing the

worst case of search where traversing of the whole list may be needed). This time will

be in hours. On the other hand, in case of building a complete binary tree of these one

billion numbers, we have to make 30-40 comparisons (as the levels of the tree will be

30-40), taking only 30-40 microseconds. We can clearly see the difference between

hours and microseconds. Thus it is better to prefer the process of building a tree of the

data to storing it in a linked list to make the search process faster.

Binary Search Tree

While discussing the search procedure, the tree for search was built in a specific
order. The order was such that on the addition of a number in the tree, we compare it

with a node. If it is less than this, it can be added to the left sub-tree of the node.

Otherwise, it will be added on the right sub-tree. This way, the tree built by us has

numbers less than the root in the left sub-tree and the numbers greater than the root in

the right sub-tree. A binary tree with such a property that items in the left sub-tree are

smaller than the root and items in the right sub-tree are larger than the root is called a

binary search tree (BST). The searching and sorting operations are very common in

computer science. We will be discussing them many times during this course. In most

of the cases, we sort the data before a search operation. The building process of a

binary search tree is actually a process of storing the data in a sorted form. The BST

has many variations, which will be discussed later. The BST and its variations play an

important role in searching algorithms. As data in a BST is in an order, it may also be

termed as ordered tree.

Traversing a Binary Tree

Now let’s discuss the ways to print the numbers present in a BST. In a linked list, the
printing of stored values is easy. It is due to the fact that we know wherefrom, a

programmer needs to start and where the next element is. Equally is true about

printing of the elements in an array. We execute a for loop starting from the first

element (i.e. index 0) to the last element of the array. Now let’s see how we can

traverse a tree to print (display) the numbers (or any data items) of the tree.

We can explain this process with the help of the following example in which we

traverse a binary search tree. Suppose there are three nodes tree with three numbers

stored in it as shown below.

Fig 13.1: A three node binary tree

14

4 15

CS301 – Data Structures Lecture No. 13

Page 138 of 505

Here we see that the root node has the number 14. The left sub-tree has only one node

i.e. number 4. Similarly the right sub-tree consists of a single node with the number

15. If we apply the permutations combinations on these three nodes to print them,
there may be the following six possibilities.

1: (4, 14, 15)

2: (14, 4, 15)

3: (15, 4, 14)

4: (4, 15, 14)

5: (14, 15, 4)

6: (15, 14, 4)

Look at these six combinations of printing the nodes of the tree. In the first

combination, the order of printing the nodes is 4-14-15. It means that left subtree-

root-right subtree. In the second combination the order is root-left subtree-right

subtree. In the third combination, the order of printing the nodes is right subtree-root-

left subtree. The fourth combination has left subtree-right subtree-root. The fifth

combination has the order root-rigth subtree- left subtree. Finally the sixth

combination has the order of printing the nodes right subtree-root-left subtree. These

six possibilities are for the three nodes only. If we have a tree having a large number

of nodes, then there may increase number of permutations for printing the nodes.

Let’s see the general procedure of traversing a binary tree. We know by definition that

a binary tree consists of three sets i.e. root, left subtree and right subtree. The

following figure depicts a general binary tree.

Fig 13.2: A generic binary tree

In this figure, we label the root node with N. The left subtree in the figure is in a

triangle labeled as L. This left subtree may consist of any number of nodes. Similarly

the right subtree is enclosed in a triangle having the label R. This triangle of right

subtree may contain any number of nodes. Following are the six permutations, which

we have made for the three nodes previously. To generalize these permutations, we

use N, L and R as abbreviations for root, left subtree and right subtree respectively.

N
node

L R

left right

subtre subtree

CS301 – Data Structures Lecture No. 13

Page 139 of 505

1: (L, N, R)

2: (N, L, R)

3: (R, L, N)

4: (L, R, N)

5: (N, R, L)

6: (R, N, L)

In these permutations, the left and right subtrees are not single nodes. These may

consist of several nodes. Thus where we see L in the permutations, it means traversing

the left subtree. Similarly R means traversing the right subtree. In the previous tree of

three nodes, these left and right subtrees are of single nodes. However, they can

consist of any number of nodes. We select the following three permutations from the

above six. The first of these three is (N, L, R), also called as preorder traversal. The

second permutation is (L, N, R) which we called inorder traversal. Finally the third

permutation, also termed as postorder traversal is (L, R, N). Now we will discuss

these preorder, inorder and postorder traversal in detail besides having a look on their

working. We will also see the order in which the numbers in the tree are displayed by

these traversing methods.

C++ code

Let’s write the C++ code for it. Following is the code of the preorder method.

In the arguments, there is a pointer to a TreeNode. We may start from any node and

the pointer of the node will be provided as argument to the preorder method. In this

method, first of all we check whether the pointer provided is NULL or not. If it is not

NULL, we print the information stored in that node with the help of the getInfo()

method. Then we call the getLeft() method that returns a pointer of left node, which

may be a complete subtree. With the help of this method, we get the root of that

subtree. We call the preorder method again passing that pointer. When we return

from that, the preorder method is called for the right node. Let’s see what is

happening in this method. We are calling the preorder method within the preorder

method. This is actually a recursive call. Recursion is supported in C++ and other

languages. Recursion means that a function can call itself. We may want to know why

we are doing this recursive call. We will see some more examples in this regard and

understand the benefits of recursive calls. For the time being, just think that we are

provided with a tree with a root pointer. In the preorder, we have to print the value of

the root node. Don’t think that you are in the preorder method. Rather keep in mind

void preorder(TreeNode<int>* treeNode)

{

if(treeNode != NULL)

{

cout << *(treeNode->getInfo())<<" ";

preorder(treeNode->getLeft());

preorder(treeNode->getRight());

}

}

CS301 – Data Structures Lecture No. 13

Page 140 of 505

that you have a preorder function. Suppose you want to print out the left subtree in the

preorder way. For this purpose, we will call the preorder function. When we come

back, the right subtree will be printed. In the right subtree, we will again call the

preorder function that will print the information. Then call the preorder function for

the left subtree and after that its right subtree. It will be difficult if you try to do this

incursion in the mind. Write the code and execute it. You must be knowing that the

definition of the binary tree is recursive. We have a node and left and right subtrees.

What is left subtree? It is also a node with a left subtree and right subtree. We have

shown you how the left subtree and right subtree are combined to become a tree. The

definition of tree is itself recursive. You have already seen the recursive functions.

You have seen the factorial example. What is factorial of N? It is N multiplied by N-1

factorial. What is N-1 factorial? N-1 factorial is N-1 multiplied by N-2 factorial. This

is the recursive definition. For having an answer, it is good to calculate the factorial of

one less number till the time you reach at the number 2. You will see these recursions

or recursive relations here and also in mathematic courses. In the course of discrete

mathematics, recursion method is used. Here we are talking about the recursive calls.

We will now see an example to understand how this recursive call works and how can

we traverse the tree using the recursion. One of the benefits of recursion that it prints

out the information of all the nodes without caring for the size of the tree. If the tree

has one lakh nodes, this simple four lines routine will print all the nodes. When

compared with the array printing, we have a simple loop there. In the link list also, we

have a small loop that executes till the time we have a next pointer as NULL. For tree,

we use recursive calls to print it.

Here is the code of the inorder function.

The argument is the same as in the preorder i.e. a pointer to the TreeNode. If this node

is not NULL, we call getLeft() to get the left node and call the inorder function. We

did not print the node first here. In the inorder method, there is no need to print the

root tree first of all. We start with the left tree. After completely traversing the

complete left tree, we print the value of the node. In the end, we traverse the right

subtree in recursion.

Hopefully, you have now a fair knowledge about the postorder mechanism too. Here

is the code of the postorder method.

void inorder(TreeNode<int>* treeNode)

{

if(treeNode != NULL)

{

inorder(treeNode->getLeft());

cout << *(treeNode->getInfo())<<" ";

inorder(treeNode->getRight());

}

}

CS301 – Data Structures Lecture No. 13

Page 141 of 505

In the postorder, the input argument is a pointer to the TreeNode. If the node is not

NULL, we traverse the left tree first. After that we will traverse the right tree and print

the node value from where we started.

As all of these above routines are function so we will call them as:

Here the root represents the root node of the tree. The size of the tree does not matter

as the complete tree will be printed in preorder, inorder and postorder. Let’s discuss

an example to see the working of these routines.

Example

Let’s have a look on the following tree.

void postorder(TreeNode<int>* treeNode)

{

if(treeNode != NULL)

{

postorder(treeNode->getLeft());

postorder(treeNode->getRight());

cout << *(treeNode->getInfo())<<" ";

}

}

cout << "inorder: ";

preorder(root);

cout << "inorder: ";

inorder(root);

cout << "postorder: ";

postorder(root);

CS301 – Data Structures Lecture No. 13

Page 142 of 505

Fig 13.3: Preorder: 14 4 3 9 7 5 15 18 16 17 20

This is the same tree we have been using previously. Here we want to traverse the

tree. In the bottom of the figure, the numbers are printed with the help of preorder

method. These numbers are as 14 4 3 9 7 5 15 18 16 17 20. Now take these

numbers and traverse the tree. In the preorder method, we print the root, followed by

traversing of the left subtree and the right subtree respectively. As the value of the

root node is 14, so it will be printed first of all. After printing the value of the root

node, we call the preorder for the left node which is 4. Forget the node 14 as the root

is 4 now. So the value 4 is printed and we call the preorder again with the left sub tree

i.e. the node with value 3. Now the root is the node with value 3. We will print its

value before going to its left. The left side of node with value 3 is NULL. Preorder

will be called if condition is false. In this case, no action will be taken. Now the

preorder of the left subtree is finished. As the right subtree of this node is also NULL,

so there is no need of any action. Now the left subtree of the node with value 4 is

complete. The method preorder will be called for the right subtree of the node with

value 4. So we call the preorder with the right node of the node with value 4. Here,

the root is the node with value 9 that is printed. We will call its left subtree where the

node value is 7. It will be followed by its left subtree i.e. node 5 which will be printed.

In the preorder method, we take the root i.e. 14 in this case. Its value is printed,

followed by its left subtree and so on. This activity takes us to the extreme left node.

Then we back track and print the right subtrees.

Let’s try to understand the inorder method from the following statement.

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 13

Page 143 of 505

Fig 13.4: Inorder: 3 4 5 7 9 14 15 16 17 18 20

When we call the inorder function, the numbers will be printed as 3 4 5 7 9 14 15 16

17 18 20. You might have noted that these numbers are in sorted order. When we

build the tree, there was no need of sorting the numbers. But here we have the sorted

numbers in the inorder method. While inserting a new node, we compare it with the

existing ones and place the new node on the left or right side. So during the process of

running the inorder on the binary tree, a programmer gets the numbers sorted.

Therefore we have a sorting mechanism. If we are given some number, it will not be

difficult to get them sorted. This is a new sorting algorithm for you. It is very simple.

Just make BST with these numbers and run the inorder traversal. The numbers

obtained from the inorder traversal are sorted.

In the inorder method, we do not print the value of node first. We go to traverse its

left subtree. When we come back from the left subtree and print the value of this

node. Afterwards, we go to the right subtree. Now consider the above tree of figure

13.4. If we start from number 14, it will not be printed. Then we will go to the left

subtree. The left subtree is itself a tree. The number 4 is its root. Now being at the

node 4, we again look if there is any left subtree of this node. If it has a left subtree,

we will not print 4 and call the inorder method on its left subtree. As there is a left

subtree of 4 that consists a single node i.e. 3, we go to that node. Now we call the

inorder of node 3 to see if there is a subtree of it. As there is no left subtree of 3, the if

statement that checks if the node is not NULL will become false. Here the recursive

calls will not be executed. We will come back from the call and print the number 3.

Thus the first number that is printed in the inorder traversal is 3. After printing 3, we

go to its right subtree that is also NULL. So we come back to node 3. Now as we have

traversed the left and right subtrees of 3 which itself is a left subtree of 4, thus we

have traversed the left subtree of 4. Now we print the value 4 and go to the right

subtree of 4. We come at node 9. Before printing 9 we go to its left subtree that leads

us to node 7. In this subtree with root 7, we will not print 7. Now we will go to its left

subtree which is node 5. We look for the left subtree of 5 which is NULL. Now we

print the value 5. Thus, we have so far printed the numbers 3, 4 and 5. Now we come

back to 7. After traversing its left subtree, we print the number 7. The right subtree of

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 13

Page 144 of 505

7 is NULL. Thus finally, we have traversed the whole tree whose root is 7. It is a left

subtree of 9. Now, we will come back to 9 and print it (as its left subtree has been

traversed). The right subtree of 9 is NULL. So there is no need to traverse it. Thus the

whole tree having 9 as its root has been traversed. So we come back to the root 4, the

right subtree of which is the tree with root 9. Resultantly, the left and right subtree of

4 have been traversed now. Thus we have printed the numbers 3, 4, 5, 7 and 9. Now

from here (i.e. node 4) we go to the node 14 whose left subtree has been traversed.

Now we print 14 and go to its right subtree. The right subtree of 14 has 15 as the root.

From here, we repeat the same process earlier carried out in case of the left subtree of

14. As a result of this process, the numbers 15, 16, 17, 18 and 20 are printed. Thus we

get the numbers stored in the tree in a sorted order. And we get the numbers printed as
3, 4, 5, 7, 9, 14, 15, 16, 17, 18, 20. This sorted order is only in the inorder traversal.

When we apply the post order traversal on the same tree, the numbers we get are not

in sorted order. The numbers got through postorder traversal are in the following

order:

3 5 7 9 4 17 16 20 18 15 14

We see that these are not in a sorted order.

We know that every function has a signature. There is return type, function name and

its parameter list in the signature of a function. Then there comes the body of the

function. In the body of a function, there may be local variables and calls to some

other functions. Now if a statement in the body of a function is calling the same

function in which it exists, it will be termed as a recursive call. For example if a

statement in function A is calling the function A, it is a recursive call and the process

is called recursion.

Now let’s see how recursion is carried out. We know that the function calls are

implemented through stacks at run time. Let’s see what happens when there is a

recursive call. In a recursive call that means calling a function itself makes no

difference as far as the call stack is concerned. It is the same as a function F calls a

function G, only with the difference that now function F is calling to function F

instead of G. The following figure shows the stack layout when function F calls

function F recursively.

At point of call During execution of F After call

CS301 – Data Structures Lecture No. 13

Page 145 of 505

Fig 13.5

When F is called first time, the parameters, local variables and its return address are

put in a stack, as some function has called it. Now when F calls F, the stack will

increase the parameters, local variables and return address of F comes in the stack

again. It is the second call to F. After coming back from this second call, we go to the

state of first call of F. The stack becomes as it was at first call. In the next lecture, we

will see the functionality of recursive calls by an example.

Exercise

Please find out the preorder, inorder and postorder traversal of the tree given below:

Fig 13.6

40

14 50

45
10 19 80

42

16
46 60 200

12
44 55 70

15
17

11

CS301 – Data Structures Lecture No. 14

Page 146 of 505

Data Structures

Lecture No. 14

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3, 4.6

Summary

 Recursive Calls

 Preorder Recursion

 Inorder Recursion

 Non-Recursive Traversal

 Traversal Trace

We discussed the methods of traversal of the binary tree in the previous lecture. These

methods are- preorder, inorder and postorder. It was witnessed that in the C++ code

that the coding of these methods becomes very short with the use of recursive calls.

The whole tree can be traversed with a few lines of code. We also demonstrated the

benefits of the methods with the help of an example in which a tree was traversed by

preorder, inorder and postorder methods. Implementation of the recursion also came

under discussion in the previous lecture.

Recursive Calls
We know that function calls are made with the help of stacks. When a function calls

some other function, the parameters and return address of the function is put in a

stack. The local variables of the function are also located at the stack and the control

is passed to the called function. When the called function starts execution, it performs

its job by using these parameters and local variables. When there in the function there

comes a return statement or when the function ends then the return address, already

stored in the stack, is used and control goes back to the next statement after the calling

function. Similarly when a function is calling to itself, there is no problem regarding

the stack. We know, in recursion a function calls to itself instead of calling some other

function. Thus the recursion is implemented in the way as other function calls are

implemented.

Preorder Recursion
Now let’s see the preorder traversal with respect to the recursion. We will see what

changes happen when preorder function calls itself recursively. Consider the
following binary search tree used in our previous example.

CS301 – Data Structures Lecture No. 14

Page 147 of 505

For the preorder traversal, we call the preorder function and pass it the root node of

the tree (i.e. 14) as a parameter. We have discussed in the preorder traversing that

preorder method first prints the value of the node that is passed to it. So number 14 is

printed. After it, the preorder method calls itself recursively. Thus we will call the

preorder and give it the left subtree of 14 (actually the root node of left subtree) as an

argument. So this call will be preorder (4). As it is preorder traversing, the value of

the root node i.e. 4 will be printed. Now the preorder method looks if there is a left

subtree of the node (i.e.4). If it has a left subtree, the preorder function will call itself

again. The root node of this left subtree will be passed as an argument to the new

function call. Here it is 3, so the number 3 is printed. Thus by the previous three calls

(i.e. preorder(14), preorder(4) and preorder(3)) we have printed the values 14, 4 and

3. Now the left subtree of 3 is NULL. We know that in preorder method, first of all

we check whether the node is NULL or not. If it is not NULL, the recursion process

continues. It means that we print the value of the node and call the preorder function

again. If the node is NULL, the process ends.

There is always a terminating condition in recursive call or recursive procedure. In the

previous lecture, while trying to end the factorial recursion, we defined the condition

that the factorial of zero is 1. When the factorial of n starts, the factorial is called

again and again by decreasing the value of n by 1. So when we reach at 0, there is no

further recursive call for the factorial as we have set the condition for it i.e. the

factorial of 0 is equal to 1. Thus the recursion ends. Equally is true about the preorder

process. When a node is NULL, then ‘if statement’ becomes false and we exit the

function (see code of preorder function in previous lecture).

In the above figure, the preorder process that started from node 14, came to an end at

node 3 as the left subtree of 3 is NULL. Now this preorder process will make no

further recursive call. We will come back from here by using the return address of the

14

4 15

3 9 18

7 16 20

5 17

Fig 14.1 (a) : preorder recursion

preorder(14)

14

..preorder(4)

4

....preorder(3)
3

......preorder(NULL)

......preorder(NULL)

....preorder(9)
9

......preorder(7)

7

........preorder(5)

5

..........preorder(NULL)

..........preorder(NULL)

........preorder(NULL)

......preorder(NULL)

CS301 – Data Structures Lecture No. 14

Page 148 of 505

call preorder (NULL) from the stack. If we see the stack, this fourth call will come

back to the third call i.e. preorder (3). The left subtree of 3 has ended. Now we have

to traverse the right subtree of 3. Here the right subtree of 3 is also NULL. So the

traversing of tree with node 3 as root has been completed. Now we return from the

call preorder (3) and reach one level backward at the node 4. The left subtree of node

4 has been traversed. Now we go to traverse the right subtree of 4. The preorder call

for the right subtree has started. This started from the call preorder (9).Note in the

figure that this call has made at the same level as was for node 3. It is because we are

traversing the right subtree of the same tree that has node 4 as its root and 3 was its

left subtree. After printing the number 9 we go to call the preorder process for the left

subtree of 9. That is preorder (7). When we go to 7, we print it and call the preorder

process for its left subtree i.e. preorder (5). Now after printing the number 5, the

preorder is applied to its left subtree i.e. NULL. So the preorder traversal of left

subtree of 5 ends this way. Now the preorder is applied to the right subtree of 5 which

is also NULL. Thus the next two preorder calls (one for left subtree of 5 and one for

right subtree of 5) after the call preorder (5) are preorder (NULL). Here the returning

address takes the control back to the call preorder (7) through the use of stack. The

left subtree of 7 has been traversed and now we go to the right subtree of it i.e. NULL.

Thus there is a call preorder (NULL). So we come back to node 9 completing the

traversal of its left subtree. Now we traverse the right subtree of 9 which again

happens to be NULL. So there is one more call of preorder with NULL. The number

of dots with the preorder calls in the figure describes the state of the stack. When we

go ahead to traverse a node the dots increase in figure as the call made is put on the

stack. When we come back to a node, the returning address is popped from the stack

and we mention it by decreasing a dot in the figure.
After these four calls of preorder with NULL as argument, we return to the node 4.
We have completed the tree (left and right subtree) with node 4 as root. As seen in
the figure, this tree (having node 4 as root) is a left subtree of node 14. The numbers

that we got printed upto now are 14, 4, 3, 9, 7 and 5. So after traversing the left

subtree of 14, we come back to node 14 and start to traverse its right subtree. We

traverse the right subtree by applying the recursive calls of preorder in the way as

done while traversing the left subtree of 14. The recursive calls involved in it are

shown in the following figure.

CS301 – Data Structures Lecture No. 14

Page 149 of 505

Now we are at node 14 and know that in preorder, the value of the node is printed first

before going to its left subtree. And after traversing the left subtree, a programmer

comes back and goes to traverse the right subtree. As we have traversed the left

subtree of 14 and have come back to 14, now we will traverse the right subtree of 14.

In the right subtree, we reach at node 15. We print the value 15 and look at its left

subtree. The left subtree is NULL so the call to the preorder method is preorder

(NULL). This call makes the condition of ‘if statement’ false and the recursive calls

ends on this side. Afterwards, we go to the right subtree of 15. The call preorder (18)

is made, followed by printing of the value 18. Then we go to the left subtree of it that

is node 16. After calling preorder(16) and printing it, we go to the left subtree of 16

which is NULL. Now we will move to right subtree of 16 and the call preorder (17)

prints the number 17. After it, the two next calls are preorder (NULL) as the left and

right subtree of 17 are NULL. Thus after traversing the left and right subtree of 16

(which itself is a left subtree of 18), we return to node 18. Then we go to the right

subtree of 18 and reach at node 20. So preorder (20) prints the value 20. There are

again two preorder (NULL) calls as the left and right subtree of 20 are NULL. The

preorder recursive call ends here. Now we go back and reach at node 14 whose left

and right subtrees have been traversed. That means the whole tree having 14 as the

root has traversed.

Inorder Recursion
Now let’s see the inorder recursive calls for traversing a tree. It is not different from
the preorder. The pattern of recursive calls will be changed as in the inorder we

traverse the left subtree first before printing the root. Afterwards, the right subtree is

traversed. The following figures (Fig 14.2(a) and 14.2(b)) explains this phenomenon

of inorder recursion by showing the recursive calls.

14

4 15

3 9 18

7 16 20

5 17

....preorder(15)

15

....preorder(NULL)

....preorder(18)

18

......preorder(16)

16

........preorder(NULL)

........preorder(17)
17

..........preorder(NULL)

..........preoder(NULL)

......preorder(20)

20

........preorder(NULL)

........preorder(NULL)

Fig 14.1 (b): preorder recursion

CS301 – Data Structures Lecture No. 14

Page 150 of 505

We start the inorder with the call inorder (14) as the root of the tree is 14. Now in the

inorder traversing, a programmer has to traverse the left subtree before printing the

value of the root node and then going to the right subtree. So the call to the left

subtree of 14 i.e. inorder (4) will lead to the node 4. At the node 4, the same process

of calling its left subtree, before printing its value, will be applied and we reach at

node 3 that is the left subtree of 4. From the node 3, we go to its left subtree. This left

subtree is NULL. Here in the inorder method, we have the same terminating condition

as that seen in the preorder i.e. we will not make further recursive calls if there

becomes a NULL node in the method call. We end the recursion at that node and

come back. Now when we come back from the NULL left subtree of 3 this shows that

we have visited the left subtree of 3. So the value of the node i.e. 3 is printed. Now we

go to the right subtree of 3. Here the inorder call is inorder (NULL). This call will

make the if statement, in the inorder method, false, leading to the end of the recursion.

Thus we have visited the whole tree whose root is node 3. So we come back to node

4. As the left subtree of node 4 has been visited, we print the value of node i.e. 4.

Thus we have printed the numbers 3 and 4. Now we go to the right subtree of 4. The

right subtree of 4 is the node 9. Now we send 9 as an argument to inorder method. So

there is a call inorder (9). As it is inorder traversing, we go to traverse its left subtree

before printing the number 9. We reach the node 7 and make a call inorder (7). Later,

we go to the left subtree of 7 i.e. the node 5. Now we visit the left subtree of 5 which

is NULL. So here the inorder recursion ends and we come back to node 5, print it and

go to the right subtree of 5. The right subtree of 5 is also NULL. So ending recursion

here, we have finally traversed the tree with 5 as its root. After traversing it, we come

back to the node 7. After visiting the left subtree of 7, we print 7 and go to the right

subtree of 7 which is NULL.

14

4 15

3 9 18

7 16 20

5 17

inorder(14)

..inorder(4)

....inorder(3)

......inorder(null)

3

......inorder(null)

4

....inorder(9)

......inorder(7)

........inorder(5)

..........inorder(null)

5

..........inorder(null)

7

........inorder(null)

9
......inorder(null)

14

Fig 14.2 (a): inorder recursion

CS301 – Data Structures Lecture No. 14

Page 151 of 505

After the call inorder (NULL) we have traversed the tree having 7 as the root and it is

a left subtree of 9. Thus we have visited the left subtree of 9. We print the number 9

before going to traverse its right subtree. The right subtree of 9 is NULL so the

recursion ends here and we come back to the node 4. The tree having node 4 as root

has been traversed now. This tree is a left subtree of node 14. Thus after traversing it

we come back to node 14 and print it (as we have traversed its left subtree i.e. tree

with 4 as root). It is evident here that before going to traverse the right subtree of 14,

we have printed the numbers 3, 4, 5, 7, 9 and 14.

Now after printing the number 14, we go to traverse the right subtree of 14. The

traversal of this right subtree with 15 as a root, is being carried out in the way, we

traversed the left subtree. In the right subtree, we reach at node 15 and look at its left

subtree before printing it. This left subtree is NULL. The call inorder (NULL) makes

the condition of if statement false and we come back to the root node i.e. 15. We print

this number and go to the right subtree of 15. The right subtree of 15 is also a tree the

root node of which is 18. From this root node i.e. 18, we go to its left subtree and

reach at node 16. NULL being the left subtree of 16, makes us to return to 16 and

print it (as its left subtree has been traversed, which is NULL). After printing 16, we

go to the right subtree of 16. This leads us to node 17. As we are traversing the tree by

inorder process, so before printing the value 17, it will be necessary to go to traverse

its left subtree. Its left subtree is NULL. So after the call inorder (NULL) we return to

17 and print it. Now we look at the right subtree of 17 that is also NULL. So again

there is a call inorder (NULL) which ends the recursive calls for this tree. Thus we

have traversed the whole tree having node 17 as root and it is a right subtree of 16.

We have already traversed the left subtree of 16.

14

4 15

3 9 18

7 16 20

5 17

..inorder(15)

....inorder(null)

15

....inorder(18)

......inorder(16)

........inorder(null)
16

........inorder(17)

..........inorder(null)
17

..........inorder(null)

18

......inorder(20)

........inorder(null)

20

........inorder(null)

Fig 14.2 (b): inorder recursion

CS301 – Data Structures Lecture No. 14

Page 152 of 505

So we have traversed the tree with node 16 as its root. This tree is a left subtree of

node 18. After traversing the left subtree of 18, we print the number 18 and go to its

right subtree and reach at node 20. Now we go to the left subtree of 20 i.e. NULL and

come back to 20 and print it. Then go to its right subtree, which is also NULL that

ends the recursion. Thus we have traversed the tree having node 20 as its root. This

tree (having 20 as root) is a right subtree of 18 which itself is a right subtree of 15. We

have already traversed the left subtree of 15 and gone through the whole tree having

15 as root. This tree is a right subtree of the main tree with 14 as the root. We have

already traversed its left subtree. So we have traversed the whole tree by the inorder

process. From the figure 14.3 we see that by the inorder traversal we have printed the

numbers in the order as below

3, 4, 5, 7, 9, 14, 15, 16, 17, 18, 20

We have successfully demonstrated the preorder and inorder traversal of a tree by

using recursion method. The postorder traversal has been left for you as an exercise.

You can do it with the same above tree or build a tree on your own and traverse it.

The tree data structure by nature is a recursive data structure. In the coming lecture,

we will see that most of the methods we write for tree operations are recursive. From

the programming point of view, the recursion is implemented internally by using call

stack. This stack is maintained by the run time environment. The recursion is there in

the machine code generated by the compiler. It is the programmer’s responsibility to

provide a terminating condition to stop the recursion. Otherwise, it will become an

infinite recursion. If we do not put a terminating condition, the recursive calls will be

continued and the call stack will go on increasing. We know that when a program

executes, it becomes a process and some memory is allocated to it by the system for

its call stack. This memory has a limit. Thus when the recursive calls do not end, there

is no memory left to be used for increasing call stack after a certain time. This will

crash the program or the program will halt. So we should be very careful while using

the recursive calls and ensure the provision of a terminating condition in the recursive

calls.

Non Recursive Traversal
We can also carry out these traversing with the help of non-recursive calls. Think for

a few moments that how can we keep track of going left or going right or coming

back to the node with out using the recursion.. In the preorder, inorder and postorder

traversal, we visit nodes at different level and then return. We know the way to

comeback or go further deep. Now if we are not using the recursion, how these things

can be managed? We have to manage all this in our methods. Let’s see how we can

write the non-recursive tree traversal methods. We can implement non-recursive

versions of the preorder, inorder and postorder traversal by using an explicit stack.

We cannot avoid stack. The stack will be used to store the tree nodes in the

appropriate order. Let’s try to write methods without using recursion. For this

purpose, we have to create stack.

Here, for example, is the routine for inorder traversal that uses a stack.

void inorder(TreeNode<int>* root)

{

CS301 – Data Structures Lecture No. 14

Page 153 of 505

The signature is same. The name of the function that is inorder, its return type is void

and the argument is pointer to TreeNode. Then there is stack abstract data type. We

can store int, float or other data type in the stack. Here we want to store the TreeNode

in the stack and then in the nodes we want to store integers. The statement is:

Stack<TreeNode<int>* > stack;

We send a message to the Stack factory that creates a stack to store TreeNode. The

integers will be stored in the TreeNode. We have almost two levels of template. Then

we declare a TreeNode pointer as p to traverse the tree up and down. We point this

pointer p to the root node. Then we have a do-while loop. The loop checks the value

of p is not NULL or stack is not empty. Inside the outer loop, we have an inner ‘while

loop’ which checks that p is not NULL. If p is not NULL, we push p on the stack i.e.

we push the root on the stack. Then we replace the p with p->getLeft() . This shows

that p is now pointing to the left subtree node. In case of having a left subtree of p, we

come back in the while loop as p is not NULL. Again we push p on the stack. Now p

is pointing to the left subtree. You have presumed that this while loop will take us to

the left subtree of the root. On the exit from the while loop, we have pushed the node

in the stack whose left subtree is NULL. Here, p is pointing to NULL. Now we check

that stack is empty or not. If we have pushed some nodes in the stack, it will not be

empty. We pop a value from the stack and assign it to p before printing the info stored

in that node and assign p the right subtree of that node. We comeback to the outer do-

while loop. It will continue executing till stack is empty or p is NULL.

To understand this code, we will trace the code on the same tree, earlier used in the

recursive inorder function.

Stack<TreeNode<int>* > stack;

TreeNode<int>* p;

p = root;

do

{

while(p != NULL)

{

stack.push(p);

p = p->getLeft();

}

// at this point, left tree is empty

if(!stack.empty())

{

p = stack.pop();

cout << *(p->getInfo()) << " ";

// go back & traverse right subtree

p = p->getRight();

}

} while (!stack.empty() || p != NULL);

}

CS301 – Data Structures Lecture No. 14

Page 154 of 505

14

15

9

7 16

Fig 14.3: Non-Recursive inorder

 push(14)
 ..push(4)
 push(3)
 3
 4 4
 ..push(9)
 push(7)

3
18

push(5)

5

20
7

9
 14

5

17

 push(15)

15
 push(18)
 ..push(16)
 16
 ..push(17)
 17
 18
 push(20)

 20

This is the same tree earlier discussed with reference to node as 14. We create a stack

and assign the root to the pointer p and have an inner while loop. In the while loop,

we pushed the root node in the stack i.e. push(14). After this, we assign the pointer p

to the left subtree of the root and return to while loop again. Now p is pointing to the

node with value 4, so we push 4 and then 3 on the stack. As the left subtree if 3 is null

so we exit from the inner loop. Afterwards, we pop the stack in the inner loop and

print it. As we know that stack is a LIFO structure (last in, first out). Finally, we have

pushed the node 3. So this node will be popped and the number 3 will be printed.

Now we will assign the right subtree of the node 3 to the p. As this is NULL, the inner

loop will not be executed and again come to the if statement. We will pop the stack in

the if statement and as a result, the node 4 will be popped and printed. Then we will

assign p to the right subtree of node 4 i.e. node 9. The control comes to the inner loop

in which we will push the node 9 and all of its left nodes one by one i.e. push(9),

push(7) and push(5). As the left subtree of the node 5 is NULL, the inner while loop

will be terminated. We will pop the stack and print 5. As the right subtree of node 5 is

NULL, the node 7 will be popped and printed. Here the right subtree of node 7 is

NULL. The stack is again popped and the number 9 will be printed. Here, the right

subtree of node 9 is also NULL. The stack will be popped resulting in popping and

printing of the node 14. Then we go the right subtree of the node 14 which is the node
15. The same rules of left subtree are applied here. You can understand it from the
above table.

Traversal Trace
Let’s compare the recursive inorder and non-recursive inorder and see whether there

is any difference between them. We find no difference between them. Function call

takes place with the help of stack. Explicit stack is also a stack and its behavior is also

CS301 – Data Structures Lecture No. 14

Page 155 of 505

the same. Let’s compare these. In the left column, we have recursive inorder and on

the right column there is non-recursive inorder.

recursive inorder nonrecursive inorder

inorder(14) push(14)

..inorder(4) ..push(4)

....inorder(3)push(3)

3 3

4 4

..inorder(9) ..push(9)

....inorder(7)push(7)

......inorder(5)push(5)

5 5

7 7

9 9

14 14

inorder(15) push(15)

15 15

inorder(18) push(18)

..inorder(16) ..push(16)

16 16

..inorder(17) ..push(17)

17 17

18 18

inorder(20) push(20)
20 20

In recursive inorder ,the function name is inorder(). We are printing the values. In

case of non-recursive, push() method is employed. You can see the order in which

tree nodes are being pushed explicitly on the stack. Then we print the values and use

the pop() method in a special order to see the values of the nodes.

In the recursive inorder we have inorder(14) while in the non-recursive inorder, there

is push(14). In the recursive inorder, we have inorder(4), in the non-recursive inorder

we have push(4). In the recursive inorder we have inorder(3. Whereas in the non-

recursive inorder, you may have push(3). It is pertinent to note that the only difference

in these two cases is that inorder() is in the left column while push() will be found in

the right column. You should not be surprised over this as stack is being used in both

recursive calls and non-recursive calls.

We can use recursive calls in which stack is used internally. However, in case of non-

recursive calls, the stack is used explicitly. Now the question arises which one of

these methods is better. Let’s see some other aspects of recursion. When should we

use the recursion with respect to efficiency and implementation? How many

statements were there in the inorder recursive function. The first statement was an if

statement which is the terminating condition. After this, we have only three

statements, two calls and one cout statement. The order in the inorder is inorder(left),

cout and then inorder(right). That’s the complete function. Now see the non recursive

function. There are a lot of statements in this function so that there should be more

code in the non-recursive function. The second thing is the readability. The readability

and understanding is better in the recursive function. One can easily understand what

is happening. To understand the non-recursive code, one has to read the code with

CS301 – Data Structures Lecture No. 14

Page 156 of 505

care. He has to go through every statement to see what you are doing. It will also help

ascertain if you are doing it right or not.

This is also an important aspect of programming. Program readability is also an issue.

Suppose you have written some program. Will you understand if after some months

that why you have written this and how? The first thing may be that what you are

doing in the program and how you do it? After going through the program, you will

remember it and recall that you have used this data structure for some purpose.

Always comment the code. Comment the data structure, logic and algorithm of the

program. Recursive procedure is an elegant procedure. Both the data structure and

procedure are recursive. We have traversed a tree with only three four statements. No

matter whatever is the size of the tree.

When the recursion happens with the help of function calls and stack.. There are some

other values also included. It has return address, local variables and parameters. When

a function calls another function irrespective of recursive or non recursive like

function F is calling function G. It will take time to put the values in the stack. If you

create your own stack, it takes time for creation and then push and pop will also

consume time. Now think that which one of these will take more time. The situation is

this that function calls always takes place using stack irrespective of the language.

The implementation of using stack is implemented very efficiently in the Assembly

language. In the computer architecture or Assembly language program, you will study

that the manipulation of stack calls that is push and pop and other methods are very

efficiently coded. Now you may think that there is a lot of work needed for the

recursive calls and non- recursive calls are faster. If you think that the non-recursive

function will work fast, it is wrong. The experience shows that if recursive calls are

applied on recursive data structures, it will be more efficient in comparison with the

non-recursive calls written by you. We will see more data structures which are

inherently recursive. If the data structures are recursive, then try to write recursive

methods. We will further discuss binary tree, binary search tree and see more

examples. Whenever we write a method dealing with these data structures and use

recursion. With the use of recursion, our program will be small, efficient and less

error prone. While doing programming, we should avoid errors. We don’t want to see

there are errors while writing a program and executing it.

Try to do these traversals by hands on trees. These traversals are very important in

trees. We will write more methods while dealing with tree, used internally in the

inorder or postorder traversal.

There is yet another way of traversing a binary tree that is not related to recursive

traversal procedures discussed previously. In level-order traversal, we visit the nodes

at each level before proceeding to the next level. At each level, we visit the nodes in a

left-to-right order. The traversal methods discussed earlier are inorder, preorder and

post order. We print the node or to the left subtree or to the right subtree. In the

preorder, we traverse the complete left subtree before coming to the right subtree.

These procedures are in one way , depth-oriented. Now we may like to traverse the

tree in a way that we go at one level and print all the nodes at that level. There are

some algorithm in which we need level order traversal.

In the following figure, the level order traversal is represented using the arrows.

CS301 – Data Structures Lecture No. 14

Page 157 of 505

We started from the root with 14 as a root node. Later, we printed its value. Then we

move to the next level. This is the binary tree so that we may have two elements at

next level i.e. 4 and 15. So we printed 4 and 15 while moving from left to right. Now

we are not moving to left or right subtree of any node. Rather, we move to the next

level. At next level, a programmer will have three nodes that are from left to right as

3, 9 and 18. We printed these values. If we take root node as zero level, it will be at

level 2. Now we move to the level 3. Here at level 3, we have 7, 16 and 20. At next

level, we have 5 and 17. So the numbers we are having are- 14 4 15 3 9 18 7 16

20 5 17. How can we programmatically traverse the tree in level order? We will

discuss it in the next lecture.

Level-order: 14 4 15 3 9 18 7 16 20 5 17

Fig 14.4: level order traversal

17 5

20 16 7

18 9 3

15 4

14

CS301 – Data Structures Lecture No. 15

Page 158 of 505

Data Structures

Lecture No. 15

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3, 4.3.5, 4.6

Summary

 Level-order Traversal of a Binary Tree

 Storing Other Types of Data in Binary Tree

 Binary Search Tree (BST) with Strings

 Deleting a Node From BST

Level-order Traversal of a Binary Tree
In the last lecture, we implemented the tree traversal in preorder, postorder and

inorder using recursive and non-recursive methods. We left one thing to explore

further that how can we print a binary tree level by level by employing recursive or

non-recursive method.

Fig 15.1: Level-order Traversal

In the above figure, levels have been shown using arrows:

At the first level, there is only one number 14.

At second level, the numbers are 4 and 15.

At third level, 3, 9 and 18 numbers are present.
At fourth level the numbers are 7, 16 and 20.

While on fifth and final level of this tree, we have numbers 5 and 17.

See the figure below:

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 15

Page 159 of 505

This will also be the order of the elements in the output if the level-order traversal is

done for this tree. Surprisingly, its implementation is simple using non-recursive

method and by employing queue instead of stack. A queue is a FIFO structure, which

can make the level-order traversal easier.

The code for the level-order traversal is given below:

The name of the method is levelorder and it is accepting a pointer of type TreeNode

<int>. This method will start traversing tree from the node being pointed to by this

pointer. The first line (line 3) in this method is creating a queue q by using the Queue

class factory interface. This queue will be containing the TreeNode<int> * type of

objects. Which means the queue will be containing nodes of the tree and within each

node the element is of type int.

The line 5 is checking to see, if the treeNode pointer passed to the function is pointing

to NULL. In case it is NULL, there is no node to traverse and the method will return

immediately.

Otherwise at line 6, the very first node (the node pointed to by the treeNode pointer)
is added in the queue q.

Next is the while loop (at line 7), which runs until the queue q does not become

empty. As we have recently added one element (at line 6), so this loop is entered.

At line 9, dequeue() method is called to remove one node from the queue, the element

at front is taken out. The return value will be a pointer to TreeNode. In the next line

(line 10), the int value inside this node is taken out and printed. At line 11, we check

to see if the left subtree of the tree node (we’ve taken out in at line 9) is present. In

case the left subtree exists, it is inserted into the queue in the next statement at line 12.

Next, we see if the right subtree of the node is there, it is inserted into the queue also.

Next statement at line 15 closes the while loop. The control goes back to the line 7,

where it checks to see if there is some element left in the queue. If it is not empty, the

loop is entered again until it becomes empty.

Let’s execute this method levelorder(TreeNode <int> *) by hand on a tree shown in

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

void levelorder(TreeNode <int> * treeNode)

{

Queue <TreeNode<int> *> q;

if(treeNode == NULL) return;

q.enqueue(treeNode);
while(!q.empty())

{

treeNode = q.dequeue();

cout << *(treeNode->getInfo()) << " ";

if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());

if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());

}

cout << endl;

}

CS301 – Data Structures Lecture No. 15

Page 160 of 505

the fig 15.1 to understand the level order traversal better. We can see that the root

node of the tree is containing element 14. This node is inserted in the queue first, it is

shown in the below figure in gray shade.

Queue: 14

Output:

Fig 15.2: First node is inserted in the queue

After insertion of node containing number 14, we reach the while loop statement,

where this is taken out from the queue and element 14 is printed. Next the left and

right subtrees are inserted in the queue. The following figure represents the current
stage of the tree.

14

4 15

3 9 18

7 16 20

5 17

Queue: 4 15

Output: 14

Fig 15.3: 14 is printed and two more elements are added in the queue

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 15

14

4 15

3 9 18

7 16 20

5 17

The element that has been printed on the output is shown with dark gray shade while

the elements that have been inserted are shown in the gray shade. After this the

control is transferred again to the start of the while loop. This time, the node

containing number 14 is taken out (because it was inserted first and then the right

node) and printed. Further, the left and right nodes (3 and 9) are inserted in the queue.

The following figure depicts the latest picture of the queue.

Queue: 15 3 9

Output: 14 4

Fig 15.4

In the above Queue, numbers 15, 3 and 9 have been inserted in the queue until now.

We came back to the while loop starting point again and dequeued a node from the

queue. This time a node containing number 15 came out. Firstly, the number 15 is

printed and then we checked for its left and right child. There is no left child of the

node (with number 15) but the right child is there. Right child is a node containing

number 18, so this number is inserted in the queue.

Queue: 3 9 18

Output: 14 4 15

Fig 15.5

Page 161 of 505

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 15

Page 162 of 505

This time the node that is taken out is containing number 3. It is printed on the output.

Now, node containing number 3 does not have any left and right children, therefore,

no new nodes is inserted in the queue in this iteration.

Queue: 9 18

Output: 14 4 15 3

Fig 15.6

In the next iteration, we take out the node containing number 9. Print it on the output.

Look for its left subtree, it is there, hence inserted in the queue. There is no right

subtree of 9.

Queue: 18 7

Output: 14 4 15 3 9

Fig. 15.7

14

4 15

3 9 18

7 16 20

5 17

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 15

Page 163 of 505

Similarly, if we keep on executing this function. The nodes are inserted in the queue

and printed. At the end, we have the following picture of the tree:

Queue:

Output: 14 4 15 3 9 18 7 16 20 5 17

Fig 15.8

As shown in the figure above, the Queue has gone empty and in the output we can see

that we have printed the tree node elements in the level order.

In the above algorithm, we have used queue data structure. We selected to use queue

data structure after we analyzed the problem and sought most suitable data structure.

The selection of appropriate data structure is done before we think about the

programming constructs of if and while loops. The selection of appropriate data

structure is very critical for a successful solution. For example, without using the

queue data structure our problem of levelorder tree traversal would not have been so

easier.

What is the reason of choosing queue data structure for this problem. We see that for

this levelorder (level by level) tree traversal, the levels come turn by turn. So this turn

by turn guides us of thinking of using queue data structure.

Always remember that we don’t start writing code after collecting requirements,

before that we select the appropriate data structures to be used as part of the design

phase. It is very important that as we are getting along on our course of data

structures, you should take care why, how and when these structures are employed.

Storing Other Types of Data in Binary Tree
Until now, we have used to place int numbers in the tree nodes. We were using int

numbers because they were easier to understand for sorting or comparison problems.

We can put any data type in tree nodes depending upon the problem where tree is

employed. For example, if we want to enter the names of the people in the telephone

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 15

Page 164 of 505

directory in the binary tree, we build a binary tree of strings.

Binary Search Tree (BST) with Strings
Let’s write C++ code to insert non-integer data in a binary search tree.

The function name is wordTree(). In the first line, a root tree node is constructed, the

node will be containing char type of data. After that is a static character array word,

which is containing words like babble, fable etc. The last word or string of the array is

NULL. Next, we are putting the first word (babble) of the word array in the root node.

Further is a for loop, which keeps on executing and inserting words in the tree using

insert (TreeNode<char> *, char *) method until there is a word in the word array

(word is not NULL). You might have noticed that we worked in the same manner

when we were inserting ints in the tree. Although, in the int array, we used –1 as the

ending number of the array and here for words we are using NULL. After inserting the

whole array, we use the inorder() method to print the tree node elements.

Now, we see the code for the insert method.

void insert(TreeNode<char> * root, char * info)

{

TreeNode<char> * node = new TreeNode<char>(info);

TreeNode<char> *p, *q;

p = q = root;

while(strcmp(info, p->getInfo()) != 0 && q != NULL)

{

p = q;

if(strcmp(info, p->getInfo()) < 0)

q = p->getLeft();

else

q = p->getRight();

}

if(strcmp(info, p->getInfo()) == 0)

{

cout << "attempt to insert duplicate: " << * info << endl;

delete node;

}

void wordTree()

{

TreeNode<char> * root = new TreeNode<char>();

static char * word[] = "babble", "fable", "jacket",

"backup", "eagle","daily","gain","bandit","abandon",

"abash","accuse","economy","adhere","advise","cease",

"debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i = 1; word[i]; i++)

insert(root, word[i]);

inorder(root);

cout << endl;

}

CS301 – Data Structures Lecture No. 15

Page 165 of 505

The insert(TreeNode<char> * root, char * info) is accepting two parameters. First

parameter root is a pointer to a TreeNode, where the node is containing element char

type. The second parameter info is pointer to char.

In the first line of the insert method, we are creating a new TreeNode containing the

char value passed in the info parameter. In the next statement, two pointers p and q of

type TreeNode<char> are declared. Further, both pointers p and q start pointing to

the tree node passed in the first parameter root.

You must remember while constructing binary tree of numbers, we were incrementing

its count instead of inserting the new node again if the same number is present in the

node. One the other hand, if the same number was not there but the new number was

less than the number in the node, we used to traverse to the left subtree of the node. In

case, the new number was greater than the number in the node, we used to seek its

right subtree.

Similarly, in case of strings (words) here, we will increment the counter if it is already

present, and will seek the left and right subtrees accordingly, if required.

In case of int’s we could easily compare them and see which one is greater but what

will happen in case of strings. You must remember, every character of a string has an

associated ASCII value. We can make a lexicographic order of characters based on

their ASCII values. For example, the ASCII value of B (66) is greater than A (65),

therefore, character B is greater than character A. Similarly if a word is starting with

the letter A, it is smaller than the words starting from B or any other character up to Z.

This is called lexicographic order.

C++ provides us overloading facility to define the same operators (<, >, <=, >=, ==

etc) that were used for ints to be used for other data types for example strings. We can

also write functions instead of these operators if we desire. strcmp is similar kind of

function, part of the standard C library, which compares two strings.

In the code above inside the while loop, the strcmp function is used. It is comparing

the parameter info with the value inside the node pointed to by the pointer p. As info

is the first parameter of strcmp, it will return a negative number if info is smaller, 0 if

both are equal and a positive number if info is greater. The while loop will be

terminated if the same numbers are found. There is another condition, which can

cause the termination of loop that pointer q is pointing to NULL.

First statement inside the loop is the assignment of pointer q to p. In the second

insider statement, the same comparison is done again by using strcmp. If the new

word pointed to by info is smaller, we seek the left subtree otherwise we go to the

right subtree of the node.

Next, we check inside the if-statement, if the reason of termination of loop is

duplication. If it is, a message is displayed on the output and the newly constructed
node (that was to be inserted) is deleted (deallocated).

If the reason of termination is not duplication, which means we have reached to the

node where insertion of the new node is made. We check if the info is smaller than the

word in the current tree node. If this is the case, the newly constructed node is inserted

to the left of the current tree node. Otherwise, it is inserted to the right.

else if(strcmp(info, p->getInfo()) < 0)

p->setLeft(node);

else

p->setRight(node);

}

CS301 – Data Structures Lecture No. 15

Page 166 of 505

This insert() method was called from inside the for loop in the wordTree() method.

That loop is teminated when the NULL is reached at the end of the array word. At the

end, we printed the inserted elements of the tree using the inorder() method.

Following is the output of inorder():

Notice that the words have been printed in the sorted order. Sorting is in increasing

order when the tree is traversed in inorder manner. This should not come as a surprise

if you consider how we built the binary search tree. For a given node, values less than

the info in the node were all in the left subtree and values greater or equal were in the

right. Inorder prints the left subtree first, then the node itself and at the end the right

subtree.

Building a binary search tree and doing an inorder traversal leads to a sorting

algorithm.

We have found one way of sorting data. We build a binary tree of the data, traverse

the tree in inorder fashion and have the output sorted in increasing order. Although,

this is one way of sorting, it may not be the efficient one. When we will study sorting

algorithms, will prove Mathematically that which method is the fastest.

Deleting a Node From BST
Until now, we have been discussing about adding data elements in a binary tree but

we may also require to delete some data (nodes) from a binary tree. Consider the case

where we used binary tree to implement the telephone directory, when a person leaves

a city, its telephone number from the directory is deleted.

It is common with many data structures that the hardest operation is deletion. Once

we have found the node to be deleted, we need to consider several possibilities.

For case 1, If the node is a leaf, it can be deleted quite easily.

Output:

abandon

abash

accuse

adhere

advise

babble

backup

bandit

cease

chain

daily

debunk

eagle

economy

fable

feeder

fetch

gain

genius

jacket

CS301 – Data Structures Lecture No. 15

See the tree figure below.

Fig 15.9: BST

Suppose we want to delete the node containing number 3, as it is a leaf node, it is

pretty straight forward. We delete the leaf node containing value 3 and point the right

subtree pointer to NULL.

For case 2, if the node has one child, the node can be deleted after its parent adjusts a

pointer to bypass the node and connect to inorder successor.

Fig 15.10: Deleting a Node From BST

If we want to delete the node containing number 4 then we have to adjust the right

subtree pointer in the node containing value 2 to the inorder successor of 4. The

important point is that the inorder traversal order has to be maintained after the delete.

Fig 15.11: Deletion in steps

6

2 8

1 4

3

6

2 8

1 4

3

6 6 6

2 8 2 8 2 8

1 4 1 4 1 3

3 3
Page 167 of 505

CS301 – Data Structures Lecture No. 15

Page 168 of 505

The case 3 is bit complicated, when the node to be deleted has both left and right

subtrees.

The strategy is to replace the data of this node containing the smallest data of the right

subtree and recursively delete that node.

Let’s see this strategy in action. See the tree below:

In this tree, we want to delete the node containing number 2. Let’s do inorder

traversal of this tree first. The inorder traversal give us the numbers: 1, 2, 3, 4, 5, 6

and 8.

In order to delete the node containing number 2, firstly we will see its right subtree

and find the left most node of it.

The left most node in the right subtree is the node containing number 3. Pay attention

to the nodes of the tree where these numbers are present. You will notice that node

containing number 3 is not right child node of the node containing number 2 instead it

is left child node of the right child node of number 2. Also the left child pointer of

node containing number 3 is NULL.

After we have found the left most node in the right subtree of the node containing

number 2, we copy the contents of this left most node i.e. 3 to the node to be deleted

with number 2.

6 6 6

2 8 3 8 3 8

1 5 1 5 1 5

3 3 3

Inorder
4 4 4

successor

Fig 15.13: delete (2) - remove the inorder successor

6

2 8

1 5

3

Inorder successor
4

CS301 – Data Structures Lecture No. 15

Page 169 of 505

6

3 8

1 5

 3

4

Next step is to delete the left most node containing value 3. Now being the left most

node, there will be no left subtree of it, it might have a right subtree. Therefore, the

deletion of this node is the case 2 deletion and the delete operation can be called

recursively to delete the node.

Fig 15.14: delete (2)

Now if we traverse the tree in inorder, we get the numbers as: 1, 3, 4, 5, 6 and 8.

Notice that these numbers are still sorted. In the next lecture, we will also see the C++

implementation code for this deletion operation.

6

3 8

1 5

4

CS301 – Data Structures Lecture No. 16

Page 170 of 505

Data Structures

Lecture No. 16

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3 (all sub sections)

Summary

 Deleting a node in BST

 C++ code for remove

 Binary Search Tree Class (BST)

Deleting a node in BST

In the previous lecture, we talked about deleting a node. Now we will discuss the

ways to delete nodes of a BST (Binary Search Tree). Suppose you want to delete one

of the nodes of BST. There are three cases for deleting a node from the BST. Case I:

The node to be deleted is the leaf node i.e. it has no right or left child. It is very simple

to delete such node. We make the pointer in the parent node pointing to this node as

NULL. If the memory for the node has been dynamically allocated, we will release it.

Case II: The node to be deleted has either left child (subtree) or right child (subtree).

Case III: The node to be deleted has both the left and right children (subtree). This is

the most difficult case. Let’s recap this case. The following figure shows the tree and

the node to be deleted.

6

2 8

Inorder successor will be the left-

1 5 most node in the right subtree of 2.

The inorder successor will not have a

3 left child because if it did, that child

would be the left-most node.

4
Inorder

successor

CS301 – Data Structures Lecture No. 16

Page 171 of 505

In the above example, the node to be deleted is 2. It has both right and left subtrees.

As this is the BST, so while traversing the tree in inorder, we will have sorted data.

The strategy is to find the inorder successor of the node to be deleted. To search the

inorder successor, we have to go to its right subtree and find the smallest element.

Afterwards we will copy this value into the node to be deleted. In the above example,

the number 3 is the smallest in the right subtree of the node 2. A view of data of

inorder traversal shows that number 3 is the inorder successor of number 2. We copy

the number 3 in the node to be deleted. Now in this transition tree, the number 3 is at

two places. Now we have to delete the inorder successor node i.e. node 3. The node 3

has only right child. So this is the Case II of deletion.

We will get the inorder successor of node 3 i.e. number 4. Therefore we will connect

6

🢂
6

2 8 3 8

1 5 1 5

3 3

4 4

🢂
6

3 8

1 5

3

4

🢂
6

3 8

1 5

3

4

🢂
6

3 8

1 5

4

CS301 – Data Structures Lecture No. 16

Page 172 of 505

the node 5 with node 4 that is the left pointer of 5 which was earlier pointing to node

3. But now it is pointing to node 4. We delete the node 3. Remember that number 3

has been copied in the node 2. This way, we will delete the node having right and left

both subtrees.

C++ code for remove

Now we will see the C++ code to carry out this deletion. In the above figures, we

have named the method as delete, but delete is a keyword of C++. So we cannot write

a method named delete. We have to name it something else, say remove. Keep in

mind all the three cases of delete and the figures.

Here is the code of the remove method.

/* This method is used to remove a node from the BST */

TreeNode<int>* remove(TreeNode<int>* tree, int info)

{

TreeNode<int>* t;

int cmp = info - *(tree->getInfo());

if(cmp < 0){ // node to delete is in left subtree

t = remove(tree->getLeft(), info);

tree->setLeft(t);

}

else if(cmp > 0){ // node to delete is in right subtree
t = remove(tree->getRight(), info);

tree->setRight(t);

}

//two children, replace with inorder successor

else if(tree->getLeft() != NULL && tree->getRight() != NULL){

TreeNode<int>* minNode;
MinNode = findMin(tree->getRight());

tree->setInfo(minNode->getInfo());

t = remove(tree->getRight(), *(minNode->getInfo()));

tree->setRight(t);

}

else { // case 1

TreeNode<int>* nodeToDelete = tree;

if(tree->getLeft() == NULL) //will handle 0 children

tree = tree->getRight();

else if(tree->getRight() == NULL)

tree = tree->getLeft();

else tree = NULL;

delete nodeToDelete; // release the memory

}

return tree;

}

CS301 – Data Structures Lecture No. 16

Page 173 of 505

The return type of the remove method is a pointer to TreeNode. The argument list

contains two arguments, the pointer to TreeNode pointing the root of the tree and an

integer info containing the value of the node to be deleted. A thorough analysis of the

delete method reveals that you need these two things.

Here we are dealing with the templates and the nodes containing the int values. Inside

the function, we create a temporary variable t of type TreeNode pointer. Then we have

int type variable cmp. The value of the TreeNode provided in the argument is

subtracted from the info (this is the value of the node to be deleted) and assigned to

the cmp. Then we have conditional if statement which checks if the value of cmp is

less than 0, we call remove method recursively. As the cmp is less than zero, it means

that the info is not the node provided in the argument. The value of cmp is less than

zero, depicting that the value of the current node is greater than info. Therefore if the

node with value info exists, it should be in the left subtree. So we call the remove

method on the left subtree. When we return from this call, the left subtree pointer of

tree is assigned to our temporary variable t.

If the first if statement evaluates to true, it means that our required node is in the left

subtree of the current node. We call the remove method recursively and remove that

node. On coming back, we assign t to the left subtree pointer of the tree. Suppose that

the node to be deleted is the immediate left child of the node. It will be deleted by the

remove method. When the node is deleted, some other node will come to its place,

necessitating the readjustment of the left pointer of the parent node. We can do it by

pointing the left subtree pointer to t.

If the value of cmp is greater than zero, the node with info value should be in the right
subtree of the current node. Therefore we call the remove method recursively,

providing it the pointer to the right subtree and the info. When we return from that

call, the right subtree is readjusted by assigning it the t.

In the third case, we are at the node, which is to be deleted. Here we have to deal with

the three delete cases- 1) the node to be deleted is the leaf node 2) node to be deleted

has either right or left child and 3) the node to be deleted has both left and right

subtree. We will begin with the third case. We will check in the else-if statement that

the left and right subtrees are not NULL. It means that the node has both left and right

subtrees. We create a temporary variable minNode of type TreeNode pointer. This

variable minNode is local to this if-else block. We assign it value by calling the

findMin method. We call the findMin method as:

findMin(tree->getRight())

In this delete case, we need to find the inorder successor of the node to be deleted

which is the minimum value in the right subtree. Then we will put the value of this

node to the node to be deleted. This node is saved in the variable minNode. The node

to be deleted is now pointed by tree. Then we get the value of the inorder successor,

stored in the minNode and assign it to the node to be deleted. Now we have to delete

the minNode. For this purpose, we call the remove method recursively providing it the

right subtree and the value of the minNode. We have also changed the value of the

current node and can also send this value to the remove method. For clarity purposes,

we provide it the minNode value. The node returned by the remove method, is stored

CS301 – Data Structures Lecture No. 16

Page 174 of 505

in the temporary variable t. Then we assign t to the right subtree of tree. We do it due

to the fact that the tree has to re-adjusted after the deletion of a node in the right

subtree.

Now we will talk about other two cases i.e. the node to be deleted is the leaf node or

has left or right child. We will deal with these two cases together. The else statement

is being employed in these cases. We create a temporary variable nodeToDelete and

assign it to the tree. Now we have to check whether this is the leaf node or has either

left or right child. First we check that the left subtree of the tree is NULL before

assigning the right subtree to the tree. Then we check that the right subtree of the tree

is NULL. If it is NULL, the tree will be replaced by the left subtree. In the end, we

make the tree NULL and delete the nodeToDelete. Here the memory is released.

While dealing with this case of delete, we find the inorder successor from the right

subtree i.e. the minimum value in the right subtree. That will also be the left most

node of the right subtree. We use the findMin method for this purpose. Let’s have a

look on the code of this method.

The return type is a pointer to TreeNode which will be the minimum node. The input

argument is also a pointer to TreeNode. This input argument is a root of some subtree

in which we have to find the minimum node. Inside the function, we have a couple of

if statements. If the tree is NULL, it will result in the return of the NULL. If the left

child of the tree is NULL, the tree will be returned. In the end, we are calling findMin

recursively providing it the left subtree as argument. When we were talking about the

inorder successor or the left most node, it was stated that this node will not contain a

left child because if it has a left child then it will not be a left most child. The left -

most node is the node which either does not have a left child or its left pointer is

NULL. The above method works the same way. It looks for the left node having left

pointer NULL. This is the node with the minimum value. You must have noted that in

this function, we are making a recursive call in the end of the function. If a function

has recursive call as the last statement, it is known as tail recursion. We can replace

the tail recursion with the loop. How can we do that? This is an exercise for you. In

case of tail recursion, you have either to use the tail recursion or loop. While opting

for loop, you will get rid of the recursion stack.

You can trace this function on the sample tree we have been using in the previous
lecture. It can also be hand-traced. Provide the root of the BST to the method and try

to find the minNode while employing the above method. You will see that the value

/* This method is used to find the minimum node in a tree

*/

TreeNode<int>* findMin(TreeNode<int>* tree)

{

if(tree == NULL)

return NULL;
if(tree->getLeft() == NULL)

return tree; // this is it.

return findMin(tree->getLeft());

}

CS301 – Data Structures Lecture No. 16

Page 175 of 505

returned by this function is the minimum node. Also try to write the FindMin in a

non-recursive way i.e. use of the loop. You will get the same result.

Binary Search Tree Class (BST)

Let’s see the code of the binary search tree (BST). We put the interface in the .h file.

We also have the state variable in addition to the public and private methods of the

class in it. In the public methods, the user of the class calls with their objects. Let’s

create a .h file for binary search tree and the objects of binary search tree obtained

from the factory will use the attributes defined in the .h file. Here is the .h file.

At the start of the file, we have conditional statement using the ifndef that checks a

constant _BINARY_SEARCH_TREE_H_. If this constant is not defined, we define it

with the help of define keyword. This is a programming trick. Sometimes, we include

the same .h file more than once. If we do not use this trick, the compiler will give

error on the inclusion of the file for the second time. Here, we have a statement:

class BinarySearchTree;

This is the forward declaration of the class BinarySearchTree. We have not defined

this class so far. First we define the class BinaryNode and then by combining these

nodes, a binary tree is created. This class is a template class. The nodes can contain

data other than integers. Then we define the BinaryNode class and define three state

/* binarysearchtree.h file contains the interface of binary search tree (BST) */

#ifndef _BINARY_SEARCH_TREE_H_

#define _BINARY_SEARCH_TREE_H_

#include <iostream.h> // For NULL

// Binary node and forward declaration

template <class EType>

class BinarySearchTree;

template <class EType>

class BinaryNode

{

EType element;

BinaryNode *left;

BinaryNode *right;

public:

// constructor

BinaryNode(const EType & theElement, BinaryNode *lt, BinaryNode *rt)

: element(theElement), left(lt), right(rt) { }

friend class BinarySearchTree<EType>;

};

// continued

CS301 – Data Structures Lecture No. 16

Page 176 of 505

variables. The data of the node is stored in the element which is of type EType. Being

a binary node, it may have a left and right child. We have declared two pointers for

this node. Then we have its constructor that takes three arguments, used to initialize

the element, left and right variables. We wrote the colon(:) and the initialization list.

There are three state variables in the BinaryNode. These are element, left and right.

When we create an object of BinaryNode, all of these variables are created. The

EType can also be some class so its object will be created and a call to its constructor

is made. Whenever an object is created, its constructor will be called. We have to

provide the arguments. If we do not call the constructor explicitly, the default

constructor will be called. In the constructor of BinaryNode, after the colon, we have

written element(theElement). (Here theElement is the argument in the constructor of

BinaryNode). It seems to be a function call but actually it is a call to the constructor

for element. If element was of type String, constructor of String will be called and

theElement is sent as argument. Through this way of writing the variables after the

colon, we are actually calling the explicit constructor for the state variables. While

calling the constructor, we are not using the name of the class but the variable names.

There should be no ambiguity. Then we have left(lt) and right(rt), as left and right

are of type BinaryNode so the constructor for BinaryNode will be called. The body of

the constructor of the BinaryNode is empty.

You might not be familiar with this type of coding but it is commonly used in C++

coding. You can get further information on this from the C++ book or from the

internet. In some cases, a programmer is forced to use this syntax for having no other

option. The last statement of the class definition has a friend class:

friend class BinarySearchTree<EType>;

You are familiar with the friend keyword. The class BinaryNode has defined the

BinarySearchTree class as its friend class. It means that the BinarySearchTree class

can access the state variables of BinaryNode class. We can also declare friend method

of some class which can access the state variable of that class. We have not defined

the BinarySearchTree class yet. We have just declared the class with the name

BinarySearchTree as the forward declaration. This forward declaration is for

compilers. When the compiler reads the file from top to bottom and encounters the

line defining the BinarySearchTree as friend, it gives an error. The compiler does not

know about the BinarySearchTree. To overcome this error we use forward

declaration. With this forward declaration, the compiler is communicated that we

want to use the BinarySearchTree as a class. Therefore, when the compiler reads the

line, which defines the BinarySearchTree as a friend of BinaryNode, it knows that it is

a class, which used EType template and will be defined later. Now there is no

ambiguity for the compiler. We must have to define this class later on.

Let’s see the code of BinarySearchTree. We are giving it EType template parameter.

We want to make our BinarySearchTree generic and it can be used with integers,

strings, characters or with some other data type. Therefore, we have defined it as a

template class. The user of this class will create a BinarySearchTree of its specific

data type. The code is as follows:

CS301 – Data Structures Lecture No. 16

Page 177 of 505

/* binarysearchtree.h file also contains the definition of the

BinarySearchTree */

template <class EType>

class BinarySearchTree

{

public:

BinarySearchTree(const EType& notFound);

BinarySearchTree(const BinarySearchTree& rhs);

~BinarySearchTree();

const EType& findMin() const;

const EType& findMax() const;

const EType& find(const EType & x) const;

bool isEmpty() const;

void printInorder() const;

void insert(const EType& x);

void remove(const EType& x);

const BinarySearchTree & operator = (const BinarySearchTree & rhs

);

private:

BinaryNode<EType>* root;

// ITEM_NOT_FOUND object used to signal failed finds

const EType ITEM_NOT_FOUND;

const EType& elementAt(BinaryNode<EType>* t);

void insert(const EType& x, BinaryNode<EType>* & t);

void remove(const EType& x, BinaryNode<EType>* & t);
BinaryNode<EType>* findMin(BinaryNode<EType>* t);

BinaryNode<EType>* findMax(BinaryNode<EType>* t);

BinaryNode<EType>* find(const EType& x, BinaryNode<EType>* t

);

void makeEmpty(BinaryNode<EType>* & t);

void printInorder(BinaryNode<EType>* t);

};

#endif

We start the definition of our class with the public interface. The user of this class is

interested in the public interface of the class. These are the methods, which the user

can employ. We have two constructors for this class. One constructor takes EType

reference parameter while other takes BinarySearchTree as a parameter. The types of

constructors depend on the usage. We can have more constructors if needed. Then we

have a destructor of BinarySearchTree. Besides, we have interface methods for

BinarySearchTree. There are also findMin and findMax methods, which will return

the minimum and maximum value of EType in the tree respectively. We have used the

const keyword with these functions. The reference variables in functions are also

being used. Next thing we are going to discuss is the find method. Its signature is as

CS301 – Data Structures Lecture No. 16

Page 178 of 505

under:

const EType& find(const EType & x) const;

This method will takes an argument x of EType. It will search the tree whether x exists

in the tree or not. Then we have isEmpty method that will ascertain if the tree is empty

or not. There is also the printInorder method, which will print the tree in inorder

traversal. If the tree has integers, we have sorted integers as a result of inorder

traversal. Next thing we have is the insert (const EType& x) method, which inserts the

x as a new node in the tree. After this, there is the remove method i.e.delete method.

We have renamed delete as remove because delete is a keyword of C++. We can also

name it as deleteNode or some other name which you think is suitable. The interface

of the class is almost complete. Now think as a user of BinarySearchTree and decide

if you need more methods. With the help of methods defined above, we can do a lot

of work on BinarySearchTree. If you feel to add more methods due to the usage need,

these can be added later.

We also need some private variables and methods for this class. At First, we have

defined a pointer to BinaryNode as root before defining an EType variable as

ITEM_NOT_FOUND. Then there are elementAt, insert and remove methods. But the

method signatures of these methods are different than public methods. The signature

of insert method is:

void insert(const EType& x, BinaryNode<EType>* & t);

In the public insert method, we have only one argument of type EType. Similarly

there are findMin, findMax and find methods with different signatures. Then we have

makeEmpty and printInorder methods. Why we are talking about these methods

especially when these are the private ones. In C++, we have to do like this. In .h file

we define the class and in .cpp file, the implementation of the class is given. The user

of this class is advised not to look at the private part of the class. He should be

interested only in the public part of the class. We are not the users of this class, but

only the developers. In the BinarySeachTree.h file, we have defined two classes i.e.

BinaryNode and BinarySearchTree. Are these classes private or public? Can the user

of BinarySearchTree benefit from the BinaryNode class? Is it possible or not? This is

an exercise for you. Study about the reference data types before coming to next

lecture.

Sample Program

Here is the code of the program. BinarySearchTree.h file.

/* This file contains the declaration of binary node and the binary search tree */

#ifndef BINARY_SEARCH_TREE_H_

#define BINARY_SEARCH_TREE_H_

#include <iostream.h> // For NULL

// Binary node and forward declaration

CS301 – Data Structures Lecture No. 16

Page 179 of 505

template <class EType>

class BinarySearchTree;

template <class EType>

class BinaryNode

{

EType element;

BinaryNode *left;

BinaryNode *right;

BinaryNode(const EType & theElement, BinaryNode *lt, BinaryNode *rt)

: element(theElement), left(lt), right(rt) { }

friend class BinarySearchTree<EType>;

};

// BinarySearchTree class

//

// CONSTRUCTION: with ITEM_NOT_FOUND object used to signal failed

finds

//

// ******************PUBLIC OPERATIONS*********************

// void insert(x) --> Insert x

// void remove(x) --> Remove x

// EType find(x) --> Return item that matches x

// EType findMin() --> Return smallest item

// EType findMax() --> Return largest item

// boolean isEmpty() --> Return true if empty; else false

// void makeEmpty() --> Remove all items

// void printTree() --> Print tree in sorted order

template <class EType>
class BinarySearchTree

{

public:

BinarySearchTree(const EType & notFound);

BinarySearchTree(const BinarySearchTree & rhs);

~BinarySearchTree();

const EType & findMin() const;
const EType & findMax() const;

const EType & find(const EType & x) const;

bool isEmpty() const;

void printTree() const;

void makeEmpty();

void insert(const EType & x);
void remove(const EType & x);

const BinarySearchTree & operator=(const BinarySearchTree & rhs);

CS301 – Data Structures Lecture No. 16

Page 180 of 505

BinarySearchTree.cpp file.

private:

BinaryNode<EType> *root;

const EType ITEM_NOT_FOUND;

const EType & elementAt(BinaryNode<EType> *t) const;

void insert(const EType & x, BinaryNode<EType> * & t) const;

void remove(const EType & x, BinaryNode<EType> * & t) const;

BinaryNode<EType> * findMin(BinaryNode<EType> *t) const;

BinaryNode<EType> * findMax(BinaryNode<EType> *t) const;

BinaryNode<EType> * find(const EType & x, BinaryNode<EType> *t)

const;

void makeEmpty(BinaryNode<EType> * & t) const;

void printTree(BinaryNode<EType> *t) const;
BinaryNode<EType> * clone(BinaryNode<EType> *t) const;

};
#include "BinarySearchTree.cpp"

#endif

/* This file contains the implementation of the binary search tree */

#include <iostream.h>

#include "BinarySearchTree.h"

/**

* Construct the tree.

*/

template <class EType>

BinarySearchTree<EType>::BinarySearchTree(const EType & notFound) :

ITEM_NOT_FOUND(notFound), root(NULL)

{

}

/**

* Copy constructor.

*/

template <class EType>

BinarySearchTree<EType>::
BinarySearchTree(const BinarySearchTree<EType> & rhs) :

root(NULL), ITEM_NOT_FOUND(rhs.ITEM_NOT_FOUND)
{

*this = rhs;

}

/**

CS301 – Data Structures Lecture No. 16

Page 181 of 505

* Destructor for the tree.

*/

template <class EType>

BinarySearchTree<EType>::~BinarySearchTree()

{

makeEmpty();

}

/**

* Insert x into the tree; duplicates are ignored.

*/

template <class EType>

void BinarySearchTree<EType>::insert(const EType & x)

{

insert(x, root);

}

/**

* Remove x from the tree. Nothing is done if x is not found.

*/

template <class EType>

void BinarySearchTree<EType>::remove(const EType & x)

{

remove(x, root);

}

/**

* Find the smallest item in the tree.

* Return smallest item or ITEM_NOT_FOUND if empty.

*/

template <class EType>

const EType & BinarySearchTree<EType>::findMin() const

{

return elementAt(findMin(root));

}

/**

* Find the largest item in the tree.

* Return the largest item of ITEM_NOT_FOUND if empty.

*/

template <class EType>

const EType & BinarySearchTree<EType>::findMax() const

{

return elementAt(findMax(root));

}

/**

* Find item x in the tree.

* Return the matching item or ITEM_NOT_FOUND if not found.

CS301 – Data Structures Lecture No. 16

Page 182 of 505

*/

template <class EType>

const EType & BinarySearchTree<EType>::

find(const EType & x) const

{

return elementAt(find(x, root));

}

/**

* Make the tree logically empty.

*/

template <class EType>

void BinarySearchTree<EType>::makeEmpty()

{

makeEmpty(root);

}

/**

* Test if the tree is logically empty.

* Return true if empty, false otherwise.

*/

template <class EType>

bool BinarySearchTree<EType>::isEmpty() const

{

return root == NULL;

}

/**

* Print the tree contents in sorted order.

*/

template <class EType>

void BinarySearchTree<EType>::printTree() const

{

if(isEmpty())

cout << "Empty tree" << endl;

else

printTree(root);

}

/**

* Deep copy.

*/

template <class EType>

const BinarySearchTree<EType> &
BinarySearchTree<EType>::

operator=(const BinarySearchTree<EType> & rhs)

{

if(this != &rhs)

{

makeEmpty();

CS301 – Data Structures Lecture No. 16

Page 183 of 505

root = clone(rhs.root);

}

return *this;

}

/**

* Internal method to get element field in node t.

* Return the element field or ITEM_NOT_FOUND if t is NULL.

*/

template <class EType>

const EType & BinarySearchTree<EType>::

elementAt(BinaryNode<EType> *t) const
{

if(t == NULL)

return ITEM_NOT_FOUND;
else

return t->element;

}

/**

* Internal method to insert into a subtree.

* x is the item to insert.

* t is the node that roots the tree.

* Set the new root.

*/

template <class EType>

void BinarySearchTree<EType>::

insert(const EType & x, BinaryNode<EType> * & t) const

{

if(t == NULL)

t = new BinaryNode<EType>(x, NULL, NULL);

else if(x < t->element)

insert(x, t->left);

else if(t->element < x)

insert(x, t->right);

else

; // Duplicate; do nothing

}

/**

* Internal method to remove from a subtree.

* x is the item to remove.

* t is the node that roots the tree.

* Set the new root.

*/

template <class EType>

void BinarySearchTree<EType>::

remove(const EType & x, BinaryNode<EType> * & t) const

{

if(t == NULL)

CS301 – Data Structures Lecture No. 16

Page 184 of 505

return; // Item not found; do nothing

if(x < t->element)

remove(x, t->left);

else if(t->element < x)

remove(x, t->right);

else if(t->left != NULL && t->right != NULL) // Two children

{

t->element = findMin(t->right)->element;

remove(t->element, t->right);

}

else

{

BinaryNode<EType> *nodeToDelete = t;

t = (t->left != NULL) ? t->left : t->right;

delete nodeToDelete;

}

}

/**

* Internal method to find the smallest item in a subtree t.

* Return node containing the smallest item.

*/

template <class EType>

BinaryNode<EType> *

BinarySearchTree<EType>::findMin(BinaryNode<EType> *t) const

{

if(t == NULL)

return NULL;

if(t->left == NULL)

return t;

return findMin(t->left);

}

/**

* Internal method to find the largest item in a subtree t.

* Return node containing the largest item.

*/

template <class EType>
BinaryNode<EType> *

BinarySearchTree<EType>::findMax(BinaryNode<EType> *t) const

{

if(t != NULL)

while(t->right != NULL)
t = t->right;

return t;

}

/**

* Internal method to find an item in a subtree.

* x is item to search for.

CS301 – Data Structures Lecture No. 16

Page 185 of 505

* t is the node that roots the tree.

* Return node containing the matched item.

*/

template <class EType>

BinaryNode<EType> *

BinarySearchTree<EType>::

find(const EType & x, BinaryNode<EType> *t) const

{

if(t == NULL)

return NULL;

else if(x < t->element)
return find(x, t->left);

else if(t->element < x)

return find(x, t->right);

else

return t; // Match

}

/****** NONRECURSIVE VERSION*************************

template <class EType>

BinaryNode<EType> *

BinarySearchTree<EType>::
find(const EType & x, BinaryNode<EType> *t) const

{

while(t != NULL)

if(x < t->element)
t = t->left;

else if(t->element < x)

t = t->right;

else

return t; // Match

return NULL; // No match

}

***/

/**

* Internal method to make subtree empty.

*/

template <class EType>

void BinarySearchTree<EType>::

makeEmpty(BinaryNode<EType> * & t) const

{

if(t != NULL)

{

makeEmpty(t->left);

makeEmpty(t->right);

delete t;

}

t = NULL;

}

CS301 – Data Structures Lecture No. 16

Page 186 of 505

TestBinarySearchTree.cpp file. This file contains the main program.

/**

* Internal method to print a subtree rooted at t in sorted order.

*/

template <class EType>

void BinarySearchTree<EType>::printTree(BinaryNode<EType> *t) const

{

if(t != NULL)

{

printTree(t->left);

cout << t->element << endl;

printTree(t->right);
}

}

/**

* Internal method to clone subtree.

*/

template <class EType>

BinaryNode<EType> *

BinarySearchTree<EType>::clone(BinaryNode<EType> * t) const

{

if(t == NULL)

return NULL;

else

return new BinaryNode<EType>(t->element, clone(t->left), clone(t-

>right));

}

/* This file contains the test program for the binary search tree */

#include <iostream.h>

#include "BinarySearchTree.h"

// Test program

int main()

{

const int ITEM_NOT_FOUND = -9999;

BinarySearchTree<int> t(ITEM_NOT_FOUND);

int NUMS = 30;

int i;

cout << "Inserting elements (1 to 30) in the tree.......)" << endl;

for(i = 0; i <= NUMS; i++)

t.insert(i);

cout << "Printing the values of the nodes in tree)" << endl;

t.printTree();

CS301 – Data Structures Lecture No. 16

Page 187 of 505

When we run the TestBinarySearch program the following output is obtained.

Inserting elements (1 to 30) in the tree)

Printing the values of the nodes in tree.......)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Removing the even number elements in the tree)

Printing the values of the nodes in tree.......)

1

cout << "Removing the even number elements in the tree.......)" << endl;

for(i = 0; i <= NUMS; i+= 2)

t.remove(i);

cout << "Printing the values of the nodes in tree)" << endl;

t.printTree();

int abc;

cin >> i;

return 0;

}

CS301 – Data Structures Lecture No. 16

Page 188 of 505

3

5

7

9

11

13

15

17

19

21

23

25

27

29

CS301 – Data Structures Lecture No. 17

Page 189 of 505

Data Structures

Lecture No. 17

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

Summary

 Reference Variables

 Sample Program

After demonstrating the use of const and reference variables in the interface class for

a binary search tree in the previous lectures, we will now see what these reference

variables are and how does internal process go on during the use of reference

variables.

Reference Variables

Before proceeding ahead, there is need to know why the reference variables are used;

and what benefits a programmer can get while employing them. We will discuss these

all things in detail with the help of examples.

The symbol &, used for reference variable has a few different purposes with respect

to its occurrence in the code. In C++ programming, we have seen that when the

ampersand sign i.e. & appears in front of a variable name, it is the address operator. It

returns the address of the variable in front of which it is written. Thus for example, if

x is a variable name, then &x ; will return the address of the variable x. In general we

can say that

&variablename ;

will return the address of the variable. We know that an address can be stored in a

pointer. To further understand this concept, let’s suppose that there are following lines

in our code.

int x ;

int* ptr = &x;

The first line declares a variable x of type int while the second one declares a pointer

to int and assigns it the address of x. This address of variable x is returned by the &

sign written in front of the variable x. Thus a pointer variable is initialized by

assigning it the address of a variable. This address of the variable is gotten by using

the & sign with the variable name.

The other place where & sign can appear is the signature of the function where it

CS301 – Data Structures Lecture No. 17

Page 190 of 505

appears after the type of the parameter. Consider the insert and remove methods from

BinarySearchTree class that were declared as the following.

void insert(const EType& x);

void remove(const EType& x);

Notice that the & sign is after the type. Here we define the class and functions as

templates. Whenever, we use these methods, the type EType will be replaced with a

proper data type.

Suppose that we have designed the BinarySearchTree class to hold the integers only.

This means that there are no templates and the class can be defined only for integers.

So the insert and remove methods of this class will be as follows.

void insert(const int& x);

void remove(const int& x);

Here, in the function signature, & sign after the type of the parameter indicates that

the parameter is a reference variable. We can use this & sign with any data type i.e.

built- in or user defined, of an argument to show that this is a reference variable. This

is the syntax for the reference variable. Now let’s see why and how we use it and what

is its advantage? Let’s look at an example that will explain the reference variable.

Suppose we have the following three different functions.

The name of the first function is intMinus1, written as under.

This function takes an integer as an argument. The local name of this argument is

oldVal. The first statement in the body of the function decreases the value of oldVal

by 1 then the next statement returns this value to the calling function.

The second function is intMinus2. This function takes a pointer to integer as an

argument. In the statement

*oldVal = *oldVal – 2 ;

*oldVal means the value at the location where oldVal is pointing to. To get the value

this way is called dereferencing. After experiencing a decrease by 2, this value

remains at the same location i.e. where oldVal is pointing to. Then the pointer to

integer is returned. This function is defined as follows.

//Function 1

int intMinus1(int oldVal)

{

oldVal = oldVal – 1;

return oldVal;

}

// Function 2

int intMinus2(int* oldVal)

{

CS301 – Data Structures Lecture No. 17

Page 191 of 505

The third function intMinus3 takes a reference variable as an argument. Its definition

is as under.

The & sign after the type in the signature (declaration line) indicates that this

argument is a reference variable. Notice that & sign is used only in the function

declaration, leaving no need for its use in the body of the function. The statements in

the body of the function decrease the vale of oldVal by 3 and return it to the calling

function.

We can see that these three functions have the same return type and their body

performs the task of decreasing the passed value. However it is clear from the

declaration of these functions that the way of passing argument to these functions is

different. We will now see what changes occur while passing the argument in

different ways. We will write calling functions those call the above three functions

one by one. We will see how these calls are made and what differences happen during

the process of passing same value (in different ways) to these functions. The use of

call stack will help in ascertaining what happens to these local variables and

parameters.

Following is the function that calls the first function i.e. intMinus1.

In this function (caller), we declare an integer variable myInt and assign it a value 31.

We also declare a variable retVal of type int. In the statement

retVal = intMinus1(myInt);

We call the function intMinus1 by passing it the variable myInt (the value of which is

31) and assign the return value of this function call to retVal. In the next statement,

we print the value of these two variables.

While talking about runtime environment, we noticed that an executable program

*oldVal = *oldVal – 2;

return *oldVal;

}

// Function 3

int intMinus3(int& oldVal)

{

oldVal = oldVal – 3;
return oldVal;

}

void caller()

{

int myInt = 31;

int retVal;

retVal = intMinus1(myInt);

cout << myInt << retVal;

}

CS301 – Data Structures Lecture No. 17

Page 192 of 505

Fig 17.1: Internal memory organization of a process (ourtest.exe)

while in run, is loaded in the memory. It later becomes a process. This process is

given a block of memory, which it uses during its execution. Suppose we are running

many programs simultaneously i.e. browser, MS Word, Excel and dev-C++. We can

also run programs written by us. The figure 17.1 shows that process4 is a program

written by us. Every program, which we run takes a block of memory and becomes a

process. The memory occupied by a process is further partitioned into different parts.

The first part of the memory is for the code of the program. This code is in binary

form i.e. it is the compiled code. Afterwards, there is some area of memory for static

data that holds static and global variables. Then in the memory, there becomes the

stack. This stack is used in function calls. At the end, there is some area, called heap.

When we allocate memory dynamically by using new operator, this memory is

allocated from the heap. The following figure shows the internal memory organization

of a program (ourtest.exe).

We have discussed in detail the call stack that is used in function calls. We know that

when a function call is made, it’s all the arguments go on the stack. The return address

of the function also goes to the stack. The local variables are placed on the stack.

When a function calls some other function, an activation record is made. It has much

information including all these things (parameters, return address etc). The detail of

activation record relates to the compiler construction course. Here we are concerned

with only the call stack. Following figure shows the call stack layout.

Process 1

(browser)

Process 3

(Word)

Process 4

(ourtest.exe)

Process 2

(Dev-C++)

Windows Os

Code

Static data

Stack

Heap

CS301 – Data Structures Lecture No. 17

Page 193 of 505

stack grows downwards

Fig 17.2: call stack layout

In the stack layout figure, there are the entries of the caller in the upper portion. This

is due to the fact that the caller function itself was called (executed) by some one else.

The lower portion of the stack describes the stack status when the function intMinus1

is called. The stack contains parameters, local variables and return address of the

function intMinus1. There is a stack pointer sp that points to the top of the stack (the

figure shows the stack downward; it should not be confused with the top). As the

caller has called intMinus1, this function is on the top of the stack.

The following figure shows the contents of the stack when the function intMinus1 is

called.

1072

1068

myInt

retVal

calling function “caller”

1060

1056

1052

sp

stack grows downward

oldVal

Called function

Fig 17.3: call stack layout when intMinus1 is called

The figure shows the stack in two parts. The first part that is in the upper curly

bracket, shows the contents of the calling function i.e. caller. The lower part shows

the contents of the called function i.e. intMinus1. Recall that we declared two

Parameters (caller)

Local variables(caller)

Return address (caller)

Parameters (intMinus1)

Local

variables(intMinus1)

Return address

(intMinus1)

sp

31

?

callers other

stuff

31

CS301 – Data Structures Lecture No. 17

Page 194 of 505

31

?

callers other

stuff

31 30

variables in the caller function. These variables were myInt and retVal. We also

assigned a value 31 to myInt. This value (31) is in the memory location of myInt in the

stack. When we declared the variable retVal, there was no value assigned to it. So its

memory location contains nothing yet. After it, there is the other stuff of the caller

function. We have also shown the memory addresses of the locations on the left hand

side. We can see that the memory address of myInt is 1072 while that of retVal is

1068. Similarly, we see the addresses 1060, 1056 and 1052 further down. We note

that the addresses are with a difference of four. This is because of the use of the

integer variable, as an integer requires four bytes in the memory for storing. Similarly

the pointer variables are also of four bytes. The memory addresses are in 32 bits that

is four bytes (eight bits make a byte). Generally we start addressing the memory from

down. The lowest byte is addressed 0, followed by 1, 2, 3 and so on to upward

direction. If we have larger variables, for example, objects created by our defined

classes, these will require more memory. In that case, the memory chunks will not be

of four bytes. Rather, it will be equal to the size of the object. In C++, we have an

operator size or sizeof by which the size of a type or variable, acquired in the memory,

can be found. There are some machines that do not use byte addressing. These

machines use word addressing. Every word is of 48 bits. All these things (memory

addressing etc) relate to computer architecture course.

Now in the stack, there are the entries of the called function. There is the parameter

oldVal of the called function in the stack. It has the value 31. This is the same value as

that of myInt in the caller function. As studied earlier, in call by value phenomenon,

when arguments (whatever type they have) are sent to a function, a copy of these

arguments is made before sending. That copy is sent to the called function. The called

function uses this copy of the argument. Thus a copy of myInt is passed to the called

function intMinus1. Thus its parameter oldVal has value 31. Now intMinus1 function

uses this value (i.e. oldVal) to do its functionality. It makes alternations to this copy.

The original value that is myInt does not change. This phenomenon is shown in the

following figure. Here the function intMinus1 decreases the value of oldVal by 1 and

becomes 30. The original value (myInt) remains unchanged.

1072

1068

myInt

retVal

calling function “caller”

1060

1056

1052

sp

stack grows downward

oldVal

Called function

“intMinus1”

Fig 17.4: call stack layout after subtraction in intMinus1

When the return call of intMinus1 is executed, the control comes back to the calling

function. The stuff of the called function intMinus1 is popped from the stack and the

CS301 – Data Structures Lecture No. 17

Page 195 of 505

pointer sp moves up accordingly. In other words, the activation record of the function

intMinus1 has been removed from the stack. The oldval (value of which is 30 now) is

returned to the caller function. We have written in the code that this value is assigned

to retVal variable. So in the call stack layout, the memory location of retVal has the

value 30. The figure 17.5 shows the stack layout after return from the called function

i.e. intMinus1.

1072

1068

sp

myInt

retVal calling function “caller”

stack grows downward

Fig 17.5 call stack layout after return from intMinus1

In the call by value phenomenon of function calling, we can pass a literal or even an

expression. Thus in the previous function caller, we could have called the function
intMinus1 as follows.

Here we did not put the value 31 in an integer variable. Rather, it was directly passed

as an argument in the function call i.e. intMinus1 (31). We are not passing a variable

as it was in the previous code of the function caller. The calling statement also be

written as under:
retVal = intMinus1(30 + 1);

In this statement, first the expression 30 + 1 is evaluated and then the copy of the

result goes to the call stack as a value of oldVal of called function.

In the previous calling function (i.e. caller), it was witnessed that the value of the

passed variable (myInt) remained same when we passed the variable by value. Now

there may be situations where we want to actually change the value of a variable of

the caller function from within the called function. In such a situation, we send the

pointer to the variable (i.e. the address of the variable) as an argument. Look at the

following code of the function caller. In this code, we call the function intMinus2 by

31

30

callers other
stuff

void caller()

{

int retVal;

retVal = intMinus1(31); // a literal is passed

cout << retVal;

}

CS301 – Data Structures Lecture No. 17

Page 196 of 505

passing it the address of the variable myInt.

Following is the function calling statement

retVal = intMinus2(&myInt);

The ‘&’ sign before the name of the variable myInt means that the address of the

variable is being passed. The called function will take it as a pointer. Remember that

we have declared the argument of the function intMinus2 as int* oldVal that means

this function takes a pointer as an argument.

Now, keeping in mind that a pointer is being sent to the function, let’s see what is

happening in the call stack. The stack portion which has the stuff of the calling

function i.e. caller is the same as seen in the call by value process. The variable myInt

has value 31 and value of retVal will be written after returning from the called

function. Its stack layout is shown in the figure 17.6 below.

1072

1068

myInt

retVal

calling function “caller”

1060

1056

1052

sp

stack grows downward

oldVal

Called function

“intMinus2”

Fig 17.6 call stack layout when intMinus2 is called

In the stuff of the called function i.e. intMinus2, the memory location of the oldVal

holds the value 1072. We can see on the left side of the stack in the figure above that

this 1072 is the address of the variable myInt. Look at the statement

*oldVal = *oldVal – 2 ;

of intMinus2. Here *oldVal can be expressed as ‘the value at the memory address that

31

?

callers other

stuff

1072

void caller()

{

int retVal;

int myInt = 31;

retVal = intMinus2(&myInt);

cout << myInt << retVal;

}

CS301 – Data Structures Lecture No. 17

Page 197 of 505

is in oldVal’. In the stack layout, we see that the memory address in oldVal is 1072.

The value stored at the address 1072 is 31. The following statement

*oldVal = *oldVal – 2 ;

decreases this value 2 and thus brings the value at the memory address 1072 down to

29. As 1072 is the address of myInt, thus actually the value of myInt is changed. The

following figure of stack layout depicts this process.

1072

1068

myInt

retVal

calling function “caller”

1060

1056

1052

sp

stack grows downward

oldVal

Called function

“intMinus2”

Fig 17.7: call stack layout after *oldVal = *oldVal – 2;

Now when the execution of the called function ends after returning *oldVal, the

activation record of this function is removed from the stack. The pointer of the stack

comes up. The value 29 is put in the variable retVal of the calling function. Following

is the stack layout after return from the function intMinus2.

1072

1068

sp

stack grows downward

myInt

retVal calling function “caller”

Fig 17.8: call stack after return from intMinus2

Notice that the value of myInt of the caller function has also been changed.

31 29

?

callers other

stuff

1072

31 29

29

callers other

stuff

CS301 – Data Structures Lecture No. 17

Page 198 of 505

We have seen that in call by value a copy of the argument is passed and used by the

called function. In this method, the original value of the argument in the calling

function remains unchanged. In the other method, we saw that when we pass the

address of the variable, the pointer is used to manipulate the variable data. In this

case, the original value of the variable in the calling function is changed. Suppose that

we want a function to change an object (variable/argument) but don’t want to send the

copy of the object to the function. The reason of not sending a copy is that the object

may be large (as we have seen the object Customer in bank simulation example) and

making a copy of it costs time and memory space. Say, the object Customer is of 500

bytes. Now when a calling function will call a function using call by value method, a

copy of this object will be made on the call stack same as in our previous example a

copy of myInt was made. The copy constructor will make a copy of this whole object

that costs time. Moreover, the copy of this object will take 500 bytes on the stack that

is a lot of memory consuming. There will be as many copies as the number of calls. In

case of a large number of calls, there may be inefficient memory as call stack has a

limited memory. So we do not use call by value methodology. Furthermore, we want

to avoid the massive syntax of pointers. For this purpose, we do not use pointers in

function calling. Now the question arises is there any way through which we can

fulfill our requirement. (i.e. we don’t want to make a copy and want to change the

objective without using the pointers). The use of reference variables may be a

suitable answer to this very ticklish situation. The phenomenon of function calls using

reference variables is termed as call by reference. Following is the code of the caller

function that involves call by reference.

Note that this is almost the same function, we wrote at first to call intMinus1. The

only difference is that here we are calling the function intMinus3 instead of

intMinus1. We did not use & sign with myInt as used in the call for intMinus2. This is

only due to the fact that we are not sending an address. It is pertinent to note that in

the definition of the function intMinus3, we have used & sign with the argument

variable. We have written it as

int intMinus3(int& oldVal)

This statement means that the function intMinus3 will take a reference as an

argument. In other words, a reference of the argument variable will be passed to this

function. Thus the idea of reference variable is that an object will be used exactly as it

exists in the caller function. The called function simply accesses it through a different

name i.e. other than the name in the caller function. Here in our example, the called

function intMinus3 accesses (and uses) the passed argument i.e. myInt with the name

oldVal. The function intMinus3 cannot use the name myInt as it is in the caller’s

scope. Now the both variable names (myInt and oldVal) refer to the same object. It

Void caller()

{

int retVal;

int myInt = 31;

retVal = intMinus3(myInt);

cout << myInt << retVal;
}

CS301 – Data Structures Lecture No. 17

means that the same memory cell where the object lies. We have read the scope of

variables that the local variables can be used only by the function in which they are

declared. The other functions cannot use the local variables of a function. But in

reference variables, we can access the memory location of a local variable in another

function by using another name. Thus in our example, we access the local variable

myInt (actually the memory location) of the function caller in the other function

intMinus3 with the name oldVal. The following figure explains this phenomenon of

reference variables with the help of call stack layout.

1072

1068

calling function “caller”

1060

1056

1052

sp

stack grows downward

oldVal

called function “intMinus3”

Fig 17.9: call stack when intMinus3 is called

The caller function part of the stack contains myInt, retVal and other stuff of the caller

function. In the stack part intMinus3, the name oldVal shows that it has nothing in this

portion but it is the other name of the memory location 1072, named as myInt in the

caller function. The dotted arrow shows this.

In the following figure 17.10, we show the oldVal along with the myInt at same

memory location. Here we want to show that the oldVal of called function and myInt

of caller function are the two names of the same memory location.

myInt

retVal calling function “caller”

called function “intMinus3”

stack grows downward

Fig 17.10: call stack when intMinus3 is clled

Page 199 of 505

myInt

retVal

OldVal 1072

1068

1060

1056

1052

sp

31

?

callers other

stuff

31

?

callers other

stuff

CS301 – Data Structures Lecture No. 17

Page 200 of 505

Now when the body of the intMinus3 executes the statement i.e.

oldVal = oldVal – 3 ;

It changes the value at the memory location in the caller function as it is referring to

that memory location. This value now becomes 28. Actually, the value of myInt is

changed as it also refers to the same memory location. The following figure explains

the stack lay out after the execution of the above statement.

myInt

retVal calling function “caller”

called function “intMinus3”

stack grows downward

Fig 17.11: call stack layout after oldVal = oldVal - 3 ;

Now when the function intMinus3 returns, the returned value (that is 28) is written in

retVal and the stuff (activation record) of intMinus3 is removed. The stack layout
becomes as shown in the figure below.

1072

1068

sp

stack grows downward

myInt

retVal calling function “caller”

Fig 17.12: call stack layout after return from intMinus3

oldVal 1072

1068

1060

1056

1052

sp

31 28

?

callers other

stuff

31 28

28

callers other

stuff

CS301 – Data Structures Lecture No. 17

Page 201 of 505

This phenomenon of call by reference is actually implemented by the compiler by

using pointers. The obtaining of address and de-referencing will be done behind the

scene. We have no concern to do this. For a programmer, it is simply a renaming

abstraction, in which we rename the argument variable of the caller function and use

it in the called function.

Sample Program
Following is the program, which demonstrate the above three function calls that we

discussed in the previous example. We define the three functions intMinus1,

intMinus2 and intMinus3. These functions accept the argument as value, pointer and

reference variable respectively. The endl puts a new line and is used in the program

for the output clarity. Here is the code of the program followed by the output of the

program.

/*This program demonstrate tha how the value in a caller function is effected when it
is passed to a function by using call by value, by using pointers and by using call by

reference methods.

*/

#include <iostream.h>

//Function 1, call by value

int intMinus1(int oldVal)

{

oldVal = oldVal – 1;

return oldVal;
}

// Function 2, call by using pointers

int intMinus2(int* oldVal)

{

*oldVal = *oldVal – 2;

return *oldVal;

}

// Function 3, call by reference

int intMinus3(int& oldVal)

{

oldVal = oldVal – 3;

return oldVal;

}

void main ()

{

int myInt = 31;

CS301 – Data Structures Lecture No. 17

Page 202 of 505

Following is the output of the program.

After returning from the called function intMinus1

The value returned by the called function (retVal) is :

30

The value of the calling function's variable (myInt) is : 31

After returning from the called function intMinus2

The value returned by the called function (retVal) is :

29

The value of the calling function's variable (myInt) is : 29

After returning from the called function intMinus3

The value returned by the called function (retVal) is :

28

The value of the calling function's variable (myInt) is : 28

We can see from the output of the program how the passed variable of the caller

function is affected by these different ways of function calling. Note that the values of

the variables used are the same as we have discussed with the help of call stack

layout.

int retVal;

retVal = intMinus1(myInt); //call by value

cout << “After returning from the called function intMinus1” << endl ;

cout << ”The value returned by the called function (retVal) is : ” << retVal ;

cout << endl ;
cout << ”The value of the calling function’s variable (myInt) is : ” << myInt ;

cout << endl << endl;

// now pass the argument by using pointer, also initialize the value of myInt

myInt = 31 ;

retVal = intMinus2(&myInt); //call by passing a pointer

cout << “After returning from the called function intMinus2” << endl;

cout << ”The value returned by the called function (retVal) is : ” << retVal ;
cout << endl;

cout << ”The value of the calling function’s variable (myInt) is : ” << myInt ;

cout << endl << endl;

// now pass the argument by as reference, also initialize the value of myInt

myInt = 31 ;

retVal = intMinus3(myInt); //call by passing a reference
cout << “After returning from the called function intMinus3” << endl;

cout << ”The value returned by the called function (retVal) is : ” << retVal ;

cout << endl;

cout << ”The value of the calling function’s variable (myInt) is : ” << myInt ;

}

CS301 – Data Structures Lecture No. 18

Page 203 of 505

Data Structures

Lecture No. 18

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3.3

Summary

 Reference Variables

 const keyword

 Tips

Reference Variables
In the last lecture we were discussing about reference variables, we saw three examples;

call by value, call by reference and call by pointer. We saw the use of stack when a

function is called by value, by reference or by pointer. The arguments passed to the

function and local variables are pushed on to the stack.

There is one important point to note that in this course, we are using C/C++ but the usage

of stack is similar in most of the computer languages like FORTRAN and Java . The

syntax we are using here is C++ specific, like we are sending a parameter by pointer

using & sign. In Java, the native data types like int, float are passed by value and the

objects are passed by reference. In FORTRAN, every parameter is passed by reference.

In PASCAL, you can pass a parameter by value or by reference like C++. You might

have heard of ALGOL, this language had provided another way of passing parameter

called call by name. These kinds of topics are covered in subjects like Study of Computer

Languages or Compiler’s Theory.

It is recommended while you are doing your degree, you study other computer languages

and compare them from different aspects. Java is quite popular now a day, quite similar

in syntax to C++. May be as a next language, you can study that and compare its different

aspects with C/C++. The concepts like how a program is loaded into memory to become

a process, how the functions are called and the role of stack etc are similar in all major

languages.

we have discussed when the variables are passed by reference then behind the scene what

goes on inside the stack. There are few important things to take care of while using

reference variables:

One should be careful about transient objects that are stored by reference in data

structures.

We know that the local variables of a function are created on call stack. Those variables

are created inside the function, remains in memory until the control is inside the function

and destroyed when the function exits. Activation record comprise of function call

parameters, return address and local variables. The activation record remains inside stack

CS301 – Data Structures Lecture No. 18

Page 204 of 505

until the function is executing and it is destroyed once the control is returned from the

function.

Let’s see the following code that stores and retrieves objects in a queue:

void loadCustomer(Queue & q)

{

Customer c1(“irfan”);

Customer c2(“sohail”);

q.enqueue(c1);

q.enqueue(c2);

}

Above given is a small function loadCustomer(Queue &), which accepts a parameter of

type Queue by reference. Inside the function body, firstly, we are creating c1 and c2

Customer objects. c1 and c2 both are initialized to string values irfan and sohail

respectively. Then we queue up these objects c1 and c2 in the queue q using the

enqueue() method and finally the function returns.

Now, the objects created inside the above function are c1 and c2. As local variables are

created on stack, therefore, objects are also created on stack, no matter how big is the size

of the data members of the object. In the Bank example, in previous lecture, we saw that

for each customer we have the name (32 characters maximum), arrival time (int type, 4

bytes), transaction time (int type)and departure time (int type) of the customer. So the

size of the Customer object is 44 bytes. Our c1 and c2 objects are created on stack and

have 44 bytes occupied. It is important to mention here that we are referring each 44

bytes of allocation with the name of the object. The allocated 44 bytes are bound with the

name of the object c1 or c2. Another significant point here is that the function enqueue()

accepts the object Customer by reference. See the code below of serviceCustomer()

method, which is executed after the loadCustomer().

void serviceCustomer(Queue & q)

{

Customer c = q.dequeue();

cout << c.getName() << endl;

}

The serviceCustomer(Queue &) also accepts one parameter of type Queue by reference.

In the first statement, it is taking out one element from the queue and assigning to newly

created object c. Before assignment of address of c1 object (c1 because it was inserted

first), the object c is constructed by calling the default (parameter less) constructor. In the

next statement, c.getName() function call is to get the name of the customer and then to

print it. What do you think about it? Will this name be printed or not? Do you see any

problem in its execution? In short, this statement will not work.

To see the problem in this statement, we have to understand the mechanism; where the

object was created, what was pushed on the stack, when the function loadCustomer()

returned and what had happened to the objects pushed on to the stack.

The objects c1 and c2, which were created locally in loadCustomer() function, therefore,

CS301 – Data Structures Lecture No. 18

Page 205 of 505

they were created on stack. After creating the objects, we had added their addresses, not

the objects themselves in the queue q. When the function loadCustomer() returned, the

local objects c1 and c2 were destroyed but their addresses were there in the queue q.

After some time, the serviceCustomer() is called. The address of the object is retrieved

from the queue and assigned to another newly created local object c but when we wanted

to call a method getName() of c1 object using its retrieved address, we encountered the

problem.

This shows that this is true that use of reference alleviate the burden of copying of object

but storing of references of transient objects can create problems because the transient

object (object created on stack) is destroyed when the function execution finishes.

The question arises, what can we do, if we do not want the objects created in a function to

be destroyed. The answer to this is dynamic memory allocation. All the variables or

objects created in a function that we want to access later are created on memory heap

(sometimes called free store) using the dynamic memory allocation functions or operators

like new. Heap is an area in computer memory that is allocated dynamically. You should

remember that all the objects created using new operator have to be explicitly destroyed

using the delete operator.

Let’s see the modified code of loadCustomer() function, where the objects created in a

function are not transient, means they are created on heap to be used later in the program

outside the body of the function loadCustomer().

void loadCustomer(Queue & q)

{

Customer * c1 = new Customer(“irfan”);

Customer * c2 = new Customer(“sohail”);

q.enqueue(c1); // enqueue takes pointers

q.enqueue(c2);

}

This time, we are creating the same two objects using the new operator and assigning the

starting addresses of those objects to c1 and c2 pointers. Nameless objects (objects

accessed by pointers) are called anonymous objects.

Here c1 and c2 are pointers to the objects not the actual objects themselves, as it was

previously. These starting addresses c1 and c2 of the objects are then queued using the

enqueue() method. As the objects lie on the heap, so there will not be any problem and

the objects will be accessible after the function loadCustomer() returns.

There is a bit tricky point to understand here. Although, the objects are created on heap

but the pointer variables c1 and c2 are created on stack and they will be definitely

destroyed after the loadCustomer() activation record is destroyed. Importantly, you

should understand the difference between the pointer variables and the actual objects

created on heap. The pointer variables c1 and c2 were just used to store the starting

addresses of the objects inside the function loadCustomer(), once the function is returned

the pointer variables will not be there. But as the starting addresses of the objects are put

in the queue, they will be available to use later after retrieving them from queue using the

CS301 – Data Structures Lecture No. 18

Page 206 of 505

dequeue() operation. These dynamic objects will live in memory (one heap) unless

explicitly deleted.

By the way, there is another heap, heap data structure that we are going to cover later in

this course.

At the moment, see the layout of computer memory and heap as we previously saw in

this course. Heap is an area in memory given to a process from operating system when

the process does dynamic memory allocation.

Fig 18.1: Memory Organization

One the left of the picture, we can see different processes in the computer memory. When

we zoomed into the one of the processes, we saw the picture on the right. That firstly,

there is a section for code, then for static data and for stack. Stack grows in the

downward section. You can see the heap section given at the end, which grows upward.

An interesting question arises here is that why the stack grows downward and heap in the

upward direction. Think about an endless recursive call of a function to itself. For every

invocation, there will be an activation record on stack. So the stack keeps on growing

and growing even it overwrites the heap section. One the other hand, if your program is

performing dynamic memory allocation endlessly, the heap grows in the upward

direction such that it overwrites the stack section and destroys it.

You might have already understood the idea that if a process has some destructive code

then it will not harm any other process, only its own destruction is caused. By the way,

lot of viruses exploit the stack overflow to change the memory contents and cause further

destruction to the system.

Consider that we allocate an array of 100 elements of Customer objects dynamically. As

each object is 44 bytes, therefore, the size of memory allocated on heap will be 4400

bytes (44 * 100). To explain the allocation mechanism on stack and heap, let’s see the

figure below where the objects are created dynamically.

Process 1

(Browser)

Process 3

(Word)

Process 4

(Excel)

Process 2

(Dev-C++)

Windows OS

Code

Static Data

Stack

Heap

CS301 – Data Structures Lecture No. 18

Page 207 of 505

heap grows

c1

688 c2

Customer(“sohail”) -> c2

644

Customer(“irfan”) ->

600

Fig 18.2: Heap layout during call to loadCustomer

The objects are shown in this figure by using the names of the customers inside them.

Actually, there are three more int type variables inside each object. You can see that the

object with string irfan is from memory address 600 to 643 and object with name

customer name as sohail is from address 644 to 687. Now when these objects are inserted

in the queue, only their starting addresses are inserted as shown in the below figure.

sohail

irfan

CS301 – Data Structures Lecture No. 18

Page 208 of 505

1072

1068

1060

1056

1052

sp

c1

c2

(elt)

stack grows downwards

loadCustomer

enqueue

Fig 18.3: Stack layout when q.enqueue(2) called from loadCustomer

The loadCustomer() is being executed. It is containing two pointers c1 and c2 containing

the addresses 600 and 643 respectively. enqueue(elt) method is called and the parameter

values (which actually are addresses) 600 and 643 are inserted in the queue.

Because the objects have been allocated on heap, therefore, there will no issue with them.

The pointer variables c1 and c2, which we used to store addresses, are destroyed. But the

queue q, which is passed by reference to loadCustomer will be there and it is containing

the starting addresses of the Customer objects. Those are valid addresses of valid objects,

so they can used in the program later to access the customer objects. See the function

below:

void serviceCustomer(Queue & q)

{

Customer* c = q.dequeue();

cout << c->getName() << endl;

delete c; // the object in heap dies

}

You can see that we are taking one pointer out of the queue and in the second line calling

the method of the Customer object getName() with c->. We are using -> operator because

we are taking out pointer from the queue.

Now, we should be sure that this method will be executed successfully because the object

600

644

.

.

.

.

(644)

CS301 – Data Structures Lecture No. 18

Page 209 of 505

was created dynamically inside the loadCustomer() method. The last statement inside the

method is delete, which has been used to deallocate the object.

So now, we understand that we cannot pass references to transient objects. If we want to

use the objects later we create them on heap and keep the address. There is another point

to mention here that in case, the object has already been deallocated and we are accessing

it (calling any of its member), it may the cause the program to crash. The pointer of the

object (when object has already been deallocated or released) is called dangling pointer.

The const Keyword
The const keyword is used for something to be constant. The actual meanings depend on

where it occurs but it generally means something is to held constant. There can be

constant functions, constant variables or parameters etc.

The references are pointers internally, actually they are constant pointers. You cannot

perform any kind of arithmetic manipulation with references that you normally do with

pointers. You must be remembering when we wrote header file for binary tree class, we

had used const keyword many times. The const keyword is often used in function

signatures. The function signature is also called the function prototype where we mention

the function name, its parameters and return type etc.

Here are some common uses of const keyword.

1. The const keyword appears before a function parameter. E.g., in a chess program:

int movePiece(const Piece & currentPiece)

The function movePiece() above is passed one parameter, which is passed by reference.

By writing const, we are saying that parameter must remain constant for the life of the

function. If we try to change value, for example, the parameter appears on the left side of

the assignment, the compiler will generate an error. This also means that if the parameter

is passed to another function, that function must not change it either.

Use of const with reference parameters is very common. This is puzzling; why are we

passing something by reference and then make it constant, i.e., don’t change it? Doesn’t

passing by reference mean we want to change it?

Think about it, consult your C++ book and from the internet. We will discuss about the

answer in the next lecture.

CS301 – Data Structures Lecture No. 18

Page 210 of 505

Tips

 The arithmetic operations we perform on pointers, cannot be performed on references

 Reference variables must be declared and initialized in one statement.

 To avoid dangling reference, don’t return the reference of a local variable (transient)

from a function.

 In functions that return reference, return global, static or dynamically allocated

variables.

 The reference data types are used as ordinary variables without any dereference

operator. We normally use arrow operator (->) with pointers.

 const objects cannot be assigned any other value.

 If an object is declared as const in a function then any further functions called from

this function cannot change the value of the const object.

CS301 – Data Structures Lecture No. 19

Page 211 of 505

Data Structures

Lecture No. 19

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.4

Summary

 Usage of const keyword

 Degenerate Binary Search Tree

 AVL tree

Usage of const keyword

In the previous lecture, we dealt with a puzzle of constant keyword. We send a

parameter to a function by using call by reference and put const with it. With the help

of the reference variable, a function can change the value of the variable. But at the

same time, we have used the const keyword so that it does not effect this change.

With the reference parameter, we need not to make the copy of the object to send it to

the calling function. In case of call by value, a copy of object is made and placed at

the time of function calling in the activation record. Here the copy constructor is used

to make a copy of the object. If we don’t want the function to change the parameter

without going for the use of time, memory creating and storing an entire copy of, it is

advisable to use the reference parameter as const. By using the references, we are not

making the copy. Moreover, with the const keyword, the function cannot change the

object. The calling function has read only access to this object. It can use this object in

the computation but can not change it. As we have marked it as constant, the function

cannot alter it, even by mistake. The language is supportive in averting the mistakes.

There is another use of keyword const. The const keyword appears at the end of class
member’s function signature as:

EType& findMin() const;

This method is used to find the minimum data value in the binary tree. As you have

noted in the method signature, we had written const at the end. Such a function cannot

change or write to member variables of that class. Member variables are those which

appear in the public or private part of the class. For example in the BinaryTree, we

have root as a member variable. Also the item variable in the node class is the

member variable. These are also called state variables of the class. When we create an

object from the factory, it has these member variables and the methods of this class

which manipulate the member variables. You will also use set and get methods,

generally employed to set and get the values of the member variables. The member

function can access and change the public and private member variables of a class.

Suppose, we want that a member function can access the member variable but cannot

change it. It means that we want to make the variables read only for that member

CS301 – Data Structures Lecture No. 19

Page 212 of 505

function. To impose that constraint on the member function, a programmer can put

the keyword const in the end of the function. This is the way in the C++ language. In

other languages, there may be alternative methods to carry out it. These features are

also available in other object oriented languages. This type of usage often appears in

functions that are supposed to read and return member variables. In the Customer

example, we have used a method getName that returns the name of the customer. This

member function just returns the value of member variable name which is a private

data member. This function does not need to change the value of the variable. Now

we have written a class and its functions. Why we are imposing such restrictions on

it? This is the question of discipline. As a programmer when we write programs,

sometimes there are unintentional mistakes. On viewing the code, it seems

unbelievable that we have written like this. If these codes contain mistakes, the user

will get errors. At that time, it was thought that we have imposed restrictions on the

function and can avoid such mistakes at compile time or runtime. The discipline in

programming is a must practice in the software engineering. We should not think that

our programs are error-free. Therefore, the programming languages help in averting

the common errors. One of the examples of such support is the use of const keyword.

There is another use of const. The const keyword appears at the beginning of the

return type in function signature:

const EType& findMin() const;

The return type of the findMin() function is ETyper& that means a reference is

returned. At the start of the return type, we have const keyword. How is this

implemented internally? There are two ways to achieve this. Firstly, the function puts

the value in a register that is taken by the caller. Secondly, the function puts the value

in the stack that is a part of activation record and the caller functions gets the value at

that point from the stack and use it. In the above example, we have return value as a

reference as EType&. Can a function return a reference of its local variable? When the

function ends, the local variables are destroyed. So returning the reference of local

variable is a programming mistake. Therefore, a function returns the reference of

some member variable of the class. By not writing the & with the return type, we are

actually returning the value of the variable. In this case, a copy of the returning

variable is made and returned. The copy constructor is also used here to create the

copy of the object. When we are returning by value, a copy is created to ascertain

whether it is a local variable or member variable. To avoid this, we use return by

reference. Now we want that the variable being returned, does not get changed by the

calling function especially if it is the member variable.

When we create an object from the factory, the member variable has some values. We

do not want that the user of this object has direct access to these member variables. So

get and set methods are used to obtain and change the value of these member

variables. This is a programming practice that the values of the object should be

changed while using these methods. This way, we have a clean interface. These

methods are in a way sending messages to the object like give me the name of the

customer or change the name of the customer. The presence of a queue object can

help us send a message to it that gets an object and returns it. In these function-calling

mechanisms, there are chances that we start copying the objects that is a time

consuming process. If you want that the function returns the reference of the member

CS301 – Data Structures Lecture No. 19

Page 213 of 505

variable without changing the value of the member variable using this reference, a

construct is put at the start of the function. It makes the reference as a const reference.

Now the value of this member variable cannot be changed while using this reference.

The compiler will give error or at the runtime, you will get the error. When we return

an object from some function, a copy is created and returned. If the object is very big,

it will take time. To avoid this, we return this through the reference. At this point, a

programmer has to be very careful. If you do not use the const with the reference,

your object is not safe and the caller can change the values in it.

These are the common usage of const. It is mostly used with the member function. It

is just due to the fact that we avoid creating copy of the object and secondly we get

our programming disciplined. When we send a reference to some function or get a

reference from some function, in both cases while using the const, we guard our

objects. Now these objects cannot be changed. If the user of these objects needs to

change the object, he should use the set methods of the object.

We have used such methods in the BinarySearchTree.h file. However, the

implementation of this class has not been discussed so far. We advise you to try to

write its code yourself and experiment with it.

Degenerate Binary Search Tree

Consider the tree as shown below:

BST for 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17

The above tree contains nodes with values as 14, 15, 4, 9, 7, 18, 3, 5, 16, 20, 17

respectively. The root node is 14. The right subtree contains the numbers greater than

14 and the left subtree contains the numbers smaller than 14. This is the property of

the binary search tree that at any node, the left subtree contains the numbers smaller

14

4 15

3 9 18

7 16 20

5 17

CS301 – Data Structures Lecture No. 19

Page 214 of 505

than this node and the right subtree contains the numbers greater than this node.

Now suppose that we are given data as 3, 4, 5, 7, 9, 14, 15, 16, 17, 18, 20 to create a

tree containing these numbers. Now if our insert method takes the data in the order as

given above, what will be the shape of our tree? Try to draw a sketch of the tree with

some initial numbers in your mind. The tree will look like:

BST for 3, 4, 5, 7, 9, 14, 15, 16, 17, 18, 20

It does not seem to be a binary tree. Rather, it gives a look of a linked list, as there is a

link from 3 to 4, a link from 4 to 5, a link from 5 to 7. Similarly while traversing the

right link of the nodes, we reached at the node 20. There is no left child of any node.

That’s why, it looks like a link list. What is the characteristic of the link list? In link

list, every node has a pointer that points to the next node. While following this

pointer, we can go to the next node. The root of this tree is 3. Now we have to find the

node with value 20 in this tree. Remember that it is a tree, not a link list. We will use

find method to search the number 20 in this tree. Now we will start from the root. As

20 is greater than 3, the recursive call to the method find will be made and we come to

the next node i.e. 4. As 20 is greater than 4, so again a recursive call is generated.

Similarly we will come to 5, then 7, 9 and so on. In the end, we will reach at 20 and

the recursion will stop here.

Now if we search the above tree through the method in which we started from 3, then

4, 5 and so on, this will be the same technique as adopted in the link list. How much

time it will take to find the number? We have seen in the link list that if the number to

be searched is at the last node, a programmer will have to traverse all the nodes. This

means that in case of nodes having strength of n, the loop will execute n times.

3

4

5

7

9

14

15

16

17

18

20

CS301 – Data Structures Lecture No. 19

Page 215 of 505

Similarly as shown in the above tree, our find method will be called recursively equal

to number of nodes in the tree. We have designed binary search tree in such a fashion

that the search process is very short. You must be remembering the example of

previous lecture that if we have one lakh numbers, it is possible to find the desired

number in 20 iterations. If we have link list for one lakh elements, the required results

can be obtained only after executing the loop for one lakh times if the element to be

searched is the last element. However, in case of BST, there are only 20 steps. The

BST technique, as witnessed earlier, is quite different as compared to this tree. They

have both left and right subtrees. What happened with this tree? The benefit we have

due to BST is not applicable here. It seems that it is a link list. This is only due to the

fact that the data of the tree was given in the sorted order.

If you want to create a tree out of a sorted data with the insert method, it will look like

the above tree. It means that you do not want to have sorted data. But it is not easy, as

you might not have control over this process. Consider the example of polling. It is

not possible that all the voters come to the polling station in some specific order. But

in another example, if you are given a list of sorted data and asked to create a BST

with this data. If you create a BST with data that is in an ascending order, it will look

like a link list. In the link list, the search takes a lot of time. You have created a BST

but the operations on it are working as it is a singly link list. How can we avoid that?

We know that the BST is very beneficial. One way to avoid this is that some how we

get the sorted data unsorted. How this can be done. It is not possible, as data is not

always provided as a complete set. Data is provided in chunks most of the times. Now

what should we do? We will apply a technique here so that we can get the benefits of

the BST. We should keep the tree balanced. In the above tree, nodes have left child

and no right child. So this tree is not balanced. One way to achieve it is that both the

left and right subtrees have the same height. While talking about the binary search

tree, we discussed the height, depth and level of BST. Every node has some level. As

we go down to the tree from the root, the levels of the tree increased and also the

number of nodes, if all the left and right subtrees are present. You have earlier seen

different examples of tree. The complete binary tree is such a tree that has all the left

and right subtrees and all the leaf nodes in the end. In the complete binary tree, we

can say that the number of nodes in the left subtree and right subtree are equal. If we

weigh that tree on the balance, from the root, both of its sides will be equal as the

number of nodes in the right subtree and left subtree are equal. If you have such a

balanced binary search tree with one lakh nodes, there will need of only 20

comparisons to find a number. The levels of this tree are 20. We have also used the

formula log2 (100,000). The property of such a tree is that the search comparison can

be computed with the help of log because subtrees are switched at every comparison.

Now let’s see the above tree which is like a singly link list. We will try to convert it

into a balanced tree. Have a look on the following figure.

CS301 – Data Structures Lecture No. 19

Page 216 of 505

This tree seems to be a balanced tree. We have made 14 as the root. The nodes at the

left side occur at the left of all the nodes i.e. left subtree of 14 is 9, the left subtree of 9

is 7, the left subtree of 7 is 5 and so on. Similarly the right subtree contains the nodes

15, 16, 17, 18, 20. This tree seems to be a balanced tree. Let’s see its level. The node

14 i.e. the root is at level zero. Then at level one, we have 9 and 15. At level two,

there are 7 and 16. Then 5 and 17, followed by 4 and 18. In the end, we have 3 and

20. It seems that we have twisted the tree in the middle, taking 14 as a root node. If

we take other nodes like 9 or 7, these have only left subtree. Similarly if we take 15 or

16, these have right subtrees only. These nodes do not have both right and left subtree.

In the earlier example, we have seen that the nodes have right and left subtrees. In that

example, the data was not sorted. Here the tree is not shallow. Still we can not get the

required BST. What should we do? With the sorted data, the tree can not become

complete binary search tree and the search is not optimized. We want the data in

unsorted form that may not be available.

We want to make a balanced tree, keeping in mind that it should not be shallow one.

We could insist that every node must have left and right subtrees of same height. But

this requires that the tree be a complete binary tree. To achieve it, there must be (2d+1

– 1) data items, where d is the depth of the tree. Here we are not pleading to have

unsorted data. Rather, we need as much data which could help make a balanced

binary tree. If we have a tree of depth d, there will be need of (2d+1 – 1) data items i.e.

we will have left and right subtrees of every node with the same height. Now think

yourself that is it possible that whenever you build a tree or someone uses your BST

class can fulfill this condition. This is not possible that whenever we are going to

create a tree, there will be (2d+1 – 1) data items for a tree of depth d. The reason is

that most of the time you do not have control over the data. Therefore this is too rigid

condition. So this is also not a practical solution.

AVL Tree

AVL tree has been named after two persons Adelson-Velskii and Landis. These two

had devised a technique to make the tree balanced. According to them, an AVL tree is

identical to a BST, barring the following possible differences:

 Height of the left and right subtrees may differ by at most 1.

 Height of an empty tree is defined to be (–1).

14

9 15

7 16

5 17

4 18

3 20

CS301 – Data Structures Lecture No. 19

Page 217 of 505

We can calculate the height of a subtree by counting its levels from the bottom. At

some node, we calculate the height of its left subtree and right subtree and get the

difference between them. Let’s understand this with the help of following fig.

An AVL Tree

5

Level

0

2 8 1

1 4 7 2

3 3

This is an AVL tree. The root of the tree is 5. At next level, we have 2 and 8, followed

by 1, 4 and 7 at next level where 1, 4 are left and right subtrees of node 2 and 7 is the

left subtree of node 8. At the level three, we have 3. We have shown the levels in the

figure at the right side. The root is at level 0, followed by the levels 1, 2 and 3. Now

see the height of the left subtree of 5. It is 3. Similarly the height of the right subtree is

2. Now we have to calculate the difference of the height of left subtree and right

subtree of 5. The height of left subtree of 5 is 3 and height of right subtree of 5 is 2.

So the difference is 1. Similarly, we can have a tree in which right subtree is deeper

than left subtree. The condition in the AVL tree is that at any node the height of left

subtree can be one more or one less than the height of right subtree. These heights, of

course, can be equal. The difference of heights can not be more than 1. This

difference can be -1 if we subtract the height of left subtree from right subtree where

the height of left subtree is one less than the height of right subtree. Remember that

this condition is not at the root. It should satisfy at any level at any node. Let’s

analyze the height of left subtree and right subtree of node 2. This should be -1, 0 or

1. The height of left subtree of node 2 is 1 while that of right subtree of the node 2 is
2. Therefore the absolute difference between them is 1. Similarly at node 8, the height

of left subtree is 1 and right subtree does not exist so its height is zero. Therefore the

difference is 1. At leaves, the height is zero, as there is no left or right subtree. In the

above figure, the balanced condition is satisfactory at every level and node. Such trees

have a special structure.

Let’s see another example. Here is the diagram of the tree.

CS301 – Data Structures Lecture No. 19

Page 218 of 505

 Not an AVL
Level

0

1

2

3

The height of the left subtree of node 6 is three whereas the height of the right subtree

is one. Therefore the difference is 2. The balanced condition is not satisfactory.

Therefore, it is not an AVL tree.

Let’s give this condition a formal shape that will become a guiding principle for us

while creating a tree. We will try to satisfy this condition during the insertion of a

node in the tree or a deletion of a node from the tree. We will also see late r how we

can enforce this condition satisfactorily on our tree. As a result, we will get a tree

whose structure will not be like a singly linked list.

The definition of height of a tree is:

 The height of a binary tree is the maximum level of its leaves (also called the

depth).

The height of a tree is the longest path from the root to the leaf. This can also be

calculated as the maximum level of the tree. If we have to calculate the height of

some node, we should start counting the levels from that node.

The balance of a node is defined as:

 The balance of a node in a binary tree is defined as the height of its left subtree

minus height of its right subtree.

Here, for example, is a balanced tree whose each node has an indicated balance of 1,

0, or –1.

6

1 8

1 4

3 5

CS301 – Data Structures Lecture No. 19

Page 219 of 505

In this example, we have shown the balance of each node instead of the data item. In

the root node, there is the value -1. With this information, you know that the height of

the right subtree at this node is one greater than that of the left subtree. In the left

subtree of the root, we have node with value 1. You can understand from this example

that the height of the right subtree at this node is one less than the height of the left

subtree. In this tree, some nodes have balance -1, 0 or 1. You have been thinking that

we have to calculate the balance of each node. How can we do that? When we create a

tree, there will be a need of some information on the balance factor of each node.

With the help of this information, we will try to balance the tree. So after getting this

balance factor for each node, we will be able to create a balance tree even with the

sorted data. There are other cases, which we will discuss, in the next lecture. In short,

a balance tree with any kind of data facilitates the search process.

-1

1 0

0 0 1 -1

0 0 0 0 0 0

0 0 0 0

CS301 – Data Structures Lecture No. 20

Page 220 of 505

Data Structures

Lecture No. 20

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

Summary

4.4

 AVL Tree

 Insertion in AVL Tree

 Example (AVL Tree Building)

We will continue the discussion on AVL tree in this lecture. Before going ahead, it

will be better to recap things talked about in the previous lecture. We built a balanced

search tree (BST) with sorted data. The numbers put in that tree were in increasing

sorted order. The tree built in this way was like a linked list. It was witnessed that the

use of the tree data structure can help make the process of searches faster. We have

seen that in linked list or array, the searches are very time consuming. A loop is

executed from start of the list up to the end. Due to this fact, we started using tree data

structure. It was evident that in case, both the left and right sub-trees of a tree are

almost equal, a tree of n nodes will have log2 n levels. If we want to search an item in

this tree, the required result can be achieved, whether the item is found or not, at the

maximum in the log n comparisons. Suppose we have 100,000 items (number or

names) and have built a balanced search tree of these items. In 20 (i.e. log 100000)

comparisons, it will be possible to tell whether an item is there or not in these 100,000

items.

AVL Tree
In the year 1962, two Russian scientists, Adelson-Velskii and Landis, proposed the

criteria to save the binary search tree (BST) from its degenerate form. This was an

effort to propose the development of a balanced search tree by considering the height

as a standard. This tree is known as AVL tree. The name AVL is an acronym of the

names of these two scientists.

An AVL tree is identical to a BST, barring one difference i.e. the height of the left and

right sub-trees can differ by at most 1. Moreover, the height of an empty tree is

defined to be (–1).

Keeping in mind the idea of the level of a tree, we can understand that if the root of a

tree is at level zero, its two children (subtrees) i.e. nodes will be at level 1. At level 2,

there will be 4 nodes in case of a complete binary tree. Similarly at level 3, the

number of nodes will be 8 and so on. As discussed earlier, in a complete binary tree,

the number of nodes at any level k will be 2k. We have also seen the level order

CS301 – Data Structures Lecture No. 20

Page 221 of 505

traversal of a tree. The term height is identical to the level of a tree. Following is the

figure of a tree in which level/height of nodes is shown.

5 level

2 8 ---------------------------

1
4 7 ----------------------------------

3

Fig 20.1: levels of nodes in a tree

Here in the figure, the root node i.e. 5 is at the height zero. The next two nodes 2 and

8 are at height (or level) 1. Then the nodes 1, 4 and 7 are at height 2 i.e. two levels

below the root. At the last, the single node 3 is at level (height) 3. Looking at the

figure, we can say that the maximum height of the tree is 3. AVL states that a tree

should be formed in such a form that the difference of the heights (maximum no of

levels i.e. depth) of left and right sub-trees of a node should not be greater than 1. The

difference between the height of left subtree and height of right subtree is called the

balance of the node. In an AVL tree, the balance (also called balance factor) of a node

will be 1,0 or –1 depending on whether the height of its left subtree is greater than,

equal to or less than the height of its right subtree.

Now consider the tree in the figure 20.1. Its root node is 5. Now go to its left subtree

and find the deepest node in this subtree. We see that node 3 is at the deepest level.

The level of this deepest node is 3, which means the height of this left subtree is 3.

Now from node 5, go to its right subtree and find the deepest level of a node. The

node 7 is the deepest node in this right subtree and its level is 2. This means that the

height of right subtree is 2. Thus the difference of height of left subtree (i.e. 3) and

height of right subtree (i.e. 2) is 1. So according to the AVL definition, this tree is

balanced one. But we know that the AVL definition does not apply only to the root

node of the tree. Every node (non-leaf or leaf) should fulfill this definition. This

means that the balance of every node should be 1, 0 or –1. Otherwise, it will not be an

AVL tree.

Now consider the node 2 and apply the definition on it. Let’s see the result. The left

subtree of node 2 has the node 1 at deepest level i.e. level 2. The node 2, itself, is at

level 1, so the height of the left subtree of node 2 is 2-1 i.e. 1. Now look at the right

subtree of node 2. The deepest level of this right subtree is 3 where the node 3 exists.

The height of this right subtree of node 2 will be 3 –1 = 2 as the level of node 2 is 1.

Now the difference of the height of left subtree (i.e. 1) and height of the right subtree

(i.e. 2) is –1. We subtract the height of left subtree from the height of the right subtree

and see that node 2 also fulfills the AVL definition. Similarly we can see that all other

nodes of the tree (figure 20.1) fulfill the AVL definition. This means that the balance

CS301 – Data Structures Lecture No. 20

Page 222 of 505

of each node is 1, 0 or –1. Thus it is an AVL tree, also called the balanced tree. The

following figure shows the tree with the balance of each node.

1 5 level

-1 2

0 1 1 4

1 8 ---------------------------

0 7 ---------------------------------

0 3

Fig 20.2: balance of nodes in an AVL

Let’s consider a tree where the condition of an AVL tree is not being fulfilled. The

following figure shows such a tree in which the balance of a node (that is root node 6)

is greater than 1. In this case, we see that the left subtree of node 6 has height 3 as its

deepest nodes 3 and 5 are at level 3. Whereas the height of its right subtree is 1 as the

deepest node of right subtree is 8 i.e. level 1. Thus the difference of heights (i.e.

balance) is 2. But according to AVL definition, the balance should be1, 0 or –1. As

shown in the figure, this node 6 is only the node that violates the AVL definition (as

its balance is other than 1, 0 and -1). The other nodes fulfill the AVL definition. We

know that to be an AVL tree, each node of the tree should fulfill the definition. Here

in this tree, the node 6 violates this definition so this is not an AVL tree.

2 6 level

-1 1 0 8 ---------------------------

0 1
0 4

0 3 0 5

Fig 20.3: not an AVL tree

CS301 – Data Structures Lecture No. 20

Page 223 of 505

From the above discussion, we encounter two terms i.e. height and balance which can
be defined as under.

Height

The height of a binary tree is the maximum level of its leaves. This is the same

definition as of depth of a tree.

Balance

The balance of a node in a binary search tree is defined as the height of its left subtree

minus height of its right subtree. In other words, at a particular node, the difference in

heights of its left and right subtree gives the balance of the node.

The following figure shows a balanced tree. In this figure the balance of each node is

shown along with. We can see that each node has a balance 1, 0 or –1.

0

Fig 20.4: A balanced binary tree

Here in the figure, we see that the balance of the root (i.e. node 6) is –1. We can find

out this balance. The deepest level of the left subtree is 3 where the nodes 1 and 3 are

located. Thus the height of left subtree is 3. In the right subtree, we see some leaf

nodes at level 3 while some are found at level 4. But we know that the height of the

tree is the maximum level. So 4 is the height of the right subtree. Now we know that

the balance of the root node will be the result of height of left subtree minus the

height of right subtree. Thus the balance of the root node is 3 – 4 = -1. Similarly we

can confirm the balance of other nodes. The confirmation of balance of the other

nodes of the tree can be done. You should do it as an exercise. The process of height

computation should be understood as it is used for the insertion and deletion of nodes

in an AVL tree. We may come across a situation, when the tree does not remain

balanced due to insertion or deletion. For making it a balanced one, we have to carry

out the height computations.

-1 6

1 4
0 12

0
1 -1 14

2
0

5
10

1
0

3
0

8 0 11 0 13 0 16

0 7 0 9 0 15 0 17

CS301 – Data Structures Lecture No. 20

Page 224 of 505

While dealing with AVL trees, we have to keep the information of balance factor of

the nodes along with the data of nodes. Similarly, a programmer has to have

additional information (i.e. balance) of the nodes while writing code for AVL tree.

Insertion of Node in an AVL Tree
Now let’s see the process of insertion in an AVL tree. We have to take care that the

tree should remain AVL tree after the insertion of new node(s) in it. We will now see

how an AVL tree is affected by the insertion of nodes.

We have discussed the process of inserting a new node in a binary search tree in

previous lectures. To insert a node in a BST, we compare its data with the root node.

If the new data item is less than the root node item in a particular order, this data item

will hold its place in the left subtree of the root. Now we compare the new data item

with the root of this left subtree and decide its place. Thus at last, the new data item

becomes a leaf node at a proper place. After inserting the new data item, if we

traverse the tree with the inorder traversal, then that data item will become at its

appropriate position in the data items. To further understand the insertion process,

let’s consider the tree of figure 20.4. The following figure (Fig 20.5) shows the same

tree with the difference that each node shows the balance along with the data item.

We know that a new node will be inserted as a leaf node. This will be inserted where

the facility of adding a node is available. In the figure, we have indicated the positions

where a new node can be added. We have used two labels B and U for different

positions where a node can be added. The label B indicates that if we add a node at

this position, the tree will remain balanced tree. On the other hand, the addition of a

node at the position labeled as U1, U2 ….U12, the tree will become unbalanced. That

means that at some node the difference of heights of left and right subtree will

become greater than 1.

U5 U6 U7 U8 U9 U10 U11 U12

Fig 20.5: Insertions and effect in a balanced tree

-1 6

1 4
0 12

0
1 -1 14

2
0

5
10

0
B B

1
0

3
0

8 0 11 0 13 0 16

U1 U2 U3 U4

0
B B B

7 0 9
B

0 15 0 17

CS301 – Data Structures Lecture No. 20

Page 225 of 505

By looking at the labels B, U1, U2 …….U12, we conclude some conditions that will

be implemented while writing the code for insert method of a balanced tree.

We may conclude that the tree becomes unbalanced only if the newly inserted node

 Is a left descendent of a node that previously had a balance of 1

(in the figure 20.5 these positions are U1, U2 …..U8)

 Or is a descendent of a node that previously had a balance of –1

(in the tree in fig 20.5 these positions are U9, U10, U11 and U12)

The above conditions are obvious. The balance 1 of a node indicates that the height of

its left subtree is 1 more than the height of its right subtree. Now if we add a node to

this left subtree, it will increase the level of the tree by 1. Thus the difference of

heights will become 2. It violates the AVL rule, making the tree unbalanced.

Similarly the balance –1 of a node indicates that the right subtree of this node is one

level deep than the left subtree of the node. Now if the new node is added in the right

subtree, this right subtree will become deeper. Its depth/height will increase as a new

node is added at a new level that will increase the level of the tree and the height.

Thus the balance of the node, that previously has a balance –1, will become –2.

The following figure (Fig 20.6) depicts this rule. In this figure, we have associated the

new positions with their grand parent. The figure shows that U1, U2, U3 and U4 are

the left descendents of the node that has a balance 1. So according to the condition,

the insertion of new node at these positions will unbalance the tree. Similarly the

positions U5, U6, U7 and U8 are the left descendents of the node that has a balance 1.

Moreover we see that the positions U9, U10, U11 and U12 are the right descendents

of the node that has balance –1. So according to the second condition as stated earlier,

the insertion of a new node at these positions would unbalance the tree.

Fig 20.6: Insertions and effect in a balanced tree

-1 6

1 4
0 12

0
1 -1 14

2
0

5
10

0
B B

1
0

3
0

8 0 11 0 13 0 16

U1 U2 U3 U4

0
B B B

7 0 9

B

0 15 0 17

U5 U6 U7 U8 U9 U10 U11 U12

CS301 – Data Structures Lecture No. 20

-1 6

1 4
0 12

0
2

0
1 -1 14

5
10

0
1

0
B B

3
0

8 0 11 0 13 0 16

Now let’s discuss what should we do when the insertion of a node makes the tree

unbalanced. For this purpose, consider the node that has a balance 1 in the previous

tree. This is the root of the left subtree of the previous tree. This tree is shown as

shaded in the following figure.

U1 U2 U3 U4 B B B B

 0 7 0 9 0 15 0 17

U5 U6 U7 U8 U9 U10 U11 U12

Fig 20.7: The node that has balance 1 under consideration

We will now focus our discussion on this left subtree of node having balance 1 before

applying it to other nodes. Look at the following figure (Fig 20.8). Here we are

talking about the tree that has a node with balance 1 as the root. We did not mention

the other part of the tree. We indicate the root node of this left subtree with label A. It

has balance 1. The label B mentions the first node of its left subtree. Here we did not

mention other nodes individually. Rather, we show a triangle that depicts all the nodes

in subtrees. The triangle T3 encloses the right subtree of the node A. We are not

concerned about the number of nodes in it. The triangles T1 and T2 mention the left

and right subtree of the B node respectively. The balance of node B is 0 that describes

that its left and right subtrees are at same height. This is also shown in the figure.

Similarly we see that the balance of node A is 1 i.e. its left subtree is one level deep

than its right subtree. The dotted lines in the figure show that the difference of

depth/height of left and right subtree of node A is 1 and that is the balance of node A.

Page 226 of 505

A 1

B
0

T3

T1 T2
1

CS301 – Data Structures Lecture No. 20

Page 227 of 505

Now considering the notations of figure 20.8, let’s insert a new node in this tree and

observe the effect of this insertion in the tree. The new node can be inserted in the tree

T1, T2 or T3. We suppose that the new node goes to the tree T1. We know that this

new node will not replace any node in the tree. Rather, it will be added as a leaf node

at the next level in this tree (T1). The following figure (fig 20.9) shows this

phenomenon.

new

Fig 20.9: Inserting new node in AVL tree

Due to the increase of level in T1, its difference with the right subtree of node A (i.e.

T3) will become 2. This is shown with the help of dotted line in the above figure. This

difference will affect the balances of node A and B. Now the balance of node A

becomes 2 while balance of node B becomes 1. These new balances are also shown in

the figure. Now due to the balance of node A (that is 2), the AVL condition has been

violated. This condition states that in an AVL tree the balance of a node cannot be

other than 1, 0 or –1. Thus the tree in fig 20.9 is not a balanced (AVL) tree.

Now the question arises what a programmer should do in case of violation of AVL

condition .In case of a binary search tree, we insert the data in a particular order. So

that at any time if we traverse the tree with inorder traversal, only sorted data could be

obtained. The order of the data depends on its nature. For example, if the data is

numbers, these may be in ascending order. If we are storing letters, then A is less than

B and B is less than C. Thus the letters are generally in the order A, B, C ……. This

order of letters is called lexographic order. Our dictionaries and lists of names follow

this order.

A 2

B
1

T3

T1 T2
1

2

CS301 – Data Structures Lecture No. 20

Page 228 of 505

If we want that the inorder traversal of the tree should give us the sorted data, it will

not be necessary that the nodes of these data items in the tree should be at particular

positions. While building a tree, two things should be kept in mind. Firstly, the tree

should be a binary tree. Secondly, its inorder traversal should give the data in a sorted

order. Adelson-Velskii and Landis considered these two points. They said that if we

see that after insertion, the tree is going to be unbalanced. Then the things should be

reorganized in such a way that the balance of nodes should fulfill the AVL condition.

But the inorder traversal should remain the same.

Now let’s see the example of tree in figure 20.9 and look what we should do to

balance the tree in such a way that the inorder traversal of the tree remains the same.

We have seen in figure 20.9 that the new node is inserted in the tree T1 as a new leaf

node. Thus T1has been modified and its level is increased by 1. Now due to this, the

difference of T1 and T3 is 2. This difference is the balance of node A as T1 and T3

are its left and right subtrees respectively. The inorder traversal of this tree gives us

the result as given below.

T1 B T2 A T3

Now we rearrange the tree and it is shown in the following figure i.e. Fig 20.10.

Fig 20.10: Rearranged tree after inserting a new

By observing the tree in the above figure we notice at first that node A is no longer

the root of the tree. Now Node B is the root. Secondly, we see that the tree T2 that

was the right subtree of B has become the left subtree of A. However, tree T3 is still

the right subtree of A. The node A has become the right subtree of B. This tree is

balanced with respect to node A and B. The balance of A is 0 as T2 and T3 are at the

same level. The level of T1 has increased due to the insertion of new node. It is now

at the same level as that of T2 and T3. Thus the balance of B is also 0. The important

thing in this modified tree is that the inorder traversal of it is the same as in the

previous tree (fig 10.9) and is

T1 B T2 A T3

B 0

A

0

T1

T2 T3

CS301 – Data Structures Lecture No. 20

Page 229 of 505

We see that the above two trees give us data items in the same order by inorder

traversal. So it is not necessary that data items in a tree should be in a particular node

at a particular position. This process of tree modification is called rotation.

Example (AVL Tree Building)
Let’s build an AVL tree as an example. We will insert the numbers and take care of

the balance of nodes after each insertion. While inserting a node, if the balance of a

node becomes greater than 1 (that means tree becomes unbalance), we will rearrange

the tree so that it should become balanced again. Let’s see this process.

Assume that we have insert routine (we will write its code later) that takes a data item

as an argument and inserts it as a new node in the tree. Now for the first node, let’s

say we call insert (1). So there is one node in the tree i.e. 1. Next, we call insert (2).

We know that while inserting a new data item in a binary search tree, if the new data

item is greater than the existing node, it will go to the right subtree. Otherwise, it will

go to the left subtree. In the call to insert method, we are passing 2 to it. This data

item i.e. 2 is greater than 1. So it will become the right subtree of 1 as shown below.

As there are only two nodes in the tree, there is no problem of balance yet.

Now insert the number 3 in the tree by calling insert (3). We compare the number 3

with the root i.e.1. This comparison results that 3 will go to the right subtree of 1. In

the right subtree of 1 there becomes 2. The comparison of 3 with it results that 3 will

go to the right subtree of 2. There is no subtree of 2, so 3 will become the right

subtree of 2. This is shown in the following figure.

Let’s see the balance of nodes at this stage. We see that node 1 is at level 0 (as it is the

root node). The nodes 2 and 3 are at level 1 and 2 respectively. So with respect to the

node 1, the deepest level (height) of its right subtree is 2. As there is no left subtree of

node 1 the level of left subtree of 1 is 0. The difference of the heights of left and right

subtree of 1 is –2 and that is its balance. So here at node 1, the AVL condition has

been violated. We will not insert a new node at this time. First we will do the rotation

to make the tree (up to this step) balanced. In the process of inserting nodes, we will

do the rotation before inserting next node at the points where the AVL condition is

being violated. We have to identify some things for doing rotation. We have to see

that on what nodes this rotation will be applied. That means what nodes will be

1

2

1 -2

2

3

CS301 – Data Structures Lecture No. 20

Page 230 of 505

rearranged. Some times, it is obvious that at what nodes the rotation should be done.

But there may situations, when the things will not be that clear. We will see these

things with the help of some examples.

In the example under consideration, we apply the rotation at nodes1 and 2. We rotate

these nodes to the left and thus the node 1 (along with any tree if were associated with

it) becomes down and node 2 gets up. The node 3 (and trees associated with it, here is

no tree as it is leaf node) goes one level upward. Now 2 is the root node of the tree

and 1 and 3 are its left and right subtrees respectively as shown in the following

figure.

Non AVL Tree AVL tree after applying rotation

We see that after the rotation, the tree has become balanced. The figure reflects that

the balance of node 1, 2 and 3 is 0. We see that the inorder traversal of the above tree

before rotation (tree on left hand side) is 1 2 3. Now if we traverse the tree after

rotation (tree on right hand side) by inorder traversal, it is also 1 2 3. With respect to

the inorder traversal, both the traversals are same. So we observe that the position of

nodes in a tree does not matter as long as the inorder traversal remains the same. We

have seen this in the above figure where two different trees give the same inorder

traversal. In the same way we can insert more nodes to the tree. After inserting a node

we will check the balance of nodes whether it violates the AVL condition. If the tree,

after inserting a node, becomes unbalance then we will apply rotation to make it

balance. In this way we can build a tree of any number of nodes.

1 -2

2

3

2

1 3

CS301 – Data Structures Lecture No. 21

Page 231 of 505

Data Structures

Lecture No. 21

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.4, 4.4.1

Summary

 AVL Tree Building Example

 Cases for Rotation

AVL Tree Building Example
This lecture is a sequel of the previous one in which we had briefly discussed about

building an AVL tree. We had inserted three elements in the tree before coming to the

end of the lecture. The discussion on the same example will continue in this lecture.

Let’s see the tree’s figures below:

Fig 21.1: insert(3) single left rotation

Fig 21.2: insert(3)

Node containing number 2 became the root node after the rotation of the node having

number 1. Note the direction of rotation here.

Let’s insert few more nodes in the tree. We will build an AVL tree and rotate the node
when required to fulfill the conditions of an AVL tree.

To insert a node containing number 4,we will, at first, compare the number inside the

1
-2

2

3

2

1 3

CS301 – Data Structures Lecture No. 21

Page 232 of 505

root node. The current root node is containing number 2. As 4 is greater than 2, it will

take the right side of the root. In the right subtree of the root, there is the node

containing number 3. As 4 is also greater than 3, it will become the right child of the

node containing number 3.

Fig 21.3: insert(4)

Once we insert a node in the tree, it is necessary to check its balance to see whether it

is within AVL defined balance. If it is not so, then we have to rotate a node. The

balance factor of the node containing number 4 is zero due to the absence of any left

or right subtrees. Now, we see the balance factor of the node containing number 3. As

it has no left child, but only right subtree, the balance factor is –1. The balance factor

of the node containing number 1 is 0. For the node containing number 2, the height of

the left subtree is 1 while that of the right subtree is 2. Therefore, the balance factor

of the node containing number 2 is 1 – 2 = -1. So every node in the tree in fig. 21.3

has balance factor either 1 or less than that. You must be remembering that the

condition for a tree to be an AVL tree, every node’s balance needs not to be zero

necessarily. Rather, the tree will be called AVL tree, if the balance factor of each

node in a tree is 0, 1 or –1. By the way, if the balance factor of each node inside the

tree is 0, it will be a perfectly balanced tree.

Next, we insert a node containing number 5 and see the balance factor of each node.

The balance factor for the node containing 5 is 0. The balance factor for node

containing 4 is –1 and for the node containing 3 is -2. The condition for AVL is not

satisfied here for the node containing number 3, as its balance factor is –2. The

rotation operation will be performed here as with the help of an arrow as shown in the

above Fig 21.4. After rotating the node 3, the new tree will be as under:

2

1 3
-2

4

Fig 21.4: insert(5) 5

2

1 3

4

CS301 – Data Structures Lecture No. 21

Page 233 of 505

Fig 21.5: insert(5)

You see in the above figure that the node containing number 4 has become the right

child of the node containing number 2. The node with number 3 has been rotated. It

has become the left child of the node containing number 4. Now, the balance factor

for different nodes containing numbers 5, 3 and 4 is 0. To get the balance factor for

the node containing number 2, we see that the height of the left subtree containing

number 2 is 1 while height of the right subtree is 2. So the balance factor of the node

containing number 2 is –1. We saw that all the nodes in the tree above in Fig 21.5

fulfill the AVL tree condition.

If we traverse the tree Fig 21.5, in inorder tree traversal, we get:

1 2 3 4 5

Similarly, if we traverse the tree in inorder given in Fig 21.4 (the tree before we had

rotated the node containing number 3), following will be the output.

1 2 3 4 5

In both the cases above, before and after rotation, we saw that the inorder traversal of
trees gives the same result. Also the root (node containing number 2) remained the

same.

See the Fig 21.4 above. Considering the inorder traversal, we could arrange the tree in

such a manner that node 3 becomes the root of the tree, node 2 as the left child of

node 3 and node 1 as the left child of the node 2. The output after traversing the

changed tree in inorder will still produce the same result:

1 2 3 4 5

While building an AVL tree, we rotate a node immediately after finding that that the

node is going out of balance. This ensures that tree does not become shallow and

remains within the defined limit for an AVL tree.

Let’s insert another element 6 in the tree. The figure of the tree becomes:

2

1 4

3 5

CS301 – Data Structures Lecture No. 21

Page 234 of 505

The newly inserted node 6 becomes the right child of the node 5. Usually, after the

insertion of a node, we will find out the node factor for each node and rotate it

immediately. This is carried out after finding the difference out of limit. The balance

factor for the node 6 is 0, for node 5 is –1 and 0 for node 3. Node 4 has –1 balance

factor and node 1 has 0. Finally, we check the balance factor of the root node, node 2,

the left subtree’s height is 1 and the right subtree’s height is 3. Therefore, the balance

factor for node 2 is –2, which necessitates the rotation of the root node 2. Have a look

on the following figure to see how we have rotated the node 2.

Fig 21.7: insert(6)

Now the node 4 has become the root of the tree. Node 2, which was the root node, has

become the left child of node 4. Nodes 5 and 6 are still on their earlier places while

remaining the right child and sub-child of node 4 respectively. However, the node 3,

which was left child of node 4, has become the right child of node 2.

Now, let’s see the inorder traversal of this tree:

1 2 3 4 5 6

You are required to practice this inorder traversal. It is very important and the basic

point of performing the rotation operation is to preserve the inorder traversal of the

tree. There is another point to note here that in Binary Search Tree (BST), the root

node remains the same (the node that is inserted first). But in an AVL tree, the root

node keeps on changing.

In Fig 21.6: we had to traverse three links (node 2 to node 4 and then node 5) to reach
the node 6. While after rotation, (in Fig 21.7), we have to traverse the two links (node

2
-2

1 4

3 5

Fig 21.6: insert(6)
6

4

2
5

1 3 6

CS301 – Data Structures Lecture No. 21

Page 235 of 505

4 and 5) to reach the node 6. You can prove it mathematically that inside an AVL tree

built of n items; you can search up to 1.44log2n levels to find a node inside. After this

maximum number of links traversal, a programmer will have success or failure, as

1.44log2n is the maximum height of the AVL tree. Consider the BST case, where we

had constructed a linked list. If we want to build a BST of these six numbers, a linked

list structure is formed. In order to reach the node 6, we will have to traverse five

links. In case of AVL tree, we had to traverse two links only.

Let’s add few more items in the AVL tree and see the rotations performed to maintain

AVL characteristics of the tree.

Node 7 is inserted as the right child of node 6. We start to see the balance factors of

the nodes. The balance factors for node 7, 6 are 0 and –1 respectively. As the balance

factor for node 5 is –2, the rotation will be performed on this node. After rotation, we

get the tree as shown in the following figure.

Fig 21.9: insert(7)

After the rotation, node 5 has become the left child of node 6. We can see in the Fig

21.9 that the tree has become the perfect binary tree. While writing our program, we

will have to compute the balance factors of each node to know that the tree is a

perfectly balanced binary tree. We find that balance factor for all nodes 7, 5, 3, 1, 6, 2

and 4 is 0. Therefore, we know that the tree is a perfect balanced tree. Let’ see the

inorder traversal output here:

1 2 3 4 5 6 7

It is still in the same sequence and the number 7 has been added at the end.

4

2
5

-2

1 3 6

Fig 21.8: insert(7)
7

4

2 6

1 3 5
7

CS301 – Data Structures Lecture No. 21

Page 236 of 505

Fig 21.10: insert(16)

We have inserted a new node 16 in the tree as shown in the above Fig 21.10. This

node has been added as the right child of the node 7. Now, let’s compute the balance

factors for the nodes. The balance factor for nodes 16, 7, 5, 3, 1, 6, 2 and 4 is either 0

or –1. So this fulfills the condition of a tree to be an AVL. Let’s insert another node

containing number 15 in this tree. The tree becomes as given in the figure below:

Next step is to find out the balance factor of each node. The factors for nodes 5 and 16

are 0 and 1 respectively. This is within limits of an AVL tree but the balance factor

for node 7 is –2. As this is out of the limits of AVL, we will perform the rotation

operation here. In the above diagram, you see the direction of rotation. After rotation,

we have the following tree:

4

2 6

1 3 5
7

16

4

2 6

1 3 5
7 -2

16

15
Fig 21.11: insert(15)

CS301 – Data Structures Lecture No. 21

Page 237 of 505

2

Node 7 has become the left child of node 16 while node 15 has attained the form of

the right child of node 7. Now the balance factors for node 15, 7 and 16 are 0, -1 and

2 respectively. Note that the single rotation above when we rotated node 7 is not

enough as our tree is still not an AVL one. This is a complex case that we had not

encountered before in this example.

Cases of Rotation
The single rotation does not seem to restore the balance. We will re-visit the tree and

rotations to identify the problem area. We will call the node that is to be rotated as
(node requires to be re-balanced). Since any node has at the most two children, and a

height imbalance requires that ’s two sub-trees differ by two (or –2), the violation

will occur in four cases:

1. An insertion into left subtree of the left child of .

2. An insertion into right subtree of the left child of .

3. An insertion into left subtree of the right child of .

4. An insertion into right subtree of the right child of .

The insertion occurs on the outside (i.e., left-left or right-right) in cases 1 and 4.

Single rotation can fix the balance in cases 1 and 4.

Insertion occurs on the inside in cases 2 and 3 which a single rotation cannot fix.

4

2 6

1 3 5
16

7

Fig 21.12: insert(15)
15

CS301 – Data Structures Lecture No. 21

Page 238 of 505

k

2 k 1

k1 k22

Z
Level n-2

X

X Y Level n-1 Y Z

new

Level n

new

Fig 21.13: Single right rotation to fix case 1

We have shown, single right notation to fix case 1. Two nodes k2 and k1 are shown in

the figure, here k2 is the root node (and also the node, k1 is its left child and Z

shown in the triangle is its right child. The nodes X and Y are the left and right

subtrees of the node k1. A new node is also shown below to the triangle of the node X,

the exact position (whether this node will be right or left child of the node X) is not

mentioned here. As the new node is inserted as a child of X that is why it is called an

outside insertion, the insertion is called inside if the new node is inserted as a child of

the node Y. This insertion falls in case 1 mentioned above, so by our definition above,

single rotation should fix the balance. The k2 node has been rotated single time

towards right to become the right child of k1 and Y has become the left child of k2. If

we traverse the tree in inorder fashion, we will see that the output is same:
X k1 Y k2 Z

Consider the the figure below:

Fig 21.14: Single left rotation to fix case 4

In this figure (Fig 21.14), the new node has been inserted as a child node of Z, that is

why it is shown in bigger size covering the next level. Now this is an example of case

4 because the new node is inserted below the right subtree of the right child of the

k2

k12

X Y
Z

k11

k22

X Level n-2

Y
Z

Level n-1

Level n

CS301 – Data Structures Lecture No. 21

Page 239 of 505

k2

k12

Z

X Y

k1

k22

X

Y Z

root node (). One rotation towards should make it balanced within limits of AVL

tree. The figure on the right is after rotation the node k1 one time towards left. This
time node Y has become the right child node of the node k1.

In our function of insertion in our code, we will do insertion, will compute the balance

factors for nodes and make rotations.

Now, we will see the cases 2 and 3, these are not resolved by a single rotation.

Level n-2

Level n-1

new

Level n

Fig 21.15: Single right rotation fails to fix case 2

new

We see here that the new node is inserted below the node Y. This is an inside

insertion. The balance factor for the node k2 became 2. We make single rotation by

making right rotation on the node k2 as shown in the figure on the right. We compute

the balance factor for k1, which is –2. So the tree is still not within the limits of AVL

tree. Primarily the reason for this failure is the node Y subtree, which is unchanged

even after making one rotation. It changes its parent node but its subtree remains

intact. We will cover the double rotation in the next lecture.

It is very important that you study the examples given in your text book and try to

practice the concepts rigorously.

CS301 – Data Structures Lecture No. 22

Page 240 of 505

Data Structures

Lecture No. 22

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.4.2

Summary

 Cases of rotations

 Left-right double rotation to fix case 2

 Right-left double rotation to fix case 3

 C++ Code for avlInsert method

Cases of rotations

In the previous lecture, we discussed how to make insertions in the AVL tree. It was
seen that due to the insertion of a node, the tree has become unbalanced. Resultantly,

it was difficult to fix it with the single rotation. We have analyzed the insertion

method again and talked about the node. The new node will be inserted at the left or

right subtree of the ’s left child or at the left or right subtree of the ’s right child.

Now the question arises whether the single rotation help us in balancing the tree or

not. If the new node is inserted in the left subtree of the ’s left child or in the right

subtree of ’s right child, the balance will be restored through single rotation.
However, if the new node goes inside the tree, the single rotation is not going to be

successful in balancing the tree.

We face four scenarios in this case. We said that in the case-1 and case-4, single

rotation is successful while in the case-2 and case-3 single rotation does not work.

Let’s see the tree in the diagram given below.

Single right rotation fails to fix case 2.

new new

In the above tree, we have node as k2, which has a left child as k1. Whereas X and Y

are its left and right children. The node k2 has a right child Z. Here the newly inserted

 k2

k1

Z Level n-2

X Y Level n-1

Level n

 k1

k2

X

Y Z

CS301 – Data Structures Lecture No. 22

Page 241 of 505

node works as the left or right child of node Y. Due to this insertion, one level is

increased in the tree. We have applied single rotation on the link of k1 and k2. The

right side tree in the figure is the post-rotation tree. The node k1 is now at the top

while k2 comes down and node Y changes its position. Now if you see the levels of

the node, these are seen same. Have a look on the level of the node i.e. k1 which

reflects that the difference between the left and right side levels is still 2. So the single

rotation does not work here.

Let’s see how we can fix that problem. A fresh look on the following diagram will

help us understand the problem.

Here k2 is the root node while k1 and Z are the right and left children respectively.

The new node is inserted under Y so we have shown Y in a big triangle. The new node

is inserted in the right subtree of k1, increasing its level by 1. Y is not empty as the

new node was inserted in it. If Y is empty, the new node will be inserted under k1. It

means that Y has a shape of a tree having a root and possibly left and right subtrees.

Now view the entire tree with four subtrees connected with 3 nodes. See the diagram

below.

k2

k1

Z

X

Y

CS301 – Data Structures Lecture No. 22

Page 242 of 505

We have expanded the Y and shown the root of Y as K2, B and C are its left and right

subtrees. We have also changed the notations of other nodes. Here, we have A, B, C

and D as subtrees and k1, k2 and k3 as the nodes. Let’s see where the new node is

inserted in this expanded tree and how can we restore its balance. Either tree B or C is

two levels deeper than D. But we are not sure which one is deeper. The value of new

node will be compared with the data in k2 that will decide that this new node should

be inserted in the right subtree or left subtree of the k2. If the value in the new node is

greater than k2, it will be inserted in the right subtree i.e. C. If the value in the new

node is smaller than k2, it will be inserted in the left subtree i.e. B. See the diagram

given below:

k3

k1

D

k2

A

B C

CS301 – Data Structures Lecture No. 22

Page 243 of 505

2

new new’

New node inserted at either of the two spots

We have seen the both possible locations of the new node in the above diagram. Let’s

see the difference of levels of the right and left subtrees of the k3. The difference of B

or C from D is 2. Therefore the expansion of either of B or C, due to the insertion of

the new node, will lead to a difference of 2. Therefore, it does not matter whether the

new node is inserted in B or C. In both of the cases, the difference becomes 2. Then

we try to balance the tree with the help of single rotation. Here the single rotation

does not work and the tree remains unbalanced. To re-balance it, k3 cannot be left as

the root. Now the question arises if k3 cannot become root, then which node will

become root? In the single rotation, k1 and k3 were involved. So either k3 or k1 will

come down. We have two options i.e. left rotation or right rotation. If we turn k1 into

a root, the tree will be still unbalanced. The only alternative is to place k2 as the new

root. So we have to make k2 as root to balance the tree. How can we do that?

If we make k2 the root, it forces k1 to be k2‘s left child and k3 to be its right child.

When we carry out these changes, the condition is followed by the inorder traversal.

Let’s see the above tree in the diagram. In that diagram, the k3 is the root and k1 is its

left child while k2 is the right child of k1. Here, we have A, B, C and D as subtrees.

You should know the inorder traversal of this tree. It will be A, k1, B, k2, C, k3 and D

where A, B, C and D means the complete inorder traversal of these subtrees. You

should memorize this tree traversal.

k3

k1

k2

D

A

B C
1

CS301 – Data Structures Lecture No. 22

Page 244 of 505

Now we have to take k2 as the root of this tree and rearrange the subtrees A, B, C and

D. k1 will be the left child of k2 while k3 is going to be its right child. Finally if we

traverse this new tree, it will be the same as seen above. If it is not same, it will mean

that there is something wrong in the rotation. We have to find some other solution.

Now let’s see how we can rotate our tree so that we get the desired results.

Left-right double rotation to fix case 2

We have to perform a double rotation to achieve our desired results. Let’s see the

diagram below:

new new’ new

On the left side, we have the same tree with k3 as its root. We have also shown the

new nodes as new and new’ i.e. the new node will be attached to B or C. At first, we

will carry out the left rotation between k1 and k2. During the process of left rotation,

the root k1 comes down and k2 goes up. Afterwards, k1 will become the left child of

k2 and the left subtree of k2 i.e. B, will become the right subtree of k1. This is the

single rotation. You can see the new rotated tree in the above figure. It also shows that

the B has become the right child of the k1. Moreover, the new node is seen with the B.

Now perform the inorder traversal of this new rotated tree. It is A, k1, B, k2, C, k3 and

D. It is same as witnessed in case of the inorder traversal of original tree. With this

single rotation, the k2 has gone one step up while k1 has come down. Now k2 has

become the left child of k3. We are trying to make the k2 the root of this tree. Now

what rotation should we perform to achieve this?

Now we will perform right rotation to make the k2 the root of the tree. As a result, k1

and k2 have become its left and right children respectively. The new node can be

inserted with B or C. The new tree is shown in the figure below:

Left-right double rotation to fix case 2.

k3 k3

k1
Rotate left

k2

k2
k1 D

D
C

A

B C
1 B

2 A new’

CS301 – Data Structures Lecture No. 22

Page 245 of 505

k3
Rotate right

k2

k2 k1 k3

k1 D

C B C

A D
B

A new’ new new’

new

Now let’s see the levels of new and new’. Of these, one is the new node. Here you can

see that the levels of new, new’ i.e. A and D are the same. The new tree is now a

balanced one. Let’s check the inorder traversal of this tree. It should be the same as

that of the original tree. The inorder traversal of new tree is A, k1, B, k2, C, k3 and D,

which is same as that of the original tree.

This is known as double rotation. In double rotation, we perform two single rotations.

As a result, the balance is restored and the AVL condition is again fulfilled. Now we

will see in which order, the double rotation is performed? We performed a left

rotation between k1 and k2 link, followed by a right rotation.

Right-left double rotation to fix case 3

In case, the node is inserted in left subtree of the right child, we encounter the same

situation as discussed above. But here, we will perform right rotation at first before

going for a left rotation. Let’s discuss this symmetric case and see how we can apply

double rotation here. First we perform the right rotation.

CS301 – Data Structures Lecture No. 22

Page 246 of 505

Right-left double rotation to fix case 3.

Here k1 is the root of the tree while k3 is the right child of the k1. k2 is the inner child.

It is the Y tree expanded again here and the new node will be inserted in the k2’s right

subtree C or left subtree B. As we have to transform the k2 into the root of the tree, so

the right rotation between the link k2 and k3 will be carried out. As a result of this

rotation, k2 will come up and k3 will go down. The subtree B has gone up with the k2

while subtree C is now attached with the k3. To make the k2 root of the tree, we will

perform the left rotation between then k1 and k2. Let’s see this rotation in the figure

below:

In the above figure at the right side, we have the final shape of the tree. You can see

that k2 has become the root of the tree. k1 and k3 are its left and right children

respectively. While performing the inorder traversal, you will see that we have

preserved our inorder traversal.

We have started this activity while building an example tree. We inserted numbers in

it. When the balance factor becomes more than one, rotation is performed. During this

process, we came at a point when single rotation failed to balance the tree. Now there

is need to perform double rotation to balance the tree that is actually two single

rotations. Do not take double rotation as some complex function, it is simply two

single rotations in a special order. This order depends on the final position of the new

k1 Rotate right k1

k3 k2

A A

k2 k3
D B

B C C D

k1 Rotate left k2

k2 k1 k3

A

k3

B A
B C D

C D

CS301 – Data Structures Lecture No. 22

Page 247 of 505

node. Either the new node is inserted at the right subtree of the left child of node or

at the left subtree of the right child of node. In first case, we have to perform left-

right rotation while in the second case, the right-left rotation will be carried out.

Let’s go back to our example and try to complete it. So far, we have 1, 2, 3, 4, 5, 6, 7

and 16 in the tree and inserted 15 which becomes the left child of the node 16. See the

figure below:

Here we have shown X, Y and Z in case of the double rotation. We have shown Y
expanded and 15 is inside it. Here we will perform the double rotation, beginning with

the right rotation first.

4

2 6

1 3 5 7 k1

16 k2

X
(null)

Y
Z

(null)

15

CS301 – Data Structures Lecture No. 22

Page 248 of 505

tate right

We have identified the k1, k2 and k3 nodes. This is the case where we have to perform

right-left double rotation. Here we want to promote k2 upwards. For this purpose, the

right rotation on the link of k2 and k3 i.e. 15 and 16 will be carried out.

The node 15 now comes up while node 16 has gone down. We have to promote k2 to
the top and k3 and k1 will become its right and left children respectively. Now we will

4

2 6

1 3 5

k1

7

k3

16
k2

15
Ro

4

2 6

1 3 5

k1

7

Rotate left
k2

15

16
k3

CS301 – Data Structures Lecture No. 22

Page 249 of 505

perform left rotation on the link of k1 and k2 i.e. 7 and 15. With this left rotation, 15

goes up and 7 and 16 become its left and right children respectively.

Here we have to check two things. At first, the tree is balanced or not i.e. the AVL

condition is fulfilled or not. Secondly we will confirm that the inorder traversal is

preserved or not. The inorder traversal should be the same as that of the inorder

traversal of original tree. Let’s check these two conditions. The depth of the left

subtree of node 4 is 2 while the depth of the right subtree of node 4 is three.

Therefore, the difference of the levels at node 4 is one. So the AVL condition is

fulfilled at node 4. At node 6, we have one level on it left side while at the right side

of node 6, there are two levels. As the difference of levels is one, therefore node 6 is

also balanced according to the AVL condition. Similarly other nodes are also

fulfilling the AVL condition. If you see the figure above, it is clear that the tree is

balanced.

We are doing all this to avoid the link list structure. Whenever we perform rotation on

the tree, it becomes clear from the figure that it is balanced. If the tree is balanced, in

case of searching, we will not have to go very deep in the tree. After going through

the mathematical analysis, you will see that in the worst case scenario, the height of

the tree is 1.44 log2 n. This means that the searching in AVL is logarithmic. Therefore

if there are ten million nodes in an AVL tree, its levels will be roughly as log2(10

million) which is very few. So the traversal in an AVL tree is very simple.

Let’s insert some more nodes in our example tree. We will perform single and double

rotations, needed to make the tree balanced. The next number to be inserted is 14. The

position of node 14, according to the inorder traversal, is the right child of 7. Let’s see

this in the diagram as:

4

2 6

1 3 5

k2

15

k1

7

k3

16

CS301 – Data Structures Lecture No. 22

Page 250 of 505

The new node 14 is inserted as the right child of 7 that is the inner subtree of 15. Here

we have to perform double rotation again. We have identified the k1, k2 and k3. k2

has to become the root of this subtree. The nodes k1 and k3 will come down with their

subtrees while k2 is going to become the root of this subtree. After the right rotation

the tree will be as:

4

2

k1

6

1 3 5

k3

15

Rotate right

k2

7 16

14

4

2

k1

6 Rotate left

1 3 5
k2

7

15
k3

14 16

CS301 – Data Structures Lecture No. 22

Page 251 of 505

With the right rotation, k2 has come one step up while k3 has been turned into the

right child of k2 but k1 is still up. Now we will perform a left rotation on the link of

k1 and k2 to make the k2 root of this subtree. Now think that after this rotation and

rearrangement of node what will be the shape of the tree.

After the double rotation, the final shape of the tree will be as:

k2 has become the root of the subtree. k1 has attained the role of the left child of k2

and k3 has become the right child of the k2. The other nodes 5, 14 and 16 have been

rearranged according to the inorder traversal. The node 7 has come up where as node

6 and 15 have become its left and right child. Now just by viewing the above figure, it

is clear that the tree is balanced according to the AVL condition. Also if we find out

its inorder traversal, it should be the same as the inorder traversal of original tree. The

inorder traversal of the above tree is 1, 2, 3, 4, 5, 6, 7, 14, 15, and 16. This is in sorted

order so with the rotations the inorder traversal is preserved.

Let’s insert some more numbers in our tree. The next number to be inserted is 13.

4

2

k2

7

1 3

k1

6

k3

15

5 14 16

CS301 – Data Structures Lecture No. 22

Page 252 of 505

We have to perform single rotation here and rearrange the tree. It will look like as:

The node 7 has become the root of the tree. The nodes 4, 2, 1, 3, 6, 5 have gone to its

left side while the nodes 15, 14, 13, 16 are on its right side. Now try to memorize the

tree which we build with these sorted numbers. If you remember that it looks like a

link list. The root of that tree was 1. After that we have its right child as 2, the right

child of 2 as 3, then its right child 4 and so on up to 16. The shape of that tree looks

exactly like a linked list. Compare that with this tree. This tree is a balanced one. Now

if we have to traverse this tree for search purposes, we have to go at the most three

levels.

Now you must be clear why we need to balance the trees especially if we have to use

the balanced search trees. While dealing with this AVL condition, it does not matter

4
Rotate left

2 7

1 3 6 15

5 14 16

13

7

4 15

2 6 14 16

1 3 5 13

CS301 – Data Structures Lecture No. 22

Page 253 of 505

whether the data, provided to a programmer is sorted or unsorted. The data may be

sorted in ascending order or descending order. It may contain alphabets or names in

any order. We will keep our tree balanced during the insertion and tree will be

balanced at each point. Our tree will not be balanced in the end, it will be balanced

with each insertion. It will not be completely balanced. At the maximum, if we pick

any node, the difference in the levels of its right subtree and left subtree will not be

more than 1.

Now if we have 9 or 10 nodes in the tree and take log of this, it will be near 3.

Therefore our tree has three levels after that there are its leaf nodes. Please keep this

in mind that originally we have thought BST as an abstract data type. We have

defined operations on it like insert, remove and the major method was find. The find

method takes a data item and searches the tree. It will also show that this data item

exists or not in the tree. We also right findMin and findMax methods. In case of a

BST, we can find the minimum and maximum value in it. The minimum will be the

left most node of the tree while the right most node of BST will give the maximum

value. You can confirm it by applying this on the above tree.

C++ Code for avlInsert method

Now let’s see the C++ code of avlinsert method. Now we have to include this
balancing procedure in the insert method. We have already written this insert method

which takes some value and adds a node in the tree. That procedure does not perform

balancing. Now we will include this balancing feature in our insert method so that the

newly created tree fulfills the AVL condition.

Here is the code of the function.

/* This is the function used to insert nodes satisfying the AVL condition.*/

TreeNode<int>* avlInsert(TreeNode<int>* root, int info)

{

if(info < root->getInfo()){

root->setLeft(avlInsert(root->getLeft(), info));

int htdiff = height(root->getLeft()) – height(root->getRight());

if(htdiff == 2)

if(info < root->getLeft()->getInfo()) // outside insertion case

root = singleRightRotation(root);

else // inside insertion case

root = doubleLeftRightRotation(root);

}

else if(info > root->getInfo()) {

root->setRight(avlInsert(root->getRight(),info));

int htdiff = height(root->getRight()) – height(root->getLeft());

if(htdiff == 2)

if(info > root->getRight()->getInfo())

root = singleLeftRotation(root);

else

root = doubleRightLeftRotation(root);

}

CS301 – Data Structures Lecture No. 22

Page 254 of 505

We have named the function as avlInsert. The input arguments are root node and the

info is of the type int. In our example, we are having a tree of int data type. But of

course, we can have any other data type. The return type of avlInsert method is

TreeNode<int>*. This info will be inserted either in the right subtree or left subtree of

root. The first if statement is making this decision by comparing the value of info and

the value of root. If the new info value is less than the info value of root, the new node

will be inserted in the left subtree of root. In the next statement, we have a recursive

call as seen in the following statement.

avlInsert(root->getLeft(), info)

Here we are calling avlInsert method again. We are passing it the first node of the left

subtree and the info value. We are trying to insert this info in the left subtree of root if

it does not already exist in it. In the same statement, we are setting the left of root as

the return of the avlInsert method. Why we are doing setLeft? As we know that this is

an AVL tree and the new data is going to be inserted in the left subtree of root. We

have to balance this tree after the insertion of the node. After insertion, left subtree

may be rearranged to balance the tree and its root can be changed. You have seen the

previous example in which node 1 was the root node in the start and in the end node 7

was its root node. During the process of creation of that tree, the root nodes have been

changing. After the return from the recursive call in our method, the left node may be

different than the one that was before insertion. The complete call is as:

root->setLeft(avlInsert(root->getLeft(), info));

Here we are inserting the new node and also getting the root of the left subtree after

the insertion of the new node. If the root of the left subtree has been changed after the

insertion, we will update our tree by assigning this new left -node to the left of the

root.

Due to the insertion of the new node if we have rearranged the tree, then the balance

factor of the root node can be changed. So after this, we check the balance factor of

the node. We call a function height to get the height of left and right subtree of the

root. The height function takes a node as a parameter and calculates the height from

that node. It returns an integer. After getting the heights of left and right subtrees, we

take its difference as:

int htdiff = height(root->getLeft()) – height(root->getRight());

Now if the difference of the heights of left and right subtrees is greater than 1, we

have to rebalance the tree. We are trying to balance the tree during the insertion of
new node in the tree. If this difference is 2, we will perform single rotation or double

// else a node with info is already in the tree. In

// case, reset the height of this root node.

int ht = Max(height(root->getLeft()), height(root->getRight()));

root->setHeight(ht + 1); // new height for root.

return root;

}

CS301 – Data Structures Lecture No. 22

Page 255 of 505

rotation to balance the tree. We have to deal with one of the four cases as discussed

earlier. This rotation will be carried out with only one node where the balance factor

is 2. As a result, the tree will be balanced. We do not need to rotate each node to

balance the tree. This is characteristic of an AVL tree.

We have seen these rotations in the diagrams. Now we have to perform these ones in

the code. We have four cases. The new node is inserted in the left or right subtree of

the left child of node or the new node is inserted in the left or right subtree of the

right child of node. How can we identify this in the code? We will identify this with
the help of the info value of the new node.

We can check whether the difference (htdiff) is equal to 2 or not. We have if condition

that checks that the info is less than the value of left node of the current node (
node). If this condition is true, it shows that it is the case of outside insertion. The

node will be inserted as the left-most child. We have to perform single rotation. If the

else part is executed, it means that this is the case of inside insertion. So we have to

perform double rotation. We are passing node to the rotation function. When a

programmer performs these rotations, he gets another node that is assigned to root.

This is due to the fact that the root may change during the rotations.

We encounter this case when the new node is inserted in the left subtree of the root.

The new node can be inserted in the right subtree of the root. With respect to

symmetry, that code is also similar. You can easily understand that. In the code, we

have if-else condition that checks whether the info is greater than the value of root.

Therefore, it will be inserted in the right subtree. Here again, we made a recursive call

to avlInsert by passing it the first node of the right subtree of the root. When this

recursive call is completed, we may have to perform rotations. We set the right node

of the root as the node returned by the avlInsert. After this, we check the balance

factor. We calculate the difference as:

int htdiff = height(root->getRight()) – height(root->getLeft());

In the previous case, we have subtracted the height of right tree from left tree. Here

we have subtraction the height of left tree from the right tree. This is due to the fact

that we want to avoid the -ve value. But it does not matter whether we get the -ve

value. We can take its absolute value and test it. If the value of htdiff is 2 , we have to

identify the case. We check that the new node is to be inserted in the right subtree of

the right child of node or in the left subtree of the right child of node. If the info is

greater than the value of the right child of root, it is the case 4. Here we will restore

the balance of the tree by performing single rotation. If the else part is executed, we

have to perform the double rotation. These rotation routines will return the root of the

rearranged tree that will be set as a root.

In the end, we have the third case. This is the case when the info is equal to the root. It

means that the data is already in the tree. Here we will readjust the height if it is

needed. We will take the maximum height between the left and right subtree and set

this height plus one as the height of the root. We have added one to the height after

adding one node to the tree. In the end, we return the root. We have included the

balancing functionality in our tree and it will remain balanced.

CS301 – Data Structures Lecture No. 22

Page 256 of 505

We have not seen the code of rotation routines so far. The code of these methods is

also very simple. We have to move some of pointers. You can easily understand that

code. We will discuss this in the next lecture. Please see the code of single and double

rotation in the book and try to understand it.

CS301 – Data Structures Lecture No. 23

Page 257 of 505

Data Structures

Lecture No. 23

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.4.1, 4.4.2

Summary

We demonstrated how to write the insert procedure for an AVL tree in the previous

lecture. The single and double rotation call methods were also discussed at length.

While inserting a node if we see that the tree is going to be unbalanced, it means that

the AVL condition is being violated. We also carried out the balancing of the tree by

calling single or double rotation. Now let’s see the code of these routines i.e. single

and double rotation.

Single Right Rotation
At first, we will discuss the code of SingleRightRotation function. Its argument is

TreeNode, which is given the name k2. The reason of using k2 is that it alongwtih k1

etc was used in the earlier discussion. After the rotation, this function will return a

pointer, as tree will be re-organized. Resultantly, its root will be changed. Following

is the code of this SingleRightRotation function.

 Deletion in AVL Tree
 Double Left- Right Rotation

 Double Right-Left Rotation

 Single Left Rotation
 Single Right Rotation

 Cases of Deletion in AVL Tree

TreeNode<int>* singleRightRotation(TreeNode<int>* k2)

{

if(k2 == NULL) return NULL;

// k1 (first node in k2's left subtree) will be the new root

TreeNode<int>* k1 = k2->getLeft();

// Y moves from k1's right to k2's left

k2->setLeft(k1->getRight());
k1->setRight(k2);

// reassign heights. First k2

int h = Max(height(k2->getLeft()), height(k2->getRight()));

CS301 – Data Structures Lecture No. 23

Page 258 of 505

In the function, at first, we check whether k2 is NULL. If it is NULL, the function is

exited by returning NULL. If it is not NULL, the rotation process starts. The figure

below depicts the single right rotation process. In this diagram, we see that k2 has
been shown as the root node to this function. We see that k1 is the left subtree of k2.

We are going to apply single right rotation on the link between k1 and k2. The node

k1 will be the new root node after rotation. So we get its value by the following

statement

TreeNode <int>* k1 = k2 -> getLeft() ;

Due to the single right rotation, k2 has come down, resulting in the upward movement

of k1. The tree Y has to find its new place. The place of the trees X and Z remains

intact. The change of place of Y is written in the code as below.

k2->setLeft(k1->getRight());

In the above statement, we get the right child of k1 (i.e. k1 -> getRight()) i.e. Y and

pass it to setLeft function of k2. Thus it becomes the left child of k2. By the statement

k1 -> setRight (k2) ;

We set the node k2 as right child of k1. Now after these three statements, the tree has

been transformed into the following figure.

k2->setHeight(h+1);

// k2 is now k1's right subtree

h = Max(height(k1->getLeft()), k2->getHeight());

k1->setHeight(h+1);

return k1;

}

k2

k1
Z

Y

X

Fig 23.1: Single Right Rotation

CS301 – Data Structures Lecture No. 23

Page 259 of 505

From the above figure, it is reflected that k1 is now the root of the tree while k2 is its

right child. The Y, earlier the right subtree of k1 (see fig 23.1), has now become the

right subtree of k2. We see that the inorder traversal of this tree is X k1 Y k2 Z. It is

the same as of the tree before rotation in fig 23.1 i.e. X k1 Y k2 Z.

Now we set the heights of k1 and k2 in this re-arranged tree. In the code, to set the

height of k2, we have written

int h = Max(height(k2->getLeft()) , height(k2->getRight()));
k2->setHeight(h+1);

Here we take an integer h and assign it a value. This value is the maximum height

among the two subtrees i.e. height of left subtree of k2 and height of right subtree of

k2. Then we add 1 to this value and set this value as the height of k2. We add 1 to h as

the height of root is one more than its child.

Similarly we set the height of k1 and get the heights of its left and right subtrees

before finding the higher value of these two by the Max function. Afterwards, we add

1 to this value and set this value as the height of k1. The following two statements

perform this task.

h = Max(height(k1->getLeft()), k2->getHeight());

k1->setHeight(h+1);

In the end, we return the root node i.e. k1. Thus the right single rotation is completed.

In this routine, we saw that this routine takes root node of a tree as an argument and

then rearranges it, resets the heights and returns the new root node.

Height Function

In the above SingleRightRotation, we used the height routine. This routine calls the

getHeight function for the argument passed to it and returns the value got from that

function. If there is an empty tree, then by definition its height will be -1. So in this

routine, we return the value -1 if the argument passed to it is NULL. Following is the

code of this routine.

k1

k2

X
Y Z

Fig 23.2: Tree after rotation

CS301 – Data Structures Lecture No. 23

Page 260 of 505

Single Left Rotation
This rotation is almost similar to the single right rotation. We start from k1. k1 is the
root while k2 is its right child. Due to the left rotation, the right child k2 of the root k1

will become the root. The k1 will go down to the left child of k2. The following figure

shows that we have to change the positions of some pointers. The condition of the tree

before and after single left rotation is also seen.

Following is the code of the function performing the single left rotation.

int height(TreeNode<int>* node)

{

if(node != NULL) return node->getHeight();

return –1;

}

k1 k2

k2 k1

X

Y X
Z

Y

Z

Fig 23.3: Single Left Rotation

TreeNode<int>* singleLeftRotation(TreeNode<int>* k1)

{

if(k1 == NULL) return NULL;

// k2 is now the new root

TreeNode<int>* k2 = k1->getRight();

k1->setRight(k2->getLeft()); // Y

k2->setLeft(k1);

// reassign heights. First k1 (demoted)

int h = Max(height(k1->getLeft()), height(k1->getRight()));

k1->setHeight(h+1);

// k1 is now k2's left subtree

h = Max(height(k2->getRight()), k1->getHeight());

k2->setHeight(h+1);

return k2;

CS301 – Data Structures Lecture No. 23

Page 261 of 505

In the above code, it is evident that if the node passed to the function is not NULL
(that means k1 is not NULL), we assign to k2 the value of k1 -> getRight (). Now in

the rotation, Y tree i.e. the left subtree of k2, becomes the right subtree of k1. We

write it in the next statement as.

k1->setRight(k2->getLeft());

In this statement, we get the left child of k2 i.e. Y and set it as the right child of k1.

Afterwards, k1 is set as the left child of k2. The following statement reflects this

process.

k2->setLeft(k1);

After single left rotation, the k2 becomes the root node after going up. However, k1

goes down as the left child of k2. The tree Y, earlier the left child of k2 has, now

become the right child of k1.X and Z continue to remain at the previous positions.

The tree has been transformed with changes into the heights of k1 and k2. We re-

assign the heights to these nodes in line with the process adopted in the right single

rotation. At first, we adjust the height of k1. We get the heights of left and right

subtrees of k1. The greater of these is taken and assigned to an int h. Then we add 1 to

this value and set it as the height of k1. The following two lines of the code execute

this task.

int h = Max(height(k1->getLeft()), height(k1->getRight()));

k1->setHeight(h+1);

Similarly, we adjust the height of k2 by getting the greater one among the heights of

its right subtree and its left subtree. Taking k1 as its left subtree, we get the height of

k1. We add 1 and set it as the height of k2. Following are the statements that perform

this task.

h = Max(height(k2->getRight()), k1->getHeight());
k2->setHeight(h+1);

Finally, k2 is returned as the root of the tree.

Double Right-Left Rotation
As obvious from the nomenclature, in the double rotation, we at first carry out the

right rotation before going ahead with the left rotation. Let’s say that we pass it the

node k1. Look at the following figure to see what are the nodes k1, k2 and k3. The

figure 23.4 shows the first step (A) of double right-left rotation that is the single right

rotation. It shows the rearranged tree on the right side in the figure.

}

CS301 – Data Structures Lecture No. 23

Page 262 of 505

In the left portion of the above figure, we see that k1 is the root of the tree. k3 is the

right child of k1 while k2 is the left child of k3. A, B, C and D are trees. We carry out

the right rotation between the link of k3 and k2. In the code, it is shown that if k1 is

not NULL, we go ahead and perform the rotation. The code of this double rotation is

given below.

We perform the right rotation with the help of k3. Now think about the single right

rotation. We are at k3 and its left child k2 will be involved in the rotation. In the code,

for the single right rotation, we have written

k1->setRight(singleRightRotation(k1->getRight()));

Here, we are passing the right child of k1 (i.e. k3) to the single right rotation. The

function singleRightRotation itself will find the left child of k3 to perform the single

right rotation. The singleRightRotation will take k3 downward and bring up its left

child i.e. k2. The left subtree of k2 i.e. C, now becomes the right subtree of k3. Due to

this single right rotation, the tree will be transformed into the one, shown in the right

k1 k1

k3 k2

A A

k2

k

D
B 3

B C
C D

Fig 23. 4: Double Right-Left Rotation (A)

TreeNode<int>* doubleRightLeftRotation(TreeNode<int>* k1)

{

if(k1 == NULL) return NULL;

// single right rotate with k3 (k1's right child)

k1->setRight(singleRightRotation(k1->getRight()));

// now single left rotate with k1 as the root

return singleLeftRotation(k1);

}

CS301 – Data Structures Lecture No. 23

Page 263 of 505

part of the figure 23.4.

After this we apply the single left rotation on this tree that is got from the single right

rotation. This single left rotation is done by passing it k1. In this rotation, k1 goes

down and k2 i.e. the right child of k1, becomes the root. We return the result of single

left rotation. The following statement in the above code performs this task.

return singleLeftRotation(k1);

Thus the tree gets its final form i.e. after the double right-left rotation. The following

figure shows the single left rotation and the final form of the tree.

In the above figure, it was witnessed that the double rotation consists of few

statements. That’s why, we have had written the routines for single right and left

rotations. In the double right-left rotation, we just carried out a single right rotation

and the single left rotation to complete the double right-left rotation.

Double Left-Right Rotation
While performing the double left-right rotation, we simply carry out the single left
rotation at first. It is followed by the single right rotation. Following is the code of the

double Left-Right rotation.

k1 k2

k2 k1 k3

A

k3

B A
B C D

C D

Fig 23.5: Double right-left rotation (B)

TreeNode<int>* doubleLeftRightRotation(TreeNode<int>* k3)

{

if(k3 == NULL) return NULL;

// single left rotate with k1 (k3's left child)

k3->setLeft(singleLeftRotation(k3->getLeft()));

// now single right rotate with k3 as the root

return singleRightRotation(k3);

CS301 – Data Structures Lecture No. 23

Page 264 of 505

In the above code, we receive the argument node as k3. As we have to do the left

rotation first, it is applied to the left child of k3. From the figure below (Fig 23.6), we

see that the left child of k3 is k1. However, when we send k1 to the

singleLeftRotation it will take the right child of k1 i.e. k2. This process will rotate the

link between k1and k2. The tree formed as a result of this single left rotation, is

shown at the right side in the figure 23.6.

In this new rearranged tree, k2 comes up while k1 goes down, becoming the left

subtree of k2. The subtree B, earlier left subtree of k2, now becomes the right subtree

of k1.

The second step in the double left-right rotation is to apply the single right rotation on
this new tree. We will carry out the single right rotation on k3. The pictorial

representation of this single right rotation on k3 is given in the figure below.

}

k3
k3

k2
k1 D

D
k

1

k2 C
A

A B
B C

Fig 23.6: Double left-right rotation (A)

k3
k2

k2

D
k1 k3

k1

C A B C D

A B

Fig 23.7: Double left-right rotation (B)

CS301 – Data Structures Lecture No. 23

Page 265 of 505

In the code, we wrote the statement for this as below.

return singleRightRotation(k3);

We pass k3 to the singleRightRotation. It is, internally applied to the left child of k3

ie. k2. Now due to the right rotation, k2 will come up and k3 will become its right

child. The node k1 will remain the left child of k2. The subtree C that was the right

subtree of k2, will now be the left subtree of k3.

By now, the discussion on the insert routine has been completed. We have written the

insert routine so that data item could be passed to it and inserted at a proper position

in the tree. After inserting a node, the routine checks the balance or height factors and

does the left or right rotation if needed and re-balances the tree.

Note that a property of the AVL tree is that while inserting a node in an AVL tree if

we have to balance the tree then we have to do only one single right or left rotation or

one double rotation to balance the tree. There is no such situation that we have to do a

number of rotations. We do the one single or one double rotation at the node whose

balance has become 2 after inserting a node.

The deletion of a data item from a data structure has always been difficult whatever

data structure we use. The deletion is the inverse of insertion. In deletion there is a

given value x and an AVL tree T. We delete the node containing the value x and

rebalance the tree if it becomes unbalance after deleting the node. We will see that the

deletion of a node is considerably more complex than the insertion of a node. It is

complex in the sense that we may have to do more than one rotations to rebalance the

tree after deleting a node. We will discuss the deletion case by case and will see that

about what points we have to take care in the deletion process.

We are not going to write the code for deletion here. If we have to use AVL tree

routines or class, the deletion and insertion routines of AVL tree are available in

standard library. We can use these routines in our program. We have no need to write

these routines. But here we discuss these to understand their functionality.

We know that insertion in a height-balanced tree requires at most one single rotation

or one double rotation. We do this rotation at the node whose balance violates the

AVL condition. We can use rotations to restore the balance when we do a deletion. If

the tree becomes unbalance after deleting a node then we use rotations to rebalance it.
We may have to do a rotation at every level of the tree. Thus in the worst case of
deletion we have to do log

2
N rotations. As log

2
N is the number of levels of a tree of

N nodes.

Let’s consider an example of deleting a node from a tree. In this example, we will

discuss the worst case of deletion that is we have to do rotation at each level after

deleting a node. Look at the following figure i.e. Fig 23.8. In this figure the root of

the tree is node N and we have expanded only the left subtree of this node. The right

subtree of it is indicated by a triangle. We focus on the left subtree of N. The balance

of each non-leaf node of the left subtree of N is –1. This means that at every non-leaf

node the depth/height of left subtree is one shorter than the height of right subtree. For

example look at the node C. The left subtree of C is one level deep where as it’s right

subtree is two levels deep. So balance of it is 1 – 2 = -1. If we look at node I its left

Deletion in AVL Tree

CS301 – Data Structures Lecture No. 23

Page 266 of 505

subtree has height 2 as there are two levels where nodes G and H exists. The right

subtree of I has number of levels (i.e. height) 3 where exists the nodes K, L and M

respectively. Thus the balance of I is 2 – 3 = -1. Similarly we can see that other nodes

also have the balance –1. This tree is shown in the following figure.

Here in this tree, the deletion of node A from the left subtree causes the worst case of

deletion in the sense that we have to do a large number of rotations. Now we delete

the node A from the tree. The effect of this deletion is that if we consider the node C

the height of its left subtree is zero now. The height of the right subtree of C is 2.

Thus the balance of C is 2 now. This makes the tree unbalance. Now we will do a

rotation to make the tree balanced. We rotate the right subtree of C that means the link

between C and D so that D comes up and C goes down. This is mentioned in the

figure below.

N

F

C I

A D G K

E H J L

M

Fig 23.8: Tree under consideration

CS301 – Data Structures Lecture No. 23

Page 267 of 505

After this rotation the tree has transformed into the following figure. Now D becomes

the left child of F and C becomes the left child of D.

By looking at the inorder traversal of the tree, we notice that it is preserved. The

inorder traversal of the tree before rotation (i.e. fig 23.8) is C D E F G H I J K L M N.

N

F

C I

D G K

E H J L

M

Fig 23.9: Single left rotation after deleting node A

N

F

D I

C E G K

H J L

M

Fig 23.10: Tree (Fig 23.9) after rotation

CS301 – Data Structures Lecture No. 23

Page 268 of 505

Now if we traverse the tree after rotation (i.e. fig 23.9) by inorder traversal we get C

D E F G H I J K L M N, which is the same as it was before rotation.

After this rotation we see that the tree having D as root is balanced. But if we see the

node F we notice that the height of its left subtree is 2 and height of its right subtree is

4. Thus the balance of F is –2 (or 2 if we take the absolute value) now. Thus the tree

becomes unbalance. So we have to do rotation again to balance the tree. The whole

left subtree of F is shorter so we do the left rotation on the link of F and I (in the tree

in fig 23.9) to bring F down and I up so that the difference of height could be less.

After rotation the tree gets the new form that is shown in the figure below.

Here we see that the nodes G and H, which were in the left subtree of I, now become

the right subtree of F. We see that the tree with I as root is balanced now. Now we

consider the node N. We have not expanded the right subtree of N. Although we have

not shown but there may be nodes in the right subtree of N. If the difference of

heights of left and right subtree of N is greater than 1 then we have to do rotation on

N node to balance the tree.

Thus we see that there may be such a tree that if we delete a node from it we have to

do rotation at each level of the tree. We notice that we have to do more rotations in

deletion as compared to insertion. In deletion when we delete a node we have to check

the balance at each level up to the root. We do rotation if any node at any level

violates the AVL condition. If nodes at a level do not violate AVL condition then we

do not stop here we check the nodes at each level and go up to the root. We know that

a binary tree has log2 N levels (where N is total number of nodes) thus we have to do

log2 N rotations. We have to identify the required rotations that mean we have to

identify that which one rotation out of the four rotations (i.e. single left rotation,

single right rotation, double right-left rotation and double left-right rotation) we have

to do. We have to identify this at each level.

N

I

F K

D G J L

C E H M

Fig 23.11: Tree (fig 23.10) after rotation

CS301 – Data Structures Lecture No. 23

Page 269 of 505

We can summarize the deletion procedure as under.

Delete the node as in binary search tree. We have seen in the discussion of deleting a
node from a BST that we have three cases, which we discussed as follows

Case I: The node to be deleted is the leaf node i.e. it has no right or left child. It is

very simple to delete such node. We make the pointer in the parent node pointing to

this node as NULL. If the memory for the node has been dynamically allocated, we

will release it.

Case II: The node to be deleted has either left child (subtree) or right child (subtree).

In this case we bypass the node in such a way that we find the inorder successor of

this node and then link the parent of the node to be deleted to this successor node.

Thus the node was deleted.

Case III: The node to be deleted has both the left and right children (subtree). This is

the most difficult case. In this case we find the inorder successor of the node. The left

most node of the right subtree will be the inorder successor of it. We put the value of

that inorder successor node into the node to be deleted. After it we delete the inorder

successor node recursively.

In deletion in AVL tree, we delete the node as we delete it in a BST. In third case of

deletion in BST we note that the node deleted will be either a leaf or have just one

subtree (that will be the right subtree as node deleted is the left most subtree so it

cannot have a left subtree). Now we are talking about deletion in an AVL tree. Since

this is an AVL tree so if the deleted node has one subtree that subtree contains only

one node. Why it is so? Think about its reason and answer.

After deleting the node we traverse up the tree from the deleted node checking the

balance of each node at each level up to the root. Thus the deletion in AVL tree is like

the deletion in BST except that here in AVL tree we have to rebalance the tree using

rotations.

Now let’s consider the cases of deletion that will help to identify what rotation will be

applied at what point.

There are 5 cases to consider. Let’s go through the cases graphically and determine
what actions are needed to be taken. We will not develop the C++ code for

Case 1a:

The first case is that the parent of the deleted node had a balance of 0 and the node
was deleted in the parent’s left subtree.

In the following figure (Fig 23.12) the left portion shows the parent node with a

horizontal line in it. This horizontal line indicates that the left and right subtrees of

this node have the same heights and thus the balance of this node is 0. When we

delete a node from its left subtree then height of its right subtree becomes larger than

the left subtree. The right portion in the figure shows this. We are showing a symbol

instead of balance of node inside the node. The notation (symbol) in the node

Cases of Deletion in AVL Tree

deleteNode in AVL tree. This is left as an exercise.

CS301 – Data Structures Lecture No. 23

Page 270 of 505

Delete on

this side

indicates that the height of left subtree is shorter than the height of right subtree of the

node.

Now the action that will be taken in this case is that, change the balance of the parent

node and stop. No further effect on balance of any higher node. There is no need of

rotation in this case. Thus it is the easiest case of deletion.

Let’s consider an example to demonstrate the above case.

Consider the tree shown in the following figure i.e. Fig 23.13. This is a perfectly

balanced tree. The root of this tree is 4 and nodes 1, 2 and 3 are in its left subtree. The

nodes 5, 6 and 7 are in the right subtree.

Consider the node 2. We have shown the balance of this node with a horizontal line,

which indicates that the height of its left subtree is equal to that of its right subtree.

Similarly we have shown the balance of node 4.

Now we remove the node 1 which is the left subtree of node 2. After removing the left

child (subtree) of 2 the height of left subtree of 2 is 0. The height of right subtree of 2

is 1 so the balance of node 2 becomes –1. This is shown in the figure by placing a sign

that is down ward to right side, which indicates that height of right subtree is greater

Fig 23.12: Deletion Case 1a

4 0

2 6 ------------------ 1

1 3 5 7 ----- 2

Fig 23.13: Tree under consideration

CS301 – Data Structures Lecture No. 23

Page 271 of 505

than left subtree. Now we check the node 4. Here the height of left subtree of it is still

2. The height of its right subtree is also 2. So balance of the node 4 is 0 that is

indicated by the small horizontal line (minus sign) in the figure below. Here we don’t

need to change the balance of 4.

Case 1b:

This case is symmetric to case 1a. In this case, the parent of the deleted node had a

balance of 0 and the node was deleted in the parent’s right subtree. The following

figure shows that the balance of the node was zero as left and right subtree of it have

the same heights.

After removing the right child the balance of it changes and it becomes 1, as the

height of its left subtree is 1 greater than the height of right subtree. The action

performed in this case is the same as that in case 1a. That is change the balance of the

parent node and stop. No further effect on balance of any higher node. The previous

example can be done for this case only with the change that remove the right child of

node 2 i.e. 3.

Case 2a:

4
0

4

2 6
1

--------------------------- 2 6

1 3 5 7
2 3 5 7

Fig 23.14: Tree before and after deleting node 1

Delete on

this side

Fig23.15: Deletion Case 1b

CS301 – Data Structures Lecture No. 23

Page 272 of 505

This is the case where the parent of the deleted node had a balance of 1 and the node

was deleted in the parent’s left subtree. This means that the height of left subtree of

the parent node is 1 greater than the height of its right subtree. It is shown in the left

portion of the figure below.

Now if we remove a node from the left subtree of this node then the height of left

subtree will decrease by 1 and get equal to the height of right subtree. Thus the

balance of this node will be zero. In this case, the action that we will perform to

balance the tree is that change the balance of the parent node. This deletion of node

may have caused imbalance in higher nodes. So it is advised to continue up to the root

of the tree. We will do rotation wherever the balance of the node violates the AVL

condition.

Delete on

this side

Fig 23.16: Deletion Case 2a

CS301 – Data Structures Lecture No. 24

Page 273 of 505

Data Structures

Lecture No. 24

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 4

4.4

Summary

Deletion in AVL Tree
At the end of last lecture, we were discussing about deleting a node from an AVL

tree. There are five cases to consider while deleting a node of an AVL tree. When a

node is deleted, the tree can become unbalanced. We calculate the balance factor of

each node and perform rotation for unbalanced nodes. But this rotation can prolong to

the root node. In case of insertion, only one node’s balance was adjusted as we saw in

previous lectures but in case of deletion, this process of rotation may expand to the

root node. However, there may also be cases when we delete a node and perform no

or one rotation only.

Now, we will see the five cases of deletion. A side note is that we are not going to

implement these cases in C++ in this lecture, you can do it yourself as an exercise

with the help of the code given inside your text book. In this lecture, the emphasis will

be on the deletion process and what necessary actions we take when a node is

required to be deleted from an AVL tree. Actually, there are two kinds of actions

taken here, one is deletion and the other one is the rotation of the nodes.

Case 1a: The parent of the deleted node had a balance of 0 and a node was deleted in

the parent’s left subtree.

Delete on

this side
Fig 24.1

In the left tree in the Fig 24.1, the horizontal line inside the tree node indicates that

the balance is 0, the right and left subtrees of the node are of equal levels. Now, when

a node is deleted from the left subtree of this node, this may reduce by one level and

cause the balance of the right subtree of the node to increase by 1 relatively. The

Other Uses of Binary Trees

Deletion in AVL Tree

CS301 – Data Structures Lecture No. 24

Page 274 of 505

tree is within the balance limits of AVL. A

balance of the node in favor of the right subtree is shown by a triangular knob tilted

towards right. Now, the action required in this case to make the tree balanced again is:

Change the balance of the parent node and stop. There is no further effect on balance of any higher node.

In this case, the balance of the tree is changed from 0 to –1, which is within the

defined limits of AVL tree, therefore, no rotation is performed in this case.

Below is a tree in which the height of the left subtree does not change after deleting

one node from it.

0

1

2

The node 4 is the root node, nodes 2 and 6 are on level 1 and nodes 1, 3, 5, 7 are

shown on level 2. Now, if we delete the node 1, the balance of the node 2 is tilted

towards right, it is –1. The balance of the root node 4 is unchanged as there is no

change in the number of levels within right and left subtrees of it. Similarly, there is

no change in the balances of other nodes. So we don’t need to perform any rotation

operation in this case.

Let’s see the second case.
Case 1b: the parent of the deleted node had a balance of 0 and the node was deleted in

the parent’s right subtree.

On the left of Fig 24.3, the

Delete on

this side

Fig 24.3

fter a node is

deleted from the right subtree of it. The balance of the tree is tilted towards left as
shown in the right tree show in the Fig 24.3. Now, we see what action will be required

to make the tree balanced again.

Change the balance of the parent node and stop. No further effect on balance of any

higher node (same as 1a).

So in this case also, we don’t need to perform rotation as the tree is still an AVL (as

Fig 24.2 4

2 6

1 3 5 7

CS301 – Data Structures Lecture No. 24

Page 275 of 505

above, the tree on the left contains the b

we saw in the Case 1a). It is important to note that in both of the cases above, the

balance of the parent node was 0. Now, we will see the cases when the balance of the

parent node is not 0 previously.

Case 2a: The parent of the deleted node had a balance of 1 and the node was deleted

in the parent’s left subtree.

Delete on

this side

In the Fig 24.4

Fig 24.4

alance factor as 1, which

means that the left subtree of the parent node is one level more than the number of

levels in the right subtree of it. When we delete one node from the left subtree of the

node, the height of the left subtree is changed and the balance becomes 0 as shown in

the right side tree of Fig 24.4. But it is very important understand that this change of

levels may cause the change of balance of higher nodes in the tree i.e.

Change the balance of the parent node. May have caused imbalance in higher nodes
so continue up the tree.

So in order to ensure that the upper nodes are balanced, we calculate their balance

factors for all nodes in higher levels and rotate them when required.

Case 2b: The parent of the deleted node had a balance of -1 and the node was deleted

in the parent’s right subtree.

Similar to the Case 2a, we will do the following action:

Change the balance of the parent node. May have caused imbalance in higher nodes

so continue up the tree.

CS301 – Data Structures Lecture No. 24

Page 276 of 505

Now, we see another case.

Case 3a:The parent had balance of -1 and the node was deleted in the parent’s left

subtree, right subtree was balanced.

Fig 24.5

As shown in the left tree in Fig 24.5, the node A is tilted towards right but the right

subtree of A (node B above) is balanced. The deleted node lies in the left subtree of

the node A. After deletion, the height of the left subtree is changed to h-1 as depicted

in the right tree of above figure. In this situation, we will do the following action:

Perform single rotation, adjust balance. No effect on balance of higher nodes so stop
here.

Node A has become the left subtree of node B and node 2 left subtree of node B has

become the right subtree of node A. The balance of node B is tiled towards left and

balance of node A is tilted towards right but somehow, both are within AVL limits.

Hence, after a single rotation, the balance of the tree is restored in this case.

Single rotate

CS301 – Data Structures Lecture No. 24

Page 277 of 505

Case 4a: Parent had balance of -1 and the node was deleted in the parent’s left

subtree, right subtree was unbalanced.

In the last case 3a, the right subtree of node A was balanced. But in this case, as

shown in the figure above, the node C is tilted towards left. The node to be deleted

lies in the left subtree of node A. After deleting the node the height of the left subtree

of node A has become h-1. The balance of the node A is shown tilted towards right by

showing two triangular knobs inside node A. So what is the action here.

Double rotation at B. May have affected the balance of higher nodes, so continue up
the tree.

double

rotate

Fig 24.8

Node A, which was the root node previously, has become the left child of the new

root node B. Node C, which was the right child of the root node C has now become

the right child of the new root node B.

Fig 24.7

CS301 – Data Structures Lecture No. 24

Page 278 of 505

e. single

Case 5a: The parent had balance of -1 and the node was deleted in the parent’s left

subtree, right subtree was unbalanced.

Fig 24.9

In the figure above, the right tree of the node B has a height of h-1 while the right

subtree is of height h. When we remove a node from the left subtree of node A, the

new tree is shown on the right side of Fig 24.9. The subtree 1 has height h-1 now,

while subtrees 2 and 3 have the same heights. So the action we will do in this case is:

Single rotation at B. May have effected the balance of higher nodes, so continue up

the tre

rotate

Fig 24.10

These were the five cases of deletion of a node from an AVL tree. Until now, we are

trying to understand the concept using the figures. You might have noticed the phrase

‘continue up the tree’ in the actions above. How will we do it? One way is to maintain

the pointer of the parent node inside each node. But often the easiest method when we

go in downward direction and then upward is recursion. In recursion, the work to be

done later is pushed on to the stack and we keep on moving forward until at a certain

point we back track and do remaining work present in the stack. We delete a node

when we reach at the desired location and then while traversing back, do the rotation

operation on our way to the root node.

Symmetrical to case 2b, we may also have cases 3b, 4b and 5b. This should not be a

problem in doing it yourself.

CS301 – Data Structures Lecture No. 24

Page 279 of 505

Other Uses of Binary Trees
A characteristic of binary trees is that the values inside nodes on the left of a node are

smaller than the value in the node. And the values inside the nodes on the right of a

node are greater than the value in the node. This is the way a binary tree is

Whatever is the size of the tree, the search is performed after traversing upto log2n

levels maximum.

We have observed that the binary tree becomes a linked list and it can become

shallow. The AVL conditions came into picture to control the height balance of a

binary tree. While searching in an AVL tree, in the worst case scenario we have to

search 1.44 log2n levels. For searches, binary and AVL trees are the most efficient but

we do have some other kinds of trees that will be studied later.
Lets see what could be some other uses of binary trees, we start our discussion with

Expression Trees.

Expression Trees

Expression trees, the more general parse trees and abstract syntax trees are significant

components of compilers.

We already know about compilers that whenever we write our program or code in

some computer language like C++ or Java. These programs are compiled into

assembly language or byte code (in case of Java). This assembly language code is

translated converted into machine language and an executable file is made by another

program called the assembler.

By the way, if you have seen your syllabus, you might have seen that there is a

dedicated subject on compilers. We study in detail about compilers in that course. For

this course, we will see expression or parse trees.

We will take some examples of expression trees and we will not delve into much

depth of it rather that would be an introduction to expression trees.

constructed.

(a+b*c)+((d*e+f)*g)
+

+ *

a * + g

b c * f

Fig 24.11 d e

CS301 – Data Structures Lecture No. 24

Page 280 of 505

You can see the infix expression above (a + b * c) + ((d * e + f) * g), it is represented

in the tree form also.

You can see from bottom of the tree that the nodes b and c in the nodes are present at

the same level and their parent node is multiplication (*) symbol. From the expression

also, we see that the b and c are being multiplied. The parent node of a is + and right

subtree of + is b*c. You might have understood already that this subtree is depicting

a+b*c. On the right side, node d and e are connected to the parent *. Symbol + is the

parent of * and node f. The expression of the subtree at node + is d*e+f. The parent of

node + is * node, its right subtree is g. So expression of the subtree at this node * is

(d*e+f)*g). The root node of the tree is +.

These expression trees are useful in compilers and in spreadsheets also, they are

sometimes called parse trees.

Parse Tree in Compilers

See the expression tree of expression A := A + B * C below. We are adding B and C,
adding the resultant in A and then finally assigning the resultant to A.

A := A + B * C

Expression grammar

<assign> <id> := <expr>

<id> A | B | C

<expr> <expr> + <term> | <term>

<term> <term> * <factor> | <factor>

Fig 24.12

The root node in the parse tree shown above is <assign>.

The assignment statement (<assign>) has three parts. On the left of it, there is always

an identifier (single or an array reference) called l-value. The l-value shown in the tree

above is <id> and the identifier is A in the expression above. The second part of

assignment statement is assignment operator (= or :=). One the right of assignment

operator lies the third part of assignment statement, which is an expression. In the

expression A := A + B * C above , the expression after assignment operator is A + B *

C. In the tree, it is represented by the node <expr>. The node <expr> has three

subnodes: <expr>, + and <term>. <expr>’s further left subtree is <expr>, <term>,

<factor>, <id> and then finally is B. The right subchild <term> has further subnodes

as <term>, * and <factor>. <factor> has <id> as subchild and <id> has C.

<term

<term> * <factor>

<factor> <id>

<id> C

B

+

<assign>

<expr

<term>

<factor>

<id>

 A

<expr>

A

<id> :=

CS301 – Data Structures Lecture No. 24

Page 281 of 505

Note the nodes in gray shade in the tree above form A = A + B * C.

Compiler creates these parse trees. We will see how to make these trees, when we will

parse any language tree like C++. Parsing mean to read and then extract the required

structure. A compiler parses a computer language like C++ to form parse trees.

Similarly, when we do speech recognition. Each sentence is broken down into a

certain structure in form of a tree. Hand writing recognition also involves this. The

tablet PCs these days has lot of implementation of parse trees.

Parse Tree for an SQL Query

Let’s see another example of parse trees inside databases. The parse trees are used in

query processing. The queries are questions to the databases to see a particular kind of

data. Consider you have a database for a video store that contains data of movies and

artists etc. You are querying that database to find the titles of movies with stars born

in 1960. The language used to query from the database is called SQL (Structured

Query Language), this language will be dealt in depth in the databases course. The

tables lying in this movies database are:

StarsIn(title, year, starName)

MovieStar(name, address, gender, birthdate)

The following SQL query is used to retrieve information from this database:

SELECT title

FROM StarsIn, MovieStar

WHERE starName = name AND birthdate LIKE ‘%1960’ ;

This query is asking to retrieve the titles of those movies from StarsIn and MovieStar
tables where the birthdate of an actor is 1960. We see in query processing a tree is

formed as shown in the figure below:
< Query >

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute>

title

<RelName> , <FromList>

StarsIn <RelName>

MovieStar

Condition

AND

Condition

Fig 24.13

<Attribute> = <Attribute> <Attribute> LIKE <Pattern>

setName name birthdate ‘%1960’

The root node is Query. This node is further divided into SELECT, <SelList>,

FROM, <FromList>, WHERE and <Condition> subnodes. <SelList> will be an

Attribute and finally a title is reached. Observe the tree figure above, how the tree is

expanded when we go in the downward direction. When the database engine does the

query process, it makes these trees. The database engine also performs query

CS301 – Data Structures Lecture No. 24

Page 282 of 505

optimization using these trees.

Compiler Optmization

Let’s see another expression tree here:
Common subexpression:

(f+d*e) + ((d*e+f)*g)

Fig 24.14

The root node is +, left subtree is capturing the f+d*e expression while the right
subtree is capturing (d*e+f)*g.

Normally compilers has intelligence to look at the common parts inside parse trees.

For example in the tree above, the expressions f+d*e and d*e+f are same basically.

These common subtrees are called common subexpressions. To gain efficiency,

instead of calculating the common subexpressions again, the compilers calculates

them once and use them at other places. The part of the compiler that is responsible to

do this kind of optimization is called optimizer.

See the figure below, the optimizer (part of compiler) will create the following graph

while performing the optimization. Because both subtrees were equivalent, it has

taken out one subtree and connected the link from node * to node +.

+

+ *

f * + g

d e * f

d e

CS301 – Data Structures Lecture No. 24

Page 283 of 505

This figure is not a tree now because it has two or more different paths to reach a

node. Therefore, this has become a graph. The new connection is containing a

directed edge, which is there in graphs.

Optimizer uses the expressions trees and converts them to graphs for efficiency

purposes. You read out from your book, how the expression trees are formed, what

are the different methods of creating them.

(Common Subexpression:

(f+d*e) + ((d*e+f)*g) +

+ *

f * g
Graph!

d e
Fig 24.15

CS301 – Data Structures Lecture No. 25

Page 284 of 505

Data Structures

Lecture No. 25

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4, 10

4.2.2, 10.1.2

Summary

 Expression tree

 Huffman Encoding

Expression tree

We discussed the concept of expression trees in detail in the previous lecture. Trees

are used in many other ways in the computer science. Compilers and database are two

major examples in this regard. In case of compilers, when the languages are translated

into machine language, tree-like structures are used. We have also seen an example of

expression tree comprising the mathematical expression. Let’s have more discussion

on the expression trees. We will see what are the benefits of expression trees and how

can we build an expression tree. Following is the figure of an expression tree.

In the above tree, the expression on the left side is a + b * c while on the right side,

we have d * e + f * g. If you look at the figure, it becomes evident that the inner nodes

contain operators while leaf nodes have operands. We know that there are two types

of nodes in the tree i.e. inner nodes and leaf nodes. The leaf nodes are such nodes

which have left and right subtrees as null. You will find these at the bottom level of

the tree. The leaf nodes are connected with the inner nodes. So in trees, we have some

inner nodes and some leaf nodes.

In the above diagram, all the inner nodes (the nodes which have either left or right

+

+ *

a * + g

b c * f

d e

CS301 – Data Structures Lecture No. 25

Page 285 of 505

child or both) have operators. In this case, we have + or * as operators. Whereas leaf

nodes contain operands only i.e. a, b, c, d, e, f, g. This tree is binary as the operators

are binary. We have discussed the evaluation of postfix and infix expressions and

have seen that the binary operators need two operands. In the infix expressions, one

operand is on the left side of the operator and the other is on the right side. Suppose, if

we have + operator, it will be written as 2 + 4. However, in case of multiplication, we

will write as 5*6. We may have unary operators like negation (-) or in Boolean

expression we have NOT. In this example, there are all the binary operators.

Therefore, this tree is a binary tree. This is not the Binary Search Tree. In BST, the

values on the left side of the nodes are smaller and the values on the right side are

greater than the node. Therefore, this is not a BST. Here we have an expression tree

with no sorting process involved.

This is not necessary that expression tree is always binary tree. Suppose we have a

unary operator like negation. In this case, we have a node which has (-) in it and there

is only one leaf node under it. It means just negate that operand.

Let’s talk about the traversal of the expression tree. The inorder traversal may be

executed here.

Inorder traversal yields: a+b*c+d*e+f*g

We use the inorder routine and give the root of this tree. The inorder traversal will be

a+b*c+d*e+f*g. You might have noted that there is no parenthesis. In such

expressions when there is addition and multiplication together, we have to decide

which operation should be performed first. At that time, we have talked about the

operator precedence. While converting infix expression into postfix expression, we

have written a routine, which tells about the precedence of the operators like

multiplication has higher precedence than the addition. In case of the expression 2 + 3

* 4, we first evaluate 3 * 4 before adding 2 to the result. We are used to solve such

expressions and know how to evaluate such expressions. But in the computers, we

have to set the precedence in our functions.

We have an expression tree and perform inorder traversal on it. We get the infix form
of the expression with the inorder traversal but without parenthesis. To have the

+

+ *

a * + g

b c * f

d e

CS301 – Data Structures Lecture No. 25

Page 286 of 505

parenthesis also in the expressions, we will have to do some extra work.

Here is the code of the inorder routine which puts parenthesis in the expression.

This is the same inorder routine used by us earlier. It takes the root of the tree to be

traversed. First of all, we check that the root node is not null. In the previous routine

after the check, we have a recursive call to inorder passing it the left node, print the

info and then call the inorder for the right node. Here we have included parenthesis

using the cout statements. We print out the opening parenthesis ‘(‘before the recursive

call to inorder. After this, we close the parenthesis. Then we print the info of the node

and again have opening parenthesis and recursive call to inorder with the right node

before having closing parenthesis in the end. You must have understood that we are

using the parenthesis in a special order. We want to put the opening parenthesis

before the start of the expression or sub expression of the left node. Then we close the

parenthesis. So inside the parenthesis, there is a sub expression.

On executing this inorder routine, we have the expression as (a + (b * c)) + (((d * e

) + f) * g).

/* inorder traversal routine using the parenthesis */

void inorder(TreeNode<int>* treeNode)

{

if(treeNode != NULL){

cout << "(";

inorder(treeNode->getLeft());

cout << ")";

cout << *(treeNode->getInfo());
cout << "(";

inorder(treeNode->getRight());
cout << ")";

}

}

CS301 – Data Structures Lecture No. 25

Page 287 of 505

Inorder: (a + (b * c)) + (((d * e) + f) * g)

We put an opening parenthesis and start from the root and reach at the node ‘a’. After

reaching at plus (+), we have a recursive call for the subtree *. Before this recursive

call, there is an opening parenthesis. After the call, we have a closing parenthesis.

Therefore the expression becomes as (a + (b * c)). Similarly we recursively call the

right node of the tree. Whenever, we have a recursive call, there is an opening

parenthesis. When the call ends, we have a closing parenthesis. As a result, we have

an expression with parenthesis, which saves a programmer from any problem of

precedence now.

Here we have used the inorder traversal. If we traverse this tree using the postorder

mode, then what expression we will have? As a result of postorder traversal, there will

be postorder expression.

Postorder traversal: a b c * + d e * f + g * +

This is the same tree as seen by us earlier. Here we are performing postorder traversal.

In the postorder, we print left, right and then the parent. At first, we will print a.

+

+ *

a * + g

b c * f

d e

+

+ *

a *
+ g

b c * f

d e

CS301 – Data Structures Lecture No. 25

Page 288 of 505

Instead of printing +, we will go for b and print it. This way, we will get the postorder

traversal of this tree and the postfix expression of the left side is a b c * + while on

the right side, the postfix expression is d e * f + g * +. The complete postfix

expression is a b c * + d e * f + g * +. The expression undergoes an alteration with

the change in the traversal order. If we have some expression tree, there may be the

infix, prefix and postfix expression just by traversing the same tree. Also note that in

the postfix form, we do not need parenthesis.

Let’s see how we can build this tree. We have some mathematical expressions while

having binary operators. We want to develop an algorithm to convert postfix

expression into an expression tree. This means that the expression should be in the

postfix form. In the start of this course, we have seen how to covert an infix

expression into postfix expression. Suppose someone is using a spreadsheet program

and typed a mathematical expression in the infix form. We will first convert the infix

expression into the postfix expression before building expression tree with this postfix

expression.

We already have an expression to convert an infix expression into postfix. So we get

the postfix expression. In the next step, we will read a symbol from the postfix

expression. If the symbol is an operand, put it in a tree node and push it on the stack.

In the postfix expression, we have either operators or operands. We will start reading

the expression from left to right. If the symbol is operand, make a tree node and push

it on the stack. How can we make a tree node? Try to memorize the treeNode class.

We pass it some data and it returns a treeNode object. We insert it into the tree. A

programmer can also use the insert routine to create a tree node and put it in the tree.

Here we will create a tree node of the operand and push it on the stack. We have been

using templates in the stack examples. We have used different data types for stacks

like numbers, characters etc. Now we are pushing treeNode on the stack. With the

help of templates, any kind of data can be pushed on the stack. Here the data type of

the stack will be treeNode. We will push and pop elements of type treeNode on the

stack. We will use the same stack routines.

If symbol is an operator, pop two trees from the stack, form a new tree with operator

as the root and T1 and T2 as left and right subtrees and push this tree on the stack. We

are pushing operands on the stacks. After getting an operator, we will pop two

operands from the stack. As our operators are binary, so it will be advisable to pop

two operands. Now we will link these two nodes with a parent node. Thus, we have

the binary operator in the parent node.

Let’s see an example to understand it. We have a postfix expression as a b + c d e + *

*. If you are asked to evaluate it, it can be done with the help of old routine. Here we

want to build an expression tree with this expression. Suppose that we have an empty

stack. We are not concerned with the internal implementation of stack. It may be an

array or link list.

First of all, we have the symbol a which is an operand. We made a tree node and push

it on the stack. The next symbol is b. We made a tree node and pushed it on the stack.

In the below diagram, stack is shown.

CS301 – Data Structures Lecture No. 25

Page 289 of 505

a b + c d e + * *

top

If symbol is an operand, put it in a one node tree and push it on a stack.

Our stack is growing from left to right. The top is moving towards right. Now we

have two nodes in the stack. Go back and read the expression, the next symbol is +

which is an operator. When we have an operator, then according to the algorithm, two

operands are popped. Therefore we pop two operands from the stack i.e. a and b. We

made a tree node of +. Please note that we are making tree nodes of operands as well

as operators. We made the + node parent of the nodes a and b. The left link of the

node + is pointing to a while right link is pointing to b. We push the + node in the

stack.

a b + c d e + * *

If symbol is an operator, pop two trees from the stack, form a new tree with operator

as the root and T1 and T2 as left and right subtrees and push this tree on the stack.

Actually, we push this subtree in the stack. Next three symbols are c, d, and e. We

made three nodes of these and push these on the stack.

+

a b

a b

CS301 – Data Structures Lecture No. 25

Page 290 of 505

a b + c d e + * *

Next we have an operator symbol as +. We popped two elements i.e. d and e and

linked the + node with d and e before pushing it on the stack. Now we have three

nodes in the stack, first + node under which there are a and b. The second node is c

while the third node is again + node with d and e as left and right nodes.

a b + c d e + * *

The next symbol is * which is multiplication operator. We popped two nodes i.e. a

subtree of + node having d and e as child nodes and the c node. We made a node of *

and linked it with the two popped nodes. The node c is on the left side of the * node

and the node + with subtree is on the right side.

+ c d e

a b

+ c +

a b d e

CS301 – Data Structures Lecture No. 25

Page 291 of 505

a b + c d e + * *

The last symbol is the * which is an operator. The final shape of the stack is as under:

a b + c d e + * *

In the above figure, there is a complete expression tree. Now try to traverse this tree in

the inorder. We will get the infix form which is a + b * c * d + e. We don’t have

parenthesis here but can put these as discussed earlier.

*

+ *

a b c

+

d e

+
*

a b c

+

d e

CS301 – Data Structures Lecture No. 25

Page 292 of 505

This is the way to build an expression tree. We have used the algorithm to convert the

infix form into postfix form. We have also used stack data structure. With the help of

templates, we can insert any type of data in the stack. We have used the expression

tree algorithm and very easily built the expression tree.

In the computer science, trees like structures are used very often especially in
compilers and processing of different languages.

Huffman Encoding

There are other uses of binary trees. One of these is in the compression of data. This is

known as Huffman Encoding. Data compression plays a significant role in computer

networks. To transmit data to its destination faster, it is necessary to either increase

the data rate of the transmission media or simply send less data. The data compression

is used in computer networks. To make the computer networks faster, we have two

options i.e. one is to somehow increase the data rate of transmission or somehow send

the less data. But it does not mean that less information should be sent or transmitted.

Information must be complete at any cost.

Suppose you want to send some data to some other computer. We usually compress

the file (using winzip) before sending. The receiver of the file decompresses the data

before making its use. The other way is to increase the bandwidth. We may want to

use the fiber cables or replace the slow modem with a faster one to increase the

network speed. This way, we try to change the media of transmission to make the

network faster. Now changing the media is the field of electrical or communication

engineers. Nowadays, fiber optics is used to increase the transmission rate of data.

With the help of compression utilities, we can compress up to 70% of the data. How

can we compress our file without losing the information? Suppose our file is of size 1

Mb and after compression the size will be just 300Kb. If it takes ten minutes to

transmit the 1 Mb data, the compressed file will take 3 minutes for its transmission.

You have also used the gif images, jpeg images and mpeg movie files. All of these

standards are used to compress the data to reduce their transmission time.

Compression methods are used for text, images, voice and other types of data.

We will not cover all of these compression algorithms here. You will study about

algorithms and compression in the course of algorithm. Here, we will discuss a

special compression algorithm that uses binary tree for this purpose. This is very

simple and efficient method. This is also used in jpg standard. We use modems to

connect to the internet. The modems perform the live data compression. When data

comes to the modem, it compresses it and sends to other modem. At different points,

compression is automatically performed. Let’s discuss Huffman Encoding algorithm.

Huffman code is method for the compression of standard text documents. It makes

use of a binary tree to develop codes of varying lengths for the letters used in the

original message. Huffman code is also part of the JPEG image compression scheme.

The algorithm was introduced by David Huffman in 1952 as part of a course

assignment at MIT.

Now we will see how Huffman Encoding make use of the binary tree. We will take a

CS301 – Data Structures Lecture No. 25

Page 293 of 505

simple example to understand it. The example is to encode the 33-character phrase:

"traversing threaded binary trees"

In the phrase we have four words including spaces. There is a new line character in

the end. The total characters in the phrase are 33 including the space. We have to send

this phrase to some other computer. You know that binary codes are used for

alphabets and other language characters. For English alphabets, we use ASCII codes.

It normally consists of eight bits. We can represent lower case alphabets, upper case

alphabets, 0,1,…9 and special symbols like $, ! etc while using ASCII codes.

Internally, it consists of eight bits. If you have eight bits, how many different patterns

you can be have? You can have 256 different patterns. In English, you have 26 lower

case and 26 upper case alphabets. If you have seen the ASCII table, there are some

printable characters and some unprintable characters in it. There are some graphic

characters also in the ASCII table.

In our example, we have 33 characters. Of these, 29 characters are alphabets, 3 spaces

and one new line character. The ASCII code for space is 32 and ASCII code for new

line character is 10. The ASCII value for ‘a’ is 95 and the value of A is 65. How many

bits we need to send 33 characters? As every character is of 8 bits, therefore for 33

characters, we need 33 * 8 = 264. But the use of Huffman algorithm can help send the

same message with only 116 bits. So we can save around 40% using the Huffman

algorithm.

Let’s discuss how the Huffman algorithm works. The algorithm is as:

 List all the letters used, including the "space" character, along with the

frequency with which they occur in the message.

 Consider each of these (character, frequency) pairs to be nodes; they are

actually leaf nodes, as we will see.

 Pick the two nodes with the lowest frequency. If there is a tie, pick randomly

amongst those with equal frequencies.
 Make a new node out of these two, and turn two nodes into its children.

 This new node is assigned the sum of the frequencies of its children.

 Continue the process of combining the two nodes of lowest frequency till the

time only one node, the root is left.

Let’s apply this algorithm on our sample phrase. In the table below, we have all the
characters used in the phrase and their frequencies.

Original text:

traversing threaded binary trees

size: 33 characters (space and newline)

Letters : Frequency

NL : 1

SP : 3

a : 3

CS301 – Data Structures Lecture No. 25

Page 294 of 505

b : 1

d : 2

e : 5

g : 1
h : 1

The new line occurs only once and is represented in the above table as NL. Then

white space occurs three times. We counted the alphabets that occur in different

words. The letter a occurs three times, letter b occurs just once and so on.

Now we will make tree with these alphabets and their frequencies.

2 is equal to sum of

the frequencies of the

two children nodes.

a t

3 3

d i n

2 2 2

e r
5 5

s 2 SP

2 3

NL b g h v y

1 1 1 1 1 1

We have created nodes of all the characters and written their frequencies along with

the nodes. The letters with less frequency are written little below. We are doing this

for the sake of understandings and need not to do this in the programming. Now we

will make binary tree with these nodes. We have combined letter v and letter y nodes

with a parent node. The frequency of the parent node is 2. This frequency is

calculated by the addition of the frequencies of both the children.

In the next step, we will combine the nodes g and h. Then the nodes NL and b are

combined. Then the nodes d and i are combined and the frequency of their parent is

the combined frequency of d and i i.e. 4. Later, n and s are combined with a parent

node. Then we combine nodes a and t and the frequency of their parent is 6. We

continue with the combining of the subtree with nodes v and y to the node SP. This

way, different nodes are combined together and their combined frequency becomes

the frequency of their parent. With the help of this, subtrees are getting connected to

each other. Finally, we get a tree with a root node of frequency 33.

CS301 – Data Structures Lecture No. 25

Page 295 of 505

33

14
19

8
9 10

6

a t 4 4

3 3

d i n s

2 2 2 2

NL

1

e
4 5

2 2

b g h

1 1 1

r 5

5

2 SP

3

v y

1 1

We get a binary tree with character nodes. There are different numbers with these

nodes that represent the frequency of the character. So far, we have learnt how to

make a tree with the letters and their frequency. In the next lecture, we will discuss

the ways to compress the data with the help of Huffman Encoding algorithm.

CS301 – Data Structures Lecture No. 26

Page 296 of 505

Data Structures

Lecture No. 26

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

Summary

4.4.2

 Hoffman Encoding

 Mathematical Properties of Binary Trees

Huffman Encoding
We will continue our discussion on the Huffman encoding in this lecture. In the

previous lecture, we talked about the situation where the data structure binary tree was

built. Huffman encoding is used in data compression. Compression technique is

employed while transferring the data. Suppose there is a word-document (text file)

that we want to send on the network. If the file is, say, of one MB, there will be a lot

of time required to send this file. However, in case of reduction of size by half

through compression, the network transmission time also get halved. After this

example, it will be quite easy to understand the Hoffman encoding to compress a text

file.

We know that Huffman code is a method for the compression of standard text

documents. It makes use of a binary tree to develop codes of varying lengths for the

letters used in the original message. Huffman code is also a part of the JPEG image

compression scheme. David Huffman introduced this algorithm in the year 1952 as

part of a course assignment at MIT.

In the previous lecture, we had started discussing a simple example to understand

Huffman encoding. In that example, we were encoding the 32-character phrase:

"traversing threaded binary trees". If this phrase were sent as a message in a network

using standard 8-bit ASCII codes, we would have to send 8*32= 256 bits. However,

the Huffman algorithm can help cut down the size of the message to 116 bits.

In the Huffman encoding, following steps are involved:

1. List all the letters used, including the "space" character, along with the

frequency with which they occur in the message.

2. Consider each of these (character, frequency) pairs as nodes; these are actually

leaf nodes, as we will see later.

3. Pick two nodes with the lowest frequency. If there is a tie, pick randomly
amongst those with equal frequencies

4. Make a new node out of these two and develop two nodes as its children.

5. This new node is assigned the sum of the frequencies of its children.

6. Continue the process of combining the two nodes of lowest frequency till the

time, only one node, the root, is left.

CS301 – Data Structures Lecture No. 26

Page 297 of 505

In the first step, we make a list of all letters (characters) including space and end line

character and find out the number of occurrences of each letter/character. For example

we ascertain how many times the letter ‘a’ is found in the file and how many times ‘b’

occurs and so on. Thus we find the number of occurrences (i.e. frequency) of each

letter in the text file.

In the step 2, we consider the pair (i.e. letter and its frequency) as a node. We will

consider these as leaf nodes. Afterwards, we pick two nodes with the lowest

frequency in the list. If there are more than one pairs of same frequency, we will

choose a pair randomly amongst those with equal frequencies.

Suppose, in a file, the letter ‘a’ occurs 50 times and ‘b’ and ‘c’ five times each. Here,

‘b’ and ‘c’ have the lowest frequency. We will take these two letters as leaf nodes and

build the tree from these ones. As fourth step states, we make a new node as the

parent of these two nodes. The ‘b’ and ‘c’ are its children. In the fifth step, we assign

to this new node the frequency equal to the sum of the frequencies of its children.

Thus a three-node tree comes into existence. This is shown in the following figure.

Fig 26.1:

We continue this process of combining the two nodes of lowest frequency till the

time, only one node i.e. the root is left.

Now we come back to our example. In this example, there is a text string as written
below.

traversing threaded binary trees

The size of this character string is 33 (it includes 3 space characters and one new line

character). In the first step, we perform the counting of different characters in the

string manually. We do not assign a fake or zero frequency to a letter that is not

present in the string. A programmer may be concerned only with the characters/letters

that are present in the text. We see that the letters and their frequencies in the above

text is as given below.

Character frequency character frequency

NL 1 I 2

SP 3 n 2

A 3 r 5

B 1 s 2

D 2 t 3

E 5 v 3

G 1 y 1

H 1

Table 1: Frequency table

10

a, 5 b, 5

CS301 – Data Structures Lecture No. 26

Page 298 of 505

In the second step, we make nodes of these pairs of letters and frequencies. The

following figure (fig 26.2) depicts the letters as nodes. We have written the frequency

of each letter with the node. The nodes have been categorized with respect to the

frequencies for simplicity. We are going to build the tree from downside i.e. from the

lowest frequency.

Now according to third step, two nodes of lowest frequency are picked up. We see

that nodes NL, b, g, h, v and y have the frequency 1. We randomly choose the nodes v

and y. now, as the fourth step, we make a new node and join the leaf nodes v and y to

it as its children. We assign the frequency to this new (parent) node equal to the sum

of the frequencies of its children i.e. v and y. Thus in the fifth step; the frequency of

this new node is 2. We have written no letter in this node as shown in the figure

below.

Now we continue this process with other nodes. Now we join the nodes g and h as

children of a new node. The frequency of this node is 2 i.e. the sum of frequencies of

g and h. After this, we join the nodes NL and b. This also makes a new node of
frequency 2. Thus the nodes having frequency 1 have joined to the respective parent

nodes. This process is shown in the following figure (Fig 26.3).

2 is equal to sum
of the frequencies of

the two children nodes.

a

3
t
3

e

5
r

5

d

2

i n

2 2
s
2

2 SP

3

NL b g h
1 1 1 1

v

1

y

1

Fig 26.2: Nodes with their respective frequencies

CS301 – Data Structures Lecture No. 26

Page 299 of 505

Now we come to the nodes with a frequency 2. Here we join the pair of nodes d and i

and also the pair n and s. Resultantly, the two nodes coming into being after joining

have the frequency 4. This frequency is the sum of the frequencies of their children.

Now, we will bring the nodes, a and t together. The parent node of a and t has the

frequency 6 i.e. the sum of a and t. These new nodes are shown in the following

figure.

Now we consider these new nodes as inner nodes and build the tree upward towards

the root. Now we take the node SP and join it with the node that is the parent of v and

y. The resultant node has frequency 5 as the frequencies of its children are 2 and 5

respectively. Now we join these nodes of higher frequencies. In other words, the node

r is joined with the newly created node of frequency 5 that is on the left side of node r

in the figure 26.5. Thus a new node of frequency 10 is created. We join the node e and

the node of frequency 4 on its right side. Resultantly, a new node of frequency 9

comes into existence. Then we join the nodes having frequency 4 and create a new

a
3

t

3

e

5
r

5

d

2

i n

2 2
s

2
2 2 2 SP

3

NL

1
b g

1 1
h
1

v

1

y

1

Fig 26.3: joining leaf nodes to create new nodes

6

a

3

t

3

4 4 4
e

5
r

5

5

d

2

i n
2 2

s

2
2 2 2 SP

3

NL b g h
1 1 1 1

v

1

y

1

Fig 26.4: joining different nodes to create new nodes

CS301 – Data Structures Lecture No. 26

Page 300 of 505

node of frequency 8. The following figure shows the nodes created so far.

Now we will join the nodes of frequency 6 and 8 to create the node of frequency 14

and join the nodes of frequency of 9 and 10 to develop a new node of frequency of 19.

At the end, we make the root node with the frequency 33 and it comprises nodes of

frequency 14 and 19. Thus the tree is completed and shown in the following figure.

9 10

6
8

a

3

t

3

4 4 4
e

5
r

5

5

d

2

i n

2 2
s
2

2 2 2 SP

3

NL b g h
1 1 1 1

v

1

y

1

Fig 26.5: joining of nodes to build a tree

CS301 – Data Structures Lecture No. 26

Page 301 of 505

Now we will perform other steps of Hoffman encoding and develop character-

encoding scheme needed for data compression.

To go ahead, we have to do the following steps.

 Start at the root. Assign 0 to left branch and 1 to the right branch.

 Repeat the process down the left and right subtrees.

 To get the code for a character, traverse the tree from the root to the character

leaf node and read off the 0 and 1 along the path.

We start from the root node of the tree and assign the value 0 to the left branch and 1

to the right branch. Afterwards, we repeat this value assigning at nodes in left and

right subtrees. Thus all the paths have a value 0 or 1 as shown in the following figure.

We will develop the code with the help of these path values.

33

14
19

9

6
8

10

a

3

t

3

4 4 4
e
5

r

5

5

d

2

i n

2 2
s
2

2 2 2 SP

3

NL b g h
1 1 1 1

v
1

y
1

Fig 26.6: Hoffman encoding tree

CS301 – Data Structures Lecture No. 26

Page 302 of 505

In the last step, we get the code for the characters. To get the code for a character,

there is need of traversing the tree from the root to the character leaf node and read off

the 0 and 1 along the path. We start from the root and go to the letter of leaf node

following the edges. 0 and 1 are written down in the order in which they come in this

traversal to leaf node. For example, we want the code of letter d. To reach d from the

root; we have to go through the nodes of frequency 14. This path has value 0. Here, 0

will be the first digit in the code of d. From 14, we go to node of frequency 8. This

link (from 14 to 8) has value 1. Thus the second digit in code is 1. From node of

frequency 8, we go to node of frequency 4 to its left side. This side has value 0,

meaning that 0 is the third digit of code. From 4, we finally go to d and in this link we

get the value 0. Thus we see that to reach at d from the root, we have gone through the

branches 0, 1, 0 and 0. Thus, the code of letter d is 0100. Similarly the code of i is

0101. The same way, we find the code for each letter in the tree. The following table

shows the letters and their correspondent codes.

character code character code

NL 10000 i 0101

SP 1111 n 0110

a 000 r 110

33

0
1

14
19

0
1 0 1

0
6

1

8
9

0 1
0

a
3

t

3

4

1

e

5

0

10

1

r
5

5

0
1

4 4

0

n
2

1

s
2

0 1
0

1

d

2

i

2 0
2
1 0

2
1

2 SP

3

NL b g h
1 1 1 1

0

v

1

1

y

1

Fig 26.7: Hoffman encoding tree with path values

CS301 – Data Structures Lecture No. 26

Page 303 of 505

b 10001 s 0111

d 0100 t 001

e 101 v 11100

g 10010 y 11101

h 10011

Table 2: Hoffman code table

We know that every character is stored in the computer in binary format. Each

character has a code, called ASCII code. The ASCII code of a character consists of

ones and zeros i.e. it is in binary form. ASCII code is of eight bits. Normally, we

remember the decimal value of the characters. For example, letter ‘A’ has decimal

value 65. We can easily convert the decimal value into binary one in bit pattern. We

need not to remember these values. ASCII value of any character can be found from

the ASCII table. The ASCII code of each character is represented in eight bits with

different bit patterns.

Here in the example, we assign a code of our own (i.e. Hoffman code) to the letters

that are in the message text. This code also consists of ones and zeros. The above

table shows the characters and their Hoffman code. Now we come back to the

message text from which we developed the tree and assigned codes to the letters in

the text.

Look at the table (Table 2) shown above. Here we notice that the code of letters is of

variable length. We see that letters with higher frequency have shorter code. There are

some codes with a length five that are the codes of NL, b, g, h, v and y. Similarly we

see that the letters SP, d, i, n and s have codes of length four. The codes of the

remaining letters have length three. If we look at the frequency table (Table 1) of

these letters, we see that the letters with some higher frequency like a, e, r, and t, have

the code of shorter length, whereas the letters of lower frequency (like NL, b, g, h, v

and y) have codes of larger length.

We see in the table of the Hoffman codes of the letters that there will be need of 5, 4

or in some codes only 3 bits to represent a character, whereas in ASCII code, we need

8 bits for each character. Now we replace the letters in the text message with these

codes. In the code format i.e. in the form of ones and zeros, the message becomes as

under.

Our original message was

traversing threaded binary trees

The encoded form of the message is as under

We see that there are only ones and zeros in the code of message. Some letters have

been shown with their corresponding code. The first three bits 001 are for letter ‘t’.

The next three bits 110 are for letter ‘r’. After this the letter ‘a’ has three bits i.e. 000.

t r a v e r s i n g t

00111000011100101110011101010110100101111001
100111101010000100101010011111000101010110000
110111011111001110101101011110000

CS301 – Data Structures Lecture No. 26

Page 304 of 505

Next to it is the letter ‘v’ that has five bits. These bits are 11100 (shaded in the figure).

Similarly we have replaced all the letters of the message with their corresponding

Hoffman code. The encoded message is shown above.

Let’s compare this Hoffman encoded message with the encoding of message with

ASCII code. The ASCII code encoding means that if we have encoded this message

with 8 bits per character, the total length of message would be 264. As there are 33

characters, so the total length is 33 x 8 = 264. But in the Hoffman encoded message

(written in above table), there are only 120 bits. This number of bits is 54% less than

the number of bits in ASCII encoding form. Thus we can send the message with

almost half of the original length to a receiver.

Here the Hoffman encoding process comes to an end. In this process, we took a

message, did the frequency count of its characters and built a tree from these

frequencies. From this tree, we made codes of letters consisting of ones and zeros

only. Then with the help of these codes, we did the data compression. In this process

we saw that less data is required for the same message.

Now an important thing to be noted is regarding the tree building. We have built the

tree with our choices of nodes with same and different frequencies. Now if we have

chosen the nodes to join in different way, the tree built would be in a different form.

This results in the different Hoffman code for the letters. These will be in ones and

zeros but with different pattern. Thus the encoded message would have different

codes for the letters. Now the question arises how does the receiver come to know that

what code is used for what letter? The answer is very simple that the sender has to tell

the receiver that he is using such codes for letters. One way to tackle this problem is

that the sender sends the tree built through the use of frequencies, to the receiver to

decode the message. The receiver keeps a copy of this tree. Afterwards, when the

sender sends a message, the receiver will match it with respect to bit pattern with the

tree to see that what letter the sender has sent. The receiver will find the letter for the

first 2, 3, 4 or what numbers of bits match to a letter that it has in the tree as the

receiver also has a copy of the tree. We know that a tree has a root, inner nodes and

leaf node(s). The leaf node is a node whose left and right links is NULL. An inner

node has a left or right or both children. Now consider that the receiver has the same

tree data structure that the sender used to construct the codes. The sender has sent the

message that we have discussed above. The sender sends the 122 bits encoded

message to the receiver. The receiver will take the first bit of message and being on

the root of the tree, it will decide that on what side this bit will go. If the bit is zero, it

will go to the left of the root. However, if the bit is one, it will go to the right side of

the root before reaching to the child node. The next bit will go to the next level of the

tree to the left or right side depending on zero or one. Thus the traversal will go one

level down on receiving a bit. If we (the receiver) are on a path of the tree where the

leaf node is at level 6, it cannot reach the leaf node unless the receiver receives 6 bits.

We consider the case of letter ‘e’ whose code was of three bits. In this case, we go to

the first level by first bit and the second bit takes us to the third level. Finally on

reaching the third level with the third bit, we get the leaf node. We know that this

node is letter ‘e’ as the sender has sent us (as receiver) the whole tree with the

characters in the nodes. Thus after traversing the three bits, the receiver has confirmed

that it has received the letter ‘e’. Now on receiving the fourth bit, the receiver will go

back to the root and continue to choose the path i.e. on zero it will go to the left and

on one it will go to right. This way, it will reach the leaf node. The character at that

node will be the next character of the message. The bit pattern that was comprised of

CS301 – Data Structures Lecture No. 26

Page 305 of 505

following these links in the tree is extracted from the message. On the next bit, the

receiver again goes to the root node and the previous procedure is repeated to find the

next character. This way, it decodes the whole message.

The compression is very useful technique especially for communication purposes.

Suppose that we have to send a file of one Mb. Here each line in the file can be

compressed to 50 or 60 percent. Thus the file of one MB will be compressed to half

MB and can be sent more easily.

There is one more thing about this tree. When we started to build the tree from leaf

nodes i.e. bottom-up build of tree, we saw that there were choices for us to choose any

two leaf nodes to join. In our example, we chose them at random. The other way to do

it is the priority queue. We have seen the example of bank simulation. There we used

a priority queue for the events. We know that in a priority queue, the elements do not

follow the FIFO (first in first out) rule. But the elements have their position in the

queue with respect to a priority. In the example of bank simulation, in the Event

Queue, we remove the element from the queue that was going to occur first in the

future. We can use priority queue here in such a way that we put the letters in the

queue with respect to their frequencies. We will put and remove letters from the

queue with respect to their frequency. In this priority queue, the character with lowest

frequency is at the start of the queue. If two characters have the same frequency, these

will be one after the other in the queue. The character with the larger frequency will

be in the last of the queue. Now we take two frequencies from the queue and join

them to make a new node. Suppose that the nodes that we joined have frequency 1

and 2 respectively. So the frequency of the new node will be 3. We put this new node

in the queue. It takes its position in the queue with respect to its frequency as we are

using the priority queue. It is evident in procedure that we proceed to take two nodes

form the queue. These are removed and their parent node goes back to the queue with

a new frequency. This procedure goes on till the time the queue is empty. The last

node that becomes in the queue in the result of this procedure is the root node. This

root node has frequency 33 if we apply this procedure to our previous example.
Let’s talk about some general things related to Hoffman encoding. We use modems to
connect to Internet. These modems do the compression. The modem has a

compression feature. The modem has a chip that performs the task of compression.

When we give a sentence of say 80 characters to the modem to send, the modem

makes a Hoffman encoded tree of these characters. Then it will make codes from this

tree. We know that there is also a modem on the other end that will decode this

message. The sender modem will send the tree structure to the receiver. Now the

sender modem will send the data in compressed form. The receiving modem will

decode this compressed data by using the Hoffman encoded tree. Now the question

arises, will these codes be useful for other messages? In our example message the

letter ‘y’ has lower frequency and code of five bits. It may happen that in some

messages ‘y’ has higher frequency, needing code of less number of bits. To solve this

problem, the modems (sender and receiver) revise the codes after a certain time period

or after a particular number of bytes. In this revision, they build a new Hoffman tree

and exchange it to use it for communication for the next time period or for the next

fixed number of bytes.

There is some other compression techniques/algorithms for compression. The zip

routines like winzip and the jpeg, mpeg and other image formatting routines use

different algorithms for compression. We will read the compression algorithm in

detail in the course of Algorithms.

CS301 – Data Structures Lecture No. 26

Page 306 of 505

Mathematical Properties of Binary Trees

There are some mathematical properties of binary trees, which are actually theorems.

We will not prove these here. Most of these properties will be studied in some other

courses where we will prove them as theorem. Here we are going to talk about some

properties, much needed in the next topic about trees.

The first property is that a binary tree of N internal nodes has N+1 external nodes. We

are familiar with the term binary tree and internal node. The term external node is a

new one. To understand the external nodes, look at the following figure.

In this figure, the nodes with value i.e. A, B, C, D, E, F and G are the internal nodes.

Note that the leaf nodes are also included in internal nodes. In the figure, we see that

the right pointer of B is NULL. Similarly, the left pointer of D is NULL. The square

nodes in the figure are the NULL nodes. There is no data in these nodes as these are

NULL pointers. However these are the positions where the nodes can exist. These

square nodes are the external nodes. Now we see in the figure that the internal nodes

(leaf nodes are also included) are 9 and the external nodes (NULL nodes indicated by

squares) are 10 (i.e. 9 + 1). Hence it is the property that we have stated. We will see

the usage of this property in the upcoming lectures.

A

B C

internal node

D E F

G E F

external node

Fig 26.8: Tree with internal and external nodes

internal nodes: 9

external nodes: 10

CS301 – Data Structures Lecture No. 27

Page 307 of 505

Data Structures

Lecture No. 27

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 4

4.3

Summary

Properties of Binary Tree
By the end of the last lecture, we were having a discussion about the properties of the

binary trees. Let us recall, that I told you about a property of the binary trees

regarding relationship between internal nodes and external nodes i.e. If the number of

internal nodes is N, the number of external nodes will be N+1. Today I am going to

discuss another property of the binary trees, which together with the previous lecture,

will give us a start into a new topic. Let me have your attention to the second property

of the binary trees.

Property

A binary tree with N internal nodes has 2N links, N-1 links to internal nodes and N+1

Please recall that the first property dealt with the relationship between internal and

external nodes. This property is dealing with the relationship of links to the internal

nodes.

Now, what is a link? As you might already have understood, a link is that line, which

we draw between two nodes in a tree. Internally we use pointers in C++ to realize

links. In pictorial sketches, however, we use a line to show a link between the two

nodes. The property defines, that if you have a binary tree with Nodes, how many

links, it will have between the internal nodes (remember, it includes the leaf nodes),

and how many links it will have between the external nodes. We have not been

showing any links between the external nodes in the diagrams. These are, in fact, null

pointers. That means, these are the links, which we will show with the help of the

square nodes. Let us see a binary tree, on the basis of which, we will further explore

this property. In the following figure, the binary tree is shown again, which, in

addition to the normal links between the internal nodes, also contains external nodes

as squares and the external links as lines going to those squares.

Properties of Binary Tree

Threaded Binary Trees

Adding Threads During Insert

Where is Inorder Successor?

Inorder Traversal

links to external nodes.

CS301 – Data Structures Lecture No. 27

Page 308 of 505

external link

Fig 27.1

Now if you count the total number of links in the diagram between internal and

external nodes, it will be 2N. Remember, we are talking about links and not nodes. In

this tree, we have 9 nodes marked with capital letters, 8 internal links and 10 external

links. Adding the both kinds of links, we get 18, which is exactly 2 x 9.

As discussed already that these properties are mathematical theorems and can

therefore be proven mathematically. Let us now prove this property as to how do we

get 2N links in a binary tree with N internal nodes.

Property

A binary tree with N internal nodes has 2N links, N-1 links to internal nodes and N+1

links to external nodes.

In the previous lectures, I told you about the important property of the trees, that they

contain only one link between the two nodes. I had also shown you some structures,
which did not follow this property and I told you, that those were graphs.

Threaded Binary Trees

 In many applications binary tree traversals are carried out repeatedly.

procedure

 It would be useful to modify the tree data structure which represents the binary

 The same would true if we use a non-recursive but stack-driven traversal

 Thus N-1+N+1=2N links.

internal nodes.
 Every link connects a node to its parents, so there are N-1 links connecting

Internal links: 8

External links: 10 A

Internal link
B C

D E F

G E F

 In every rooted tree, each node, except the root, has a unique parent.

 Similarly each of the N+1 external nodes has one link to its parents.

 The overhead of stack operations during recursive calls can be costly.

CS301 – Data Structures Lecture No. 27

Page 309 of 505

tree so as to speed up, say, the inorder traversal process: make it "stack-free".

You must be remembering that there were four traversing methods of binary trees:

preorder, inorder, postorder and levelorder. First three preorder, inorder and

postorder were implemented using recursion. Those recursive routines were very

small, 3 to 4 lines of code and they could be employed to traverse a tree of any size.

We also traversed BST in inorder to retrieve the information in sorted order. We

employed stacks in recursive implementations. Although, recursive routines are of

few lines but when recursion is in action, recursive stack is formed that contains the

function calls. We also explicitly used stack for inorder non-recursive traversal. When

the calling pattern of recursive and non-recursive stack based routines were compared,

the calling pattern of both of the routines were similar.

Suppose that we have a BST that is traversed again and again for some operations of

find or print. Due to lot of recursive operations, the stack size keeps on growing. As a

result, the performance is affected. To overcome this performance bottleneck, we can

use non-recursive method but stack-driven traversal will again be an issue. The push

and pop operations of stack for insertion and retrieval will again take time. So is there

a way to do traversal without using a stack neither of implicit function call stack nor

explicit. The same idea is presented in the last bullets above that leads to threaded

binary trees:

 It would be useful to modify the tree data structure which represents the binary

tree so as to speed up, say, the inorder traversal process: make it "stack-free".

The idea in the above statement is to modify the tree data structure to speed up and

make it stack-free. Now, we see what kind of modification is required in the binary

trees.

 Oddly, most of the pointer fields in our representation of binary trees are NULL!

 Since every node (except the root) is pointed to, there are only N-1 non-NULL

pointers out of a possible 2N (for an N node tree), so that N+1 pointers are

We know that all the leaf node pointers are NULL. Each node of the tree contains the

data part, two pointer variables for left and right nodes links. But these pointer

variables are used when the node has further child nodes. We know that in a binary

tree the total number of links are 2N including both internal and external and the

number of NULL pointers is N+1.

NULL.

CS301 – Data Structures Lecture No. 27

Page 310 of 505

Internal nodes: 9

External nodes: 10 A

Internal node

B C

D E F

G E F

external node

Fig 27.2

In the figure above, the tree is the same as shown in Fig 27.1. The square nodes

shown in this figure are external nodes. Thinking in terms of pointers all the pointers

of these nodes are NULL or in other words they are available to be used later. We

recognize these nodes as leaf nodes. Besides that, what can we achieve using them is

going to be covered in Threaded Binary Trees.

 The threaded tree data structure will replace these NULL pointers with pointers to

the inorder successor (predecessor) of a node as appropriate.

We are creating a new data structure inside the tree and when the tree will be

constructed, it will be called a threaded binary tree. The NULL pointers are replaced

by the inorder successor or predecessor. That means while visiting a node, we can tell

which nodes will be printed before and after that node.

 We'll need to know whenever formerly NULL pointers have been replaced by non

NULL pointers to successor/predecessor nodes, since otherwise there's no way to

distinguish those pointers from the customary pointers to children.

This is an important point as we need to modify our previous logic of identifying leaf

nodes. Previously the node with left and right nodes as NULL was considered as the

leaf node but after this change the leaf node will contain pointers to predecessor and

successor. So in order to identify that the pointers has been modified to point to their

inorder successor and predecessor, two flags will be required in the node. One flag

will be used for successor and other for predecessor. If both the pointers were NULL,

left pointer variable will be used to point inorder predecessor, the flag for this will be

turned on and the right pointer variable will be used to keep inorder successor and the

flag will be turned on once the successor address is assigned.

Adding Threads During Insert

CS301 – Data Structures Lecture No. 27

Page 311 of 505

t

Fig 27.3

If we print the above tree in inorder we will get the following output:

14 15 18 20

In the above figure, the node 14 contains both left and right links. The left pointer is

pointing to a subtree while the right subtree is pointing to the node 15. The node 15’s

right link is towards 18 but the left link is NULL but we have indicated it with a

rounded dotted line towards 14. This indicates that the left pointer points to the

predecessor of the node.

Below is the code snippet for this logic.

t->L = p->L; // copy the thread

t->LTH = thread;

t->R = p; // *p is successor of *t

t->RTH = thread; p->L = t; // attach the new leaf
p->LTH = child;

Let’s insert a new node in the tree shown in the above figure. The Fig 27.4 indicates

this new insertion.

14

15

p
18

20

16

CS301 – Data Structures Lecture No. 27

Page 312 of 505

Fig 27.4

The new node 16 is shown in the tree. The left and right pointers of this new node are

NULL. As node 16 has been created, it should be pointed to by some variable. The

name of that variable is t. Next, we see the location in the tree where this new node

with number 16 can be inserted. Clearly this will be after the node 15 but before node

18. As a first step to insert this node in the tree as the left child of the node 18, we did
the following:

1. t->L = p->L; // copy the thread

2. t->LTH = thread;

3. t->R = p; // *p is successor of *t
4. t->RTH = thread;

5. p->L = t; // attach the new leaf

6. p->LTH = child;

As the current predecessor of node 18 is 15. After node 16 will be inserted in the tree,
it will become the inorder predecessor of 18, therefore, in the first line of the code t-

>L = p->L, left pointer of node 18 (pointed to by pointer p) is assigned to the left

pointer of node 16 (pointer to by pointer t).

14

15

p
18

1

20

t 16

CS301 – Data Structures Lecture No. 27

Page 313 of 505

Fig 27.5

In the next line of code t->LTH = thread, the left flag is assigned a variable thread

that is used to indicate that it is on.

Fig 27.6

In the third line of code, t->R = p, 18 being the successor of node 18, its pointer p is

assigned to the right pointer (t->R) of node 16.

14

15

p
18

1

20
t 16

2

14

15

p
18

1

20
t 16 3

2

CS301 – Data Structures Lecture No. 27

Page 314 of 505

Fig 27.7

Next line, t->RTH = thread contains flag turning on code.

Fig 27.8

In the next line p->L = t, the node 16 is attached as the left child of the node 18.

14

15

p
18

1

20
t 16 4 3

2

14

15

p 18

1
5

20
t 16 4 3

2

CS301 – Data Structures Lecture No. 27

Page 315 of 505

Fig 27.9

The flag is truned on in the last line, p->LTH = child.

If we insert few more nodes in the tree, we have the tree as given below:

Above given is a BST and you have seen many BSTs before, which are not thread

binary trees. Without the threads, it is clear from the figure that there are number of

links present in the tree that are NULL. We have converted the NULLs to threads in

this tree.

Let’s do inorder non-recursive traversal of the tree. We started at 14 then following

the left link came to 4 and after it to 3. If we use recursion then after the call for node

3 is finished (after printing 3), it returns to node 4 call and then 4 is printed using the

recursive call stack. Here we will print 3 but will not stop. As we have used threads,

we see the right pointer of node 3 that is not NULL and pointing to its successor node

14

15

p
6

18

1
5

20
t 16 4 3

2

14

4
15

3 9 18

7 16 20

5
Fig 27.10

CS301 – Data Structures Lecture No. 27

Page 316 of 505

4, we go to 4 and print it. Now which node is inorder successor of node 4. It is node 5.

From node 4, we traversed to right child of it node 9. From node 9, we went to node 7

and then finally node 5. Now, this node 5 is a leaf node. Previously, without using

threads, we could identify leaf nodes, whose both pointers left and right were NULL.

In this case, using threads, as discussed above, we set the pointers and turn the flags

on when a pointer left or right is set to its predecessor or successor. After printing

node 5, we traverse its right thread and go to node 7. In this fashion, whole of the tree

can be traversed without recursion.

Now, let’s see some code:

TreeNode* nextInorder(TreeNode* p)

{

if(p->RTH == thread)

return(p->R);

else {

}

}

p = p->R;

while(p->LTH == child)

p = p->L;

return p;

Above given is a routine nextInorder, which gives the inorder successor of a node

passed in parameter pointer p. Now what it does is:
If the RTH flag of the p node (the node passed in the parameter) is thread then it will

return the node being pointed by the right thread (p->R), which would be its inorder

successor. Otherwise, it does the following.

It goes to the right node of p and starts pointing it using the same p pointer. From

there it keeps on moving (in a loop fashion) towards the left of the node as long as the

statement p->LTH == child is true. After this loop is terminated, the node p is

returned.

Next, we see this pictorially.

Where is Inorder Successor?

CS301 – Data Structures Lecture No. 27

Page 317 of 505

Inorder successor of 4.
14

4
15

3 9 18

7 16 20

5
Fig 27.11

We are at node 4 and want to find its inorder successor. If you remember the delete

operation discussed in the previous lecture, where we searched for the inorder

successor and found it to be the left-most node in the right subtree of the node.

Inorder successor of 4.
14

4
15

3 9 18

7 16 20

5

Fig 27.12

Left most node in right subtree of 4

In this figure, the right subtree of 4 is starting from node 9 and ending at node 5. Node

5 is the left most node of it and this is also the inorder successor of node 4. We cannot

go to node 5 directly from node 4, we go to node 9 first then node 7 and finally to

node 5.

CS301 – Data Structures Lecture No. 27

Page 318 of 505

Inorder successor of 9.
14

4
15

3 9 18

7 16 20

Follow right thread to 14.

5

Fig 27.13

We move from node 9 to node 5 following the normal tree link and not thread. As

long as the normal left tree link is there of a node, we have set the LTH flag to child.

When we reach at node 5, the left link is a thread and it is indicated with a flag. See

the while loop given in the above routine again:

while(p->LTH == child)

p = p->L;

return p;

CS301 – Data Structures Lecture No. 27

Page 319 of 505

Inorder Traversal

Now by using this routine, we try to make our inorder traversal procedure that is non-

recursive and totally stack free.

 If we can get things started correctly, we can simply call nextInorder repeatedly

(in a simple loop) and move rapidly around the tree inorder printing node labels

(say) - without a stack.

The pointer p is pointing to the root node of the tree. If we start traversing from this

node and pass this root node pointer to our routine nexInorder above, it will create a

problem.

We see the routine again to see the problem area clearly:

TreeNode* nextInorder(TreeNode* p)

{

if(p->RTH == thread)

return(p->R);

else {

}

}

p = p->R;

while(p->LTH == child)

p = p->L;

return p;

In the first part, it is checking for the RTH flag to be set to thread, which is not the

case for the root node. The control will be passed to the else part of the routine. In else

part, in the very first step, we are moving towards right of root that is to node 15.

14 P

4
15

3 9 18

7 16 20

5

Fig 27.14

CS301 – Data Structures Lecture No. 27

Page 320 of 505

 If we call nextInorder with the root of the binary tree, we're going to have some
difficulty. The code won't work at all the way we want.

Note that in this tree inorder traversal, the first number we should print is 3 but now

we have reached to node 15 and we don’t know how can we reach node 3. This has

created a problem. In the lecture, we will make a small change in this routine to cater

to this situation i.e. when a root node pointer is passed to it as a parameter. After that

change the routine will work properly in case of root node also and it will be non-

recursive, stack free routine to traverse the tree.

14

4
15 P ?

3 9 18

7 16 20

5

Fig 27.15

CS301 – Data Structures Lecture No. 28

Page 321 of 505

Data Structures

Lecture No. 28

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 6

6.3.1

Summary

 Inorder traversal in threaded trees

 Complete Binary Tree

Inorder traversal in threaded trees
Discussion on the inroder traversal of the threaded binary tree will continue in this
lecture. We have introduced the threads in the tree and have written the nextInorder

routine. It is sure that the provision of the root can help this routine perform the

inorder routine properly. It will go to the left most node before following the threads

to find the inorder successors. The code of the routine is given below:

When we apply this routine on the sample tree, it does not work properly because the

pointer that points to the node goes in the wrong direction. How can we fix this

problem? Let’s review the threaded binary tree again:

/* The inorder routine for threaded binary tree */

TreeNode* nextInorder(TreeNode* p){

if(p->RTH == thread) return(p->R);

else {

p = p->R;

while(p->LTH == child)
p = p->L;

return p;

}

}

CS301 – Data Structures Lecture No. 28

Page 322 of 505

In the above figure, we have a binary search tree. Threads are also seen in it. These

threads points to the successor and predecessor.

Our nextInoder routine, first of all checks that the right pointer of the node is thread. It

means that it does not point to any tree node. In this case, we will return the right

pointer of the node as it is pointing to the inorder successor of that node. Otherwise,

we will go to some other part. Here we will change the value of pointer p to its right

before running a while loops as long as the left pointer is the node. That means the left

child is not a thread. We move to the left of the pointer p and keep on doing so till the

time the left pointer becomes a thread.

We will pass the root of the tree to the nextInorder routine. The pointer p is pointing

to the node 14 i.e. the root node. As the right pointer of the node 14 is not a thread, so
the pointer p will move to the node 15 as shown below:

14 p

4 15

3 9 18

7 16 20

5

CS301 – Data Structures Lecture No. 28

Page 323 of 505

Here we want the inorder traversal. It is obvious from the above figure that 15 is not

the first value. The first value should be 3. This means that we have moved in the

wrong direction. How this problem can be overcome? We may want to implement

some logic that in case of the root node, it is better not to go towards the right side.

Rather, the left side movement will be appropriate. If this is not the root node, do as

usual. It may lend complexities to our code. Is there any other way to fix it? Here we

will use a programming trick to fix it.

We will make this routine as a private member function of the class so other classes

do not have access to it. Now what is the trick? We will insert a new node in the tree.

With the help of this node, it will be easy to find out whether we are on the root node

or not. This way, the pointer p will move in the correct direction.

Let’s see this trick. We will insert an extra node in the binary tree and call it as a

dummy node. This is well reflected in the diagram of the tree with the dummy node.

We will see where that dummy node has been inserted.

14

4 15 p?

3 9 18

7 16 20

5

CS301 – Data Structures Lecture No. 28

Page 324 of 505

15

18

16 20

14

4

3 9

This dummy node has either no value or some dummy value. The left pointer of this

node is pointing to the root node of the tree while the right pointer is seen pointing

itself i.e. to dummy node. There is no problem in doing all these things. We have put

the address of dummy node in its right pointer and pointed the left thread of the left

most node towards the dummy node. Similarly the right thread of the right-most node

is pointing to the dummy node. Now we have some extra pointers whose help will

make the nextInorder routine function properly.

Following is a routine fastInorder that can be in the public interface of the class.

This routine takes a TreeNode as an argument that make it pass through the root of the

tree. In the while loop, we are calling the nextInorder routine and pass it p. The

pointer returned from this routine is then assigned to p. This is a programming style of

C. We are performing two tasks in a single statement i.e. we call the nextInorder by

passing it p and the value returned by this routine is saved in p. Then we check that

the value returned by the nextInorder routine that is now actually saved in p, is not a

dummy node. Then we print the info of the node. This function is called as:

fastInorder(dummy);

We are not passing it the root of the tree but the dummy node. Now we will get the

correct values and see in the diagrams below that p is now moving in the right

direction. Let’s try to understand this with the help of diagrams.

dummy

7

5

/* This routine will traverse the binary search tree */

void fastInorder(TreeNode* p)

{

while((p=nexInorder(p)) != dummy) cout << p->getInfo();

}

CS301 – Data Structures Lecture No. 28

Page 325 of 505

First of all we call the nextInorder routine passing it the dummy node.

The pointer p is pointing to the dummy node. Now we will check whether the right

pointer of this node is not thread. If so, then it is advisable to move the pointer

towards the right pointer of the node. Now we will go to the while loop and start

moving on the left of the node till the time we get a node with the left pointer as

thread. The pointer p will move from dummy to node 14. As the left pointer of node

14 is not thread so p will move to node 4. Again the p will move to node 3. As the left

pointer of p is thread, the while loop will finish here. This value will be returned that

is pointing to node 3. The node 3 should be printed first of all regarding the inorder

traversal. So with the help of our trick, we get the right information.

Now the while loop in the fastInorder will again call the nextInorder routine. We

have updated the value of p in the fastInorder that is now pointing to the node 3. This

is shown in the figure below:

p dummy

14

4 15

3 9 18

7 16 20

5

CS301 – Data Structures Lecture No. 28

Page 326 of 505

p

According to the code, we have to follow the right thread of the node 3 that is

pointing to the node 4. Therefore p is now pointing to the node 4. Here 4 is inorder

successor of 3. So the pointer p has moved to the correct node for inorder traversal.

As the right pointer of the node 4 is a link, p will move to node 9. Later, we will go on

the left of nodes and reach at the node 5. Looking at the tree, we know that the inorder

successor of the node 4 is node 5. In the next step, we will get the node 7 and so on.

With the help of threads and links, we are successful in getting the correct inorder

traversal. No recursive call has been made so far. Therefore stack is not used. This

inorder traversal will be faster than the recursive inorder traversal. When other classes

use this routine, it will be faster. We have not used any additional memory for this

routine. We are using the null links and putting the values of thread in it. This routine

is very simple to understand. In the recursive routines, we have to stop the recursion

at some condition. Otherwise, it will keep on executing and lead to the aborting of our

program.

Complete Binary Tree
We have earlier discussed the properties of the binary trees besides talking about the

internal and external nodes’ theorem. Now we will discuss another property of binary

trees that is related to its storage before dilating upon the complete binary tree and the

heap abstract data type.

Here is the definition of a complete binary tree:

 A complete binary tree is a tree that is completely filled, with the possible

exception of the bottom level.

 The bottom level is filled from left to right.

You may find the definition of complete binary tree in the books little bit different

from this. A perfectly complete binary tree has all the leaf nodes. In the complete

binary tree, all the nodes have left and right child nodes except the bottom level. At

the bottom level, you will find the nodes from left to right. The bottom level may not

dummy

14

4 15

3 9 18

7 16 20

5

CS301 – Data Structures Lecture No. 28

Page 327 of 505

be completely filled, depicting that the tree is not a perfectly complete one. Let’s see a

complete binary tree in the figure below:

In the above tree, we have nodes as A, B, C, D, E, F, G, H, I, J. The node D has two

children at the lowest level whereas node E has only left child at the lowest level that

is J. The right child of the node E is missing. Similarly node F and G also lack child

nodes. This is a complete binary tree according to the definition given above. At the

lowest level, leaf nodes are present from left to right but all the inner nodes have both

children. Let’s recap some of the properties of complete binary tree.

 A complete binary tree of height h has between 2h to 2h+1 –1 nodes.

 The height of such a tree is

the tree.

log2N where N is the number of nodes in

 Because the tree is so regular, it can be stored in an array. No pointers are

necessary.

We have taken the floor of the log2 N. If the answer is not an integer, we will take the

next smaller integer. So far, we have been using the pointers for the implementation

of trees. The treeNode class has left and right pointers. We have pointers in the

balance tree also. In the threaded trees, these pointers were used in a different way.

But now we can say that an array can be stored in a complete binary tree without

needing the help of any pointer.

Now we will try to remember the characteristics of the tree. 1) The data element can

be numbers, strings, name or some other data type. The information is stored in the

node. We may retrieve, change or delete it. 2) We link these nodes in a special way

i.e. a node can have left or right subtree or both. Now we will see why the pointers are

being used. We just started using these. If we have some other structure in which trees

can be stored and information may be searched, then these may be used. There should

be reason for choosing that structure or pointer for the manipulation of the trees. If we

have a complete binary tree, it can be stored in an array easily.

A

B C

D E F G

H I J

CS301 – Data Structures Lecture No. 28

Page 328 of 505

The following example can help understand this process. Consider the above tree

again.

A B C D E F G H I J

1 2 3 4 5 6 7 8 9 10 11 12 13 14

We have seen an array of size 15 in which the data elements A, B, C, D, E, F, G, H, I,

J have been stored, starting from position 1. The question arises why we have stored

the data element this way and what is justification of storing the element at the 1 st

position of the array instead of 0th position? You will get the answers of these very

shortly.

The root node of this tree is A and the left and right children of A are B and C. Now

look at the array. While storing elements in the array, we follow a rule given below:

 For any array element at position i, the left child is at 2i, the right child is at (2i

+1) and the parent is at floor(i/2).

In the tree, we have links between the parent node and the children nodes. In case of

having a node with left and right children, stored at position i in the array, the left

child will be at position 2i and the right child will be at 2i+1 position. If the value of i

is 2, the parent will be at position 2 and the left child will be at position 2i i.e. 4 .The

right child will be at position 2i+1 i.e. 5. You must be aware that we have not started

from the 0 th position. It is simply due to the fact if the position is 0, 2i will also

become 0. So we will start from the 1st position, ignoring the 0th.

Lets see this formula on the above array. We have A at the first position and it has two

children B and C. According to the formula the B will be at the 2i i.e. 2nd position and

C will be at 2i+1 i.e. 3rd position. Take the 2nd element i.e. B, it has two children D

and E. The position of B is 2 i.e. the value of i is 2. Its left child D will be at positon 2i

i.e. 4th position and its right child E will be at position 2i+1 i.e. 5. This is shown in the

A

B C

D E F G

H I J

CS301 – Data Structures Lecture No. 28

Page 329 of 505

figure below:

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

If we want to keep the tree’s data in the array, the children of B should be at the

position 4 and 5. This is true. We can apply this formula on the remaining nodes also.

Now you have understood how to store tree’s data in an array. In one respect, we are

using pointers here. These are not C++ pointers. In other words, we have implicit

pointers in the array. These pointers are hidden. With the help of the formula, we can

obtain the left and right children of the nodes i.e. if the node is at the ith position, its

children will be at 2i and 2i+1 position. Let’s see the position of other nodes in the

array.

As the node C is at position 3, its children should be at 2*3 i.e. 6th position and 2*3+1

i.e. 7th position. The children of C are F and G which should be at 6th and 7th position.

Look at the node D. It is at position 4. Its children should be at position 8 and 9. E is

at position 5 so its children should be at 10 and 11 positions. All the nodes have been

stored in the array. As the node E does not have a right child, the position 11 is empty

in the array.

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

You can see that there is only one array going out of E. There is a link between the

parent node and the child node. In this array, we can find the children of a node with

the help of the formula i.e. if the parent node is at ith position, its children will be at 2i

and 2i+1 position. Similarly there is a link between the child and the parent. A child

can get its parent with the help of formula i.e. if a node is at ith position, its parent

will be at floor(i/2) position. Let’s check this fact in our sample tree. See the diagram

below:

CS301 – Data Structures Lecture No. 28

Page 330 of 505

8

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Level Order Numbers & Array index

Consider the node J at position is 10. According to the formula, its parent should be at

floor(10/2) i.e. 5 which is true. As the node I is at position 9, its parent should be at

floor(9/2) i.e. 4. The result of 9/2 is 4.5. But due to the floor, we will round it down

and the result will be 4. We can see that the parent of I is D which is at position 4.

Similarly the parent of H will be at floor(8/2). It means that it will be at 4. Thus we

see that D is its parent. The links shown in the figure depict that D has two children H

and I. We can easily prove this formula for the other nodes.

From the above discussion we note three things. 1) We have a complete binary tree,

which stores some information. It may or may not be a binary search tree. This tree

can be stored in an array. We use 2i and 2i+1 indexing scheme to put the nodes in the

array. Now we can apply the algorithms of tree structure on this array structure, if

needed.

Now let’s talk about the usage of pointers and array. We have read that while

implementing data structures, the use of array makes it easy and fast to add and

remove data from arrays. In an array, we can directly locate a required position with

the help of a single index, where we want to add or remove data. Array is so

important that it is a part of the language. Whereas the data structures like tree, stack

and queue are not the part of C or C++ language as a language construct. However we

can write our classes for these data structures. As these data structures are not a part

of the language, a programmer can not declare them directly. We can not declare a

tree or a stack in a program. Whereas we can declare an array directly as int x []; The

array data type is so efficient and is of so common use that most of the languages

support it. The compiler of a language handles the array and the programmer has to do

nothing for declaring and using an array.

1 A

2 3

B C

4 5 6

D E F

7

G

9 10

H I J

CS301 – Data Structures Lecture No. 28

Page 331 of 505

We have built the binary trees with pointers. The use of pointers in the memory

requires some time. In compilers or operating system course, we will read that when a

program is stored in the memory and becomes a process, the executable code does not

come in the memory. There is a term paging or virtual memory. When a program

executes, some part of it comes in the memory. If we are using pointers to go to

different parts of the program, some part of the code of program will be coming

(loading) to memory while some other may be removed (unloading) from the

memory. This loading and unloading of program code is executed by a mechanism,

called paging. In Windows operating system, for this virtual memory (paging

mechanism), a file is used, called page file. With the use of pointers, this process of

paging may increase. Due to this, the program may execute slowly. In the course of

Operating System and Compilers, you will read in detail that the usage of pointers can

cause many problems.

So we should use arrays where ever it can fulfill our requirements. The array is a very

fast and efficient data structure and is supported by the compiler. There are some

situations where the use of pointers is beneficial. The balancing of AVL tree is an

example in this regard. Here pointers are more efficient. If we are using array, there

will be need of moving a large data here and there to balance the tree.

From the discussion on use of pointers and array, we conclude that the use of array

should be made whenever it is required. Now it is clear that binary tree is an

important data structure. Now we see that whether we can store it in an array or not.

We can surely use the array. The functions of tree are possible with help of array.

Now consider the previous example of binary tree. In this tree, the order of the nodes

that we maintained was for the indexing purpose of the array. Moreover we know the

level-order traversal of the tree. We used queue for the level-order of a tree. If we do

level-order traversal of the tree, the order of nodes visited is shown with numbers in

the following figure.

8

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 A

2 3

B C

4 5 6

D E F

7

G

9 10

H I J

CS301 – Data Structures Lecture No. 28

Page 332 of 505

In the above figure, we see that the number of node A is 1. The node B is on number 2

and C is on number 3. At the next level, the number of nodes D, E, F and G are 4, 5, 6

and 7 respectively. At the lowest level, the numbers 8, 9 and 10 are written with nodes

H, I and J respectively. This is the level-order traversal. You must remember that in

the example where we did the preorder, inorder and post order traversal with

recursion by using stack. We can do the level-order traversal by using a queue. Now

after the level-order traversal, let’s look at the array shown in the lower portion of the

above figure. In this array, we see that the numbers of A, B, C and other nodes are the

same as in the level-order traversal. Thus, if we use the numbers of level-order

traversal as index, the values are precisely stored at that numbers in the array. It is

easy for us to store a given tree in an array. We simply traverse the tree by level-order

and use the order number of nodes as index to store the values of nodes in the array. A

programmer can do the level-order traversal with queue as we had carried out in an

example before. We preserve the number of nodes in the queue before traversing the

queue for nodes and putting the nodes in the array. We do not carry out this process,

as it is unnecessarily long and very time consuming. However, we see that the level-

order traversal directly gives us the index of the array depending upon which data can

be stored.

CS301 – Data Structures Lecture No. 29

Page 333 of 505

Data Structures

Lecture No. 29

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 6

6.3

Summary

 Complete Binary Tree

Heap

Max Heap

 Insertion in a Heap

Complete Binary Tree

In the previous lecture, we talked about the ways to store a complete binary tree in an

array. The 2i and 2i+1 scheme were employed to store the link of the parent to

children and link of children to parent. Through this link, a programmer can go to the

children of a node. We know that array is a very efficient data structure. In a number

of languages, it is found as a built-in data type. Now the question arises if we can

store the binary tree in an array, why there should be the use of pointers? It is very

simple that an array is used when the tree is a complete binary tree. Array can also be

used for the trees that are not complete binary trees. But there will be a problem in

this case. The size of the array will be with respect to the deepest level of the tree

according to the traversal order. Due to incomplete binary tree, there will be holes in

the array that means that there will be some positions in the array with no value of

data. We can understand it with a simple example. Look at the following figure where

we store a complete binary tree in an array by using 2i and 2i+1 scheme. Here we

stored the nodes from A to J in the array at index 1 to 10 respectively.

CS301 – Data Structures Lecture No. 29

Page 334 of 505

1 A

2 3

B C

4 5 6

D E F

7

G

8 9 10

H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.1: Complete Binary Tree

1 A

2

B

4
D

8 9

H I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.2: Not a complete binary tree

A B C D E F G H I J

Suppose that this tree is not complete. In other words, B has no right subtree that

means E and J are not there. Similarly we suppose that there is no right subtree of A.

Now the tree will be in the form as shown in the following figure (29.2).

A B

D

H I

CS301 – Data Structures Lecture No. 29

Page 335 of 505

In this case, the effort to store this tree in the array will be of no use as the 2i and 2i+1

scheme cannot be applied to it. To store this tree, it may be supposed that there are

nodes at the positions of C, F, G, E and J (that were there in previous figure). Thus we

transform it into a complete binary tree. Now we store the tree in the array by using 2i

and 2i +1 scheme. Afterwards, the data is removed from the array at the positions of

the imaginary nodes (in this example, the nodes are C, F, G, E and J). Thus we notice

that the nodes A, B and H etc are at the positions, depicting the presence of a

complete binary tree. The locations of C, f, G, E and J in the array are empty as shown

in the following figure.

A B

D

H I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now imagine that an incomplete binary tree is very deep. We can store this tree in the

array that needs to be of large size. There will be holes in the array. This is the

wastage of memory. Due to this reason, it is thought that if a tree is not completely

binary, it is not good to store it into an array. Rather, a programmer will prefer to use

pointers for the storage.

Remember that two things are kept into view while constructing a data structure that

is memory and time. There should such a data structure that could ensure the running

of the programs in a fast manner. Secondly, a data structure should not use a lot of

memory so that a large part of memory occupied by it does not go waste. To manage

the memory in an efficient way, we use dynamic memory with the help of pointers.

With the use of pointers only the required amount of memory is occupied.

We also use pointers for complex operations with data structure as witnessed in the

deletion operation in AVL tree. One of the problems with arrays is that the memory

becomes useless in case of too many empty positions in the array. We cannot free it

and use in other programs as the memory of an array is contiguous. It is difficult to

free the memory of locations from 50 to 100 in an array of 200 locations. To manage

the memory in a better way, we have to use pointers.

Now we come to a new data structure, called ‘heap’.

Heap is a data structure of big use and benefit. It is used in priority queue. Recall the

example of bank simulation. In that case, we used event-based queues. We put the

events that were going to happen in a special queue i.e. priority queue. This priority

queue does not follow the FIFO rule. We put the elements in the queue at the end but

later got the element with respect to its priority. We get the element that is going to

occur first in the future. In that example, we implemented the priority queue with

arrays. It was seen that when we insert an element in the queue, the internally used

data was sorted in the array. Thus the event with minimum time of occurrence

becomes at first position in the sorted array. We get the event with minimum time

first. After the removal of the element, a programmer shifts the array elements to left.

When we insert a new element, the array is sorted again. As there, in the bank

example, were five or six events, the use of array fulfilled our requirement. We need

not to have other data type that makes the queue efficient. The array is efficient but

sorting is an expensive procedure. It may be complex and time-consuming. Secondly,

we have to shift elements while adding or removing them from the array. Thus the

Heap

CS301 – Data Structures Lecture No. 29

Page 336 of 505

implementation of priority queue with an array is not efficient in terms of time. There

is an alternate that is called heap. The use of priority queue with the help of heap is a

major application. The priority queue is itself a major data structure, much-used in

operating systems. Similarly priority queue data structure is used in network devices

especially in routers. Heap data structure is also employed in sorting algorithms.

There are also other uses of heap.

Let’s discuss the heap data structure with special reference to its definition,

“The definition of heap is that it is a complete binary tree that conforms to the heap

order”.

In this definition there is a term ‘heap order’. The heap order is a property that states

that in a (min) heap for every node X, the key in the parent is smaller than (or equal

to) the key in X. In other words, the parent node has key smaller than or equal to both

of its children nodes. This means that the value in the parent node is less than the

value on its children nodes. It is evident from the definition that we implement the

heap by complete binary tree. It can also be implemented by some other method. But

normally, we implement heap with complete binary tree. We know that in a binary

search tree, the value of a node is greater than the values in its left subtree and less

than the values in its right subtree. The heap has a variation to it. In heap, the value of

a node is less than the values of its left and right children. The values in left and right

children may be more or less with each other but these will be greater than the value

in their parent node.

Consider the tree shown in the following figure.

This is a complete binary tree. Now consider the values (numbers) in the nodes. This

is not a binary search tree. If we carry out the inorder traversal, the result will be

65, 24, 26, 21, 32, 31, 13, 19, 16, 68.

We can see that it is not in a sorted order as got while traversing a binary search tree.
So it is not a binary search tree. It’s simply a complete binary tree.

Now we see the heap order in this tree. We start from node having value 13. Its left

13

21 16

24 31 19 68

65 26 32

Figure 29.3: A min heap

CS301 – Data Structures Lecture No. 29

Page 337 of 505

child has value 21 while the value possessed by the right child is 16. So this is in line

with the heap order property. Now we come to node 21. The values in its left and

right child are 24 and 31 respectively. These values are greater than 21. Thus, it also

fulfills the heap order property. Now we consider the node having value 16. The value

in left child node of it is 19 and value in right child node is 68. So the value of parent

node (i.e. 16) is less than the values of its children nodes. Similarly we can see other

nodes. The node 24 is less than its children that are 65 and 26 respectively. And the

node 31 is less than its child i.e. 32. Now for this tree, three things have been proved.

First, this is a binary tree. Secondly it is a complete binary tree. Thirdly it fulfills the

heap order property i.e. the value of the parent node is less than that of its left and

right child nodes. This property is valid for every node of the tree. The leaf nodes

have no child so there is no question of heap property. The heap shown in the figure

above is a min heap. In the min heap, the value of parent node is less than the values

in its child nodes. Thus in a min heap, the value of the root node is the smallest value

in the tree.

Now consider the tree in the following figure. This is a complete binary tree. This is

neither a search tree, nor a heap.

Look at the node having value 19. The values in its left and right child nodes are 16
and 68 respectively. Thus the value of left child (i.e. 16) is less than that of the

parent. So it is not a heap. If it were a heap or min heap, the value 16 should have

been parent and the value 19 should have its child. Due to this violation, (the value of

child is less than that of the parent) it is not a heap (min heap).

Max Heap

We can also make a max heap. In max heap, each node has a value greater than the

value of its left and right child nodes. Moreover, in this case, the value of the root

node will be largest and will become lesser at downward levels. The following figure

shows a max heap.

13

⮿
21 19

⮿
6 31 16 68

65 26 32

Figure 29.4: Not a heap

CS301 – Data Structures Lecture No. 29

Page 338 of 505

Consider the min heap again. By removing the root from the min heap, we get the

smallest value. Now if the remaining values adjust themselves to again form a heap,

the minimum value among these remaining values will get on the top. And if we

remove this value, there will be the second minimum value of the heap. The

remaining values again form a heap and there will be the smallest number among

these on the top. Thus we will get the third minimum number. If we continue this

process of getting the root node and forming a heap of remaining values, the numbers

will get in ascending order. Thus we get the sorted data. By putting data in heap and

getting it in a particular way, we achieve a sorting procedure. This way, a programmer

gets sorted data.

Now suppose that the numbers in heap are priorities or events. If we build the max

heap, the number with greater priority will get on the top. Now if we get data from the

heap, the data on top will be gotten first. As it is max heap, the data on top will be the

largest value.

Insertion in a Heap

Now let’s discuss the insertion of a value in a min or max heap. We insert a value in a

min heap and rearrange it in such a way that the smallest value gets on the top.

Similarly, if we are inserting a value in a max heap, the largest value goes on the top.

To discuss insertion in min heap, consider the following existing heap. This is the

same heap discussed earlier. As it is a complete binary tree, we keep it in an array. In

the figure, the level order of numbers of the nodes is also seen that describes the

position of nodes (index number) in the array.

73

52 63

40 31 27 57

25 26 13

Figure 29.5: A max heap

CS301 – Data Structures Lecture No. 29

Page 339 of 505

1 13

2

21 3 16

4
24 5 31 19 6 7 68

8

65 9
26

10
32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.6: An existing heap

13 21 16 24 31 19 68 65 26 32

Now we add a new node to this existing heap. Suppose the node that we want to add

has a value 14. We will add this node at a position in such a way that the tree should

remain complete binary one. Following this guideline, this node will be added on

right side of node 31. In the array, the node 31 is presently at position 5. Now

according to the formula of 2i and 2i+1, the left child of 31 will be at positions 10 that

already exists. The right child of 31 (that is 14 now) will be at position 11 in the array.

This addition of node in the tree and value in the array is shown in the following

figure. We have shown the node link and position in the array with dotted lines. By

this, it is shown that the node of value 14 may become here. We did not actually put it

there. We have to put it at such position so that the heap should remain intact.

CS301 – Data Structures Lecture No. 29

Page 340 of 505

1 13

2

21 3 16

4
24 5 31 19 6 7 68

8

65 9
26

10
32

11 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.7: inserting new value in a heap

13 21 16 24 31 19 68 65 26 32 14

With the addition of new node, we see that this is still a complete binary tree and can

be stored in an array. There are no holes in the array, leading to no wastage of the

positions.

Now preservation of the heap order is needed. We are discussing the min heap in this

example. In the min heap, the smallest element is at the top (root). And at each level,

every node has a smaller value than that of its children nodes. Now we have to put the

node 14 at its proper position with respect to heap order. Thus heap is being

implemented with complete binary tree with the help of an array. We have to find the

final; position of node 14 in the tree and array preserving the heap order. A look on

the tree in the previous figure shows that if we put node 14 (shown with dotted line) at

that position, the heap order will not be preserved. By considering the node 31, we see

that the value of its right child (i.e. 14) is less than it. Thus heap property is violated.

To preserve heap property, the node 14 should be up and node 31 should be down. If

node 14 is at position of 31 and it is compared with its parent that is 21, we come to

know that node 21 should also be at down position. How do we take node 14 to its

proper position? To achieve this objective, we have to take node 21 and 31 down and

move the node 14 up. Now let’s see how we can do this. In the following figure, the

position is seen where a new node can be added with an empty circle (hole). The

value of this node is not shown. However, the new inserted value may go to that

position. Similarly in the array we show that there will be some value at position 11.

CS301 – Data Structures Lecture No. 29

Page 341 of 505

1 13

2

21 3 16

4
24 5 31 19 6 7 68

8

65 9
26

10
32

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.8: inserting new value in a heap

13 21 16 24 31 19 68 65 26 32

Now we compare the new value to be inserted (that is 14) at position 11 with its

parent node. The parent node of newly inserted node is 31 that is greater than the new

value. This is against the (min) heap property. According to the heap property, the

node 14 may be the parent of 31 but not its child. So we move the node 31 to the

position 11 and the new node to the position 5 that was earlier the position of 31. This

technique is also employed in the array. Thus we get the array and tree in the form as

shown in the following figure.

1 13

2

21 3 16

4
24 5 19 6 7 68

8

65 9
26

10
32

11 31

CS301 – Data Structures Lecture No. 29

Page 342 of 505

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.9: inserting new value in a heap

1 13

2
3 16

4
24 5 21 19 6 7 68

8

65 9 26 10 32
11 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.10: inserting new value in a heap

13 21 16 24

 19 68 65 26 32 31

Now if the new node comes at the position 5, its parent (that is node 21 at position 2)

is again greater than it. This again violates the heap property because the parent (i.e.

21) is greater than the child whose value is 14. So we bring the node 21 down and

take the new node up. Thus the node 21 goes to the position 5 and the new node

attains the position 2 in the tree and array as shown in the following figure.

13

 16 24 21 19 68 65 26 32 31

To interchange the positions of values in the array, only these values are swapped

which is very easy process. We can do this easily in arrays. Now if the new value 14

comes at the position 2, the heap property will be preserved due to the fact that the

CS301 – Data Structures Lecture No. 29

Page 343 of 505

1 13

2

14 3 16

4
24 5 21 19 6 7 68

8

65 9 26 10 32
11 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.11: inserting new value in a heap

parent of this node i.e. the node of value 13 is less than its child (the new node that is

14). Thus the final position of new node 14 is determined and we put it here i.e. at

position 2. This is shown in the following figure.

13 14 16 24 21 19 68 65 26 32 31

It is clear by now that the tree after insertion of a new value follows the heap property.

We see that there is an algorithm for inserting a new value in the heap. If we have a

heap stored in an array as a complete binary tree, a new value is put in the array at a

position so that it can hold preserving the property of complete binary tree. In our

example, it is the position 11 where new value may be put. We know that the parent

of a node is at position floor (i / 2). Thus we find the position of parent node of the

new node and compare this new value with that. If the parent node has a value greater

than this new value (i.e. its child), the heap property is violated. To maintain this

property, we exchange these values. Now at the new position we find the parent of

that position and compare the value with the value at that position. Thus the array is

traversed by level-order. After a comparison, we go one level up in the tree. And we

go to upward by looking at the parent node of the newly inserted node level by level.

We stop at the position where the value of the parent node is less than the value of its

child i.e. the node to be inserted. To insert a node, it is necessary to find the position

of the node before putting the value there. This is efficient and fast way as actual

values are not exchange in this case. We simply move the data. Under the second

method, it can also be done with exchanges. Let’s do this for our previous heap. Look

at the following figure. Here we put the new node 14 at its position. It is the right

child of node 31. We have already seen that this is the position where a new node can

CS301 – Data Structures Lecture No. 29

Page 344 of 505

1 13

2
21 3 16

4
24 5 31 19 6 7 68

8

65 9 26 10 32
11 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.12: inserting new value in a heap

be added so that the tree remains complete binary tree. In the array, it is at position 11.

13 14 16 24 21 19 68 65 26 32 31

Now we check the heap order and compare node 14 with its parent that is node 31. It

is seen that this child node i.e. 14 is less than its parent i.e. 31. Thus the heap order

property is violated. We exchange the node 14 and 31due to which the node 14

becomes the parent and node 31 turns into its child. That is why, the node 31 is now at

position 11 and node 14 is at position 5. After this exchange, the tree remains

complete binary one as we only have exchanged the values of nodes. The following

array representation shows this.

13 21 16 24 14 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

After this we compare the node 14 with its new parent. The new parent of node 14 can

be found by the formula of floor (i / 2). The parent node of 14 will be at position floor

(5/2) that is position 2. We can see that the node at position 2 is 21. Thus 21 is greater

than its child i.e. 14, violating the heap property. So we again exchange these values.

The node 14 now becomes the parent of 21 and 21 gets its child. In the array, the

CS301 – Data Structures Lecture No. 29

Page 345 of 505

1 13

2

14 3 16

4
24 5 21 19 6 7 68

8

65 9
26

10
32

11 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.13: inserting new value in a heap

nodes 14 and 21 are at positions 2 and 5 respectively. The array representation of it is

as below.

13 14 16 24 21 19 68 65 26 32 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now we compare this node 14 with its new parent i.e. 13. Here the heap property

stands preserved due to the fact that the parent node i.e. 13 is less than its child node

i.e. 14. So this tree is a heap now. The following figure shows this heap and array
representation of it.

13 14 16 24 21 19 68 65 26 32 31

Suppose we want to add another node to this heap. This new node has value 15. As

the heap is a complete binary tree, so this new node will be added as left child of node

19. In the array, we see that the position of 19 is 6 so the position of its left child will

be (by formula of 2i) 6 x 2 that is 12. This is shown in the following figure.

CS301 – Data Structures Lecture No. 29

Page 346 of 505

1 13

2

14 3 16

4
24 5 21 6 19 7 68

8

65 9
26 10 32 11 31 15 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.14: inserting new value in a heap

13 14 16 24 21 19 68 65 26 32 31 15

Here the new node 15 is less than its parent node (i.e. 19). To preserve the heap

property, we have to exchange these values. Thus the value 15 goes to the position 6

and value 19 attains the position 12 as shown in the array in figure below.

13 14 16 24 21 15 68 65 26 32 31 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now we compare the value 15 with its new parent i.e.16. Here again the parent (16) is

greater than its child (15). So to preserve the heap property we need to exchange these

values. After the exchange, the value 15 is now at position 3 and value 16 is seen

position 6. The following figure shows this step.

CS301 – Data Structures Lecture No. 29

Page 347 of 505

1 13

2

14 3 15

4
24 5 21 6 16 7 68

8

65 9
26

10 32 11 31 19 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 29.15: inserting new value in a heap

13 14 15 24 21 16 68 65 26 32 31 19

The figure also shows that the node 15 is greater than its new parent i.e. 13. In other

words, the parent node is less than its child. So the heap property has been preserved,

warranting no exchange of values. The node 15 has gone to its proper position .All the

nodes in this tree now follow the heap order. Thus it is a heap in which a new node

has been inserted.

CS301 – Data Structures Lecture No. 30

Page 348 of 505

Data Structures

Lecture No. 30

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 6

6.3

Summary

 Inserting into a Min-Heap

Inserting into a Min-Heap
In the previous lecture, we discussed about the heap data structure besides touching

upon the concept of storage of complete binary tree in an array. For the study of

parent-child relationship, the ‘2i and 2i+1 scheme’ was used. Then we changed our

focus to heap and found it best for the priority queues. In the previous lecture, we did

not really discuss the uses of heap. Rather, most of the discussion remained focused

on insertion method in the binary tree employed at the time of implementation with

the help of an array. After inserting a new element in the array and by moving few

elements, a programmer can have minimum or maximum heap. In case of minimum

heap, the minimum value in the tree is always in the root of the tree. However, in case

of maximum heap, the maximum value in the tree lies in the root node.

When we insert a new element in the tree implemented with the help of an array, we

insert element at the last position (of the array). Due to this insertion at the end, the

heap order may be violated. Therefore, we start moving this element upwards. While

moving upward, this element may reach at the root of the tree. It is important to note

that only one branch of the tree is affected because of this movement in the upward

direction. This process, being of localized nature, will not disturb the entire tree.

To recap, see the figure Fig 30.1, where we are inserting an element 15.

Building a Heap

Deleting from a Min-Heap

CS301 – Data Structures Lecture No. 30

Page 349 of 505

Insert (15)

with exchange

2
14

1 13

3

16

4 24 5 21 6 19 7 68

8 9 10
65 26 32

11
31

12
15

Fig 30.1

The new element 15 is inserted at the last array position 12. Being a complete binary

tree, the next new node will be the left child of node 19. As node 19 is at array

position 6 (or level order traversal), its left child will be 6 * 2 = 12 th position node or

the value at 12th position in the array. Now, we see where we will have to carry out

the exchange operation. As the parent of 15, the number 19 is greater than it, the first

exchange will be among 19 and 15 as shown in the above figure. After exchange, the

new figure is shown in Fig 30.2.

Insert (15)

with exchange

2
14

1 13

3

16

4 24 5 21 6 15 7 68

8 9 10
65 26 32

11
31

12
19

Fig 30.2

You can see that both the elements have exchanged positions i.e. 19 has come down

and 15 gone up. But number 15 is still less than its parent 16, so we will have another

exchange operation.

13 14 16 24 21 15 68 65 26 32 31 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 14 16 24 21 19 68 65 26 32 31 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CS301 – Data Structures Lecture No. 30

Page 350 of 505

Insert (15)

with exchange

2
14

1 13

3

15

4 24 5 21 6 16 7 68

8 9 10
65 26 32

11
31

12
19

 13 14 15 24 21 16 68 65 26 32 31 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig 30.3

Now the new parent of 15 is 13 which is less than it. Therefore, the exchange

operation will stop here as 15 has found its destination in the tree. This new tree is not

violating any condition of heap order as witnessed before insertion of 15. It has

become min-heap again while maintaining its status as a complete binary tree.

Insert (15)

with exchange

2
14

1 13

3

15

4 24 5 21 6 16 7 68

8 9 10
65 26 32

11
31

12
19

13 14 15 24 21 16 68 65 26 32 31 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig 30.4

A view of the path shows that the number 15 has gone through to find its final

destination in the tree. It has only affected the right sub-tree’s left branch that was

containing 16, 19 and 15. It has not affected any other branch. This is not a binary

search tree. Here we are only fulfilling one condition that the parent value should be

CS301 – Data Structures Lecture No. 30

Page 351 of 505

less than that of its two-children. These exchanges will not take long as we did

mathematically that a tree containing N nodes; can go to log2N level maximum. You

know, when we built binary tree for balancing, it had turned into a linked list. Here

the case is different. the number of levels in complete binary tree will be around log2N

while building a complete binary tree.

Now, we should be clear that a new element can go up to what maximum level in the

tree. If the number is greater than all parent nodes, it will be already at its destination

place, needing no exchange. If we insert a number smaller than all parent nodes, the

exchange operation reaches to the root of the tree. But this exchange operation’s

intensity does not increase from the one we saw in our previous case of linked lists.

Deleting from a Min-Heap (deleteMin)
Now, we will see how the delete operation is executed in the heap. We do a lot of

insert and delete (removal from the data structure) operations especially when heap is

used in the priority queue. Normally the delete operation is a bit complex. However,

in this case, it is quite easy-to-do.
We want to write a function deleteMin(), which will find and delete the minimum

 Finding the minimum is easy; it is at the top of the heap.

See the heap below. It is a min-heap. Now the question arises where the minimum

number will be lying. It is clear from the definition of min-heap that it should be in

the root of the tree. So finding the minimum is very easy.

8

Fig 30.5

To understand it better, consider the tree form first, instead of thinking about the

array. Remember, we have implemented the complete binary tree with the help of an

array for the sake of efficiency. It is not necessary to implement it this way. We can

also implement it with pointers. However, heap is normally implemented through

array.

Coming back to the deletion, it is necessary to understand that

 Deletion (or removal) causes a hole which needs to be filled.

1 13

2
14

3
16

4 24 5 21 6 19 7 68

65
9 10

26 32
11

31

number from the tree.

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 30

Page 352 of 505

Fig 30.6

In the above figure, we have deleted the root node, resulting in a hole at the root

position. To maintain it as a complete binary tree, we have to fill this hole. Now, we

will identify the appropriate candidates to fill this hole. As the parent is the minimum

as compared to its right and left children, the appropriate candidates are both right and

left children of the root node. Both children will be compared and the smaller one will

take the vacant place. In the above figure, the children 14 and 16 are candidates for

the vacant position. Being the minimum, 14 will be put in the hole.

Fig 30.7

In the Fig 30.7, we can see that the 14 has been placed at the root position. However,

the vacuum at the previous position of 14 has created a hole. To fill this hole, the

same logic is applied i.e. we compare both right and left children of the hole and let

the minimum take over the place. Here 24 and 21 are compared. Being the smaller

one, 21 is placed at the vacant position. This way we get the latest figure of the tree as

seen in the following figure. (Fig 30.8.)

deleteMin() 1 14

2 3
16

4 24 5 21 6 19 7 68

8
65

9 10

26 32
11

31

deleteMin() 1

2
14

3
16

4 24 5 21 6 19 7 68

8 10
65

9
26 32

11
31

CS301 – Data Structures Lecture No. 30

Page 353 of 505

Fig 30.8

The hole is now created at previous position of 21. This time, the children- 32 and 31

are compared and being smaller, 31 takes over the place and the tree becomes as

shown in the figure Fig 30.9.

Fig 30.9

The hole has been transferred from top to the bottom. It has reached at such a position

where it can be deleted.

deleteMin() 1 14

2
21

3
16

4 24 5 31 6 19 7 68

8 10
65

9
26 32

11

deleteMin() 1 14

2
21

3
16

4 24 5 6 19 7 68

8 10
65

9
26 32

11
31

CS301 – Data Structures Lecture No. 30

Page 354 of 505

Fig 30.10

While using array to store complete binary tree, we can free array element at the end.

From the above figure Fig 30.10, the last array index 11 is no more there and the node

has been deleted.

We saw that the data element was inserted at the bottom of the tree and moved

upwards while comparing it with the parents (following the i/2 scheme) until its

destination was found. Similarly, when we deleted a node, the hole was produced.

While following the definition of min-heap, the hole kept on moving from top to the

bottom (following the 2i or 2i+1 scheme).

deleteMin(): heap size is reduced by 1 1 14

2
21

3
16

4 24 5 31 6 19 7 68

8 10
65

9
26 32

CS301 – Data Structures Lecture No. 30

Page 355 of 505

Building a Heap (buildHeap)
Now, we will see how a heap can be made and in which peculiar conditions, it should

be built. We may have the data (for example, numbers) on hand, needed to used to

construct the tree .These data elements may be acquired one by one to construct the

tree. A programmer may face either the situations. If we consider priority queue, it is

normally empty initially. Events are inserted in the queue as these are received. You

can also consider priority queue in another application where data can be inserted into

the queue or taken out at one time.

Let’s say we have a large unsorted list of names and want to sort it. This list can be

sorted with the help of the heap sort algorithm. When we l construct the heap or

complete binary tree of the list, the smallest name (considering alphabet ‘a’ as the

smallest) in the list will take the root node place in the tree. The remaining names will

take their places in the nodes below the root node according to their order.

Remember, we are not constructing binary search tree but a min-heap to sort the data.

After the construction of the min-heap from all the names in the list, we start taking

the elements out (deleting) from the heap in order to retrieve the sorted data. The first

element that is taken out would be the smallest name in the heap. The remaining heap

after taking out the deleted node will be reduced by one element in size and the next

name will be at the root position. It is taken out to further reduce the tree size by one.

This way, the continuation of the process of taking out the elements from the heap

will ultimately lead to a situation when there is no more node left in the tree.

While keeping in view the time consumption factor, can we find a better way than

this? We may change the data structure or algorithm for that. There are data structures

which are more efficient than heap. But at the moment, we are focusing the heap data

structure. We will see, what we can do algorithmically to improve the performance,

having all the data simultaneously to construct the tree.

Following are some of the important facts about building a heap.

 Suppose we are given as input N keys (or items) to build a heap of the keys.

 Obviously, this can be done with N successive inserts.

 Each call to insert will either take unit time (leaf node) or log2N (if new key

percolates all the way up to the root).

 The worst time for building a heap of N keys could be Nlog2N.

 It turns out that we can build a heap in linear time.

 Suppose we have a method percolateDown(p) that moves down the key in node p

downwards.

 This is what happens in deleteMin.We have used the word keys in the first point.

This is the same concept as that of the database keys, used to identify information

uniquely. Using the example of telephone directory (also discussed in a number of

previous lectures), we see that it contains the person name (first, middle and last),

address (street address, district and postal code) and telephone number. All these

information together form a data record. This set of information fields (record) will

always be together. The key item here can be the unique name of the person or the

telephone number.

Consider that we have N number of items i.e. names. One way is to call insert for

every element one by one. For N elements, it will be N number of calls obviously.

Being an iterative process, this insertion technique can be executed in a loop fashion.

Let’s talk about the time taken to insert a node in the tree. It depends on the value to

be inserted and the values already present in the tree. The number of exchanges can be

variable. Therefore, the insertion time is also variable. Each call will be a unit time (in

CS301 – Data Structures Lecture No. 30

Page 356 of 505

case of leaf node) or log2N (if new key percolates all the way up to the root node).

For the whole tree, the worst time for N keys would be Nlog2N.

Next point tells about the possibility of reducing the time from Nlog2N and it can turn

out to be a linear time. This is our target and we want to achieve it. Let’s talk about

the ways to achieve the linear time.

The word percolate above means something is going upward from downward. This

terminology is coming from coffee maker, where the hot water moves upwards. This

phenomenon happens at the time of insertion. On the contrary, in delete operation, the

hole moves towards the bottom of the tree. You must be remembering that we

discussed about insertion in the heap without making exchanges and by finding the

destination position first before making any change. Similarly in case of deletion, the

hole moves downward while the data moves upwards. Let’s write a method for the

delete operation percolateDown(p). This method will find which child of the hole will

be moved upwards and the movement of hole to the bottom of the tree.

We will see, using this method, how can we built a heap that will be take lesser time
than Nlog2N.

Initial data (N = 15)

 65 31 32 26 21 19 68 13 24 15 14 16 5 70 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.11

As shown in the figure Fig 30.11, we are given a list of 15 elements and asked to

construct a heap of them. The numbers are stored in an array, starting from index

(position) 1. This start of array from position 1 is to make the tree construction easier.

It will be clear in a moment. Contrary to the previous situation when array was used

to store heap or complete binary tree, we should now think what would be the picture

of complete binary tree out of it. It may seem complex. But actually it is quite easy.

You start from the very first element in the array i.e. the root of the tree. The children

of root are present at 2i and 2i+1, which in this case, are at positions 2(1) = 2 and

2(1)+1=3. The children nodes for the node at position 2 are at positions 2(2)=4 and

2(2)+1=5. Similarly, the children nodes for the node at position 3 are at positions 6

and 7. Apply this logic to the whole of this array and try to construct a tree yourself.

You should build a tree as given in the figure Fig 30.12.

CS301 – Data Structures Lecture No. 30

Page 357 of 505

1 65

2
31

3
32

4 26 5 21 6 19 7 68

14 15

13
9 10

24 15
11

14
12 13

16 5 70 12

Initial data (N = 15)

8

 65 31 32 26 21 19 68 13 24 15 14 16 5 70 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.12

Is this tree binary one? Yes, every node has only two left and right children.

Is it a complete binary tree? It surely is as there is no node that has missing left or

right child.

The next question is; is it a min-heap. By looking at the root node and its children, as

the root node is containing 65 and the children nodes are containing 31 and 32, you

can abruptly say that no, it is not a min-heap.

How can we make min-heap out of it? We may look for percolateDown(p).method to

convert it into a min-heap. As discussed above, the percolateDown(p).moves the node

with value p down to its destination in the min-heap tree orders. The destination of a

node, can be its next level or maximum the bottom of the tree (the leaf node). The

node will come down to its true position (destination) as per min-heap order and other

nodes (the other data) will be automatically moving in the upward direction.

 The general algorithm is to place the N keys in an array and consider it to be an
unordered binary tree.

 The following algorithm will build a heap out of N keys.

for(i = N/2; i > 0; i--)

percolateDown(i);

A close look on the above loop shows that it is starts from N/2 position and goes
down to 0. The loop will be terminated, once the position 0 is reached. Inside, this

loop is a single function call percolateDown(i). We will try to understand this loop

using figures.

CS301 – Data Structures Lecture No. 30

Page 358 of 505

1 65 Why i = n/2?

2
31

3
32

4 26 5 21 6 19 7 68 i

13
9 10

24 15
11

14
12 13 14

16 5 70
15

12

1 65

2
31

3
32

4 26 5 21 6 19 7 12 i

14

13
9 10

24 15
11

14
12 13

16 5 70
15

68

i = 15/2 = 7

8

i

 65 31 32 26 21 19 68 13 24 15 14 16 5 70 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.13

You can see the top left of the figure Fig 30.13. It is given i = 15/2 = 7. This is the

initial value of i .The value in the array at position 7 is 68. In our discussion, we will

interchangeably discuss array and binary tree. The facts arising in the discussion

would be applicable to both. Considering this position 7, we will try to build min-heap

below that. We know that for position 7, we have children at positions 2(7)=14 and

2(7)+1=15. So as children of the number 68 (which is the value at position 7), we

have 70 and 12. After applying the percolateDown(i), we get the tree as shown in Fig

30.14.
i = 15/2 = 7

8

i

 65 31 32 26 21 19 12 13 24 15 14 16 5 70 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.14

You can see in the figure that 12 has moved upward and 68 has gone down. Now,

what about this little tree starting from 12 and below it is min-heap. Surely, it is.

Next, we go for second iteration in the loop, the value of i is decremented and it

becomes 6.

CS301 – Data Structures Lecture No. 30

Page 359 of 505

1 65

2
31

3
32

4 26 5 21 i 6 5 7 12

14

13
9 10

24 15
11

14
12 13

16 19 70
15

68

8

i

 65 31 32 26 21 19 12 13 24 15 14 16 5 70 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.15

The node at position 6 is 19. Here the method percolateDown(i) is applied and we get

the latest tree as shown in Fig 30.16.

i = 5

8

i

 65 31 32 26 21 5 12 13 24 15 14 16 19 70 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig 30.16

The node 5 has come upward while the node 19 has moved downward. Its value of

has decremented. It is now ready for next iteration. If we see the positions of i in the

tree, we can see that it is traveling in one level of the tree, which is the second last

level.

The question might have already arisen in your minds that why did we start i by N/2

instead of N. You think about it and try to find the answer. The answer will be given

in the next lecture. We will continue with this example in the next lecture. You are

strongly encouraged to complete it yourself before the next lecture.

1 65

2
31

3
32

4 26 5 21 6 19 i 7 12

14

13
9 10

24 15
11

14
12 13

16 5 70
15

68

CS301 – Data Structures Lecture No. 31

Page 360 of 505

Data Structures

Lecture No. 31

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 6

6.3.3, 6.3.4

Summary

 BuildHeap

 Other Heap methods

 C++ Code

BuildHeap
In the previous lecture, we discussed about the BuildHeap method of heap abstract

data structure. In this handout, you are going to know why a programmer adopts this

method. Suppose we have some data that can be numbers or characters or in some

other form and want to build a min-Heap or max-Heap out of it. One way is to use the

insert() method to build the heap by inserting elements one by one. In this method, the

heap property will be maintained. However, the analysis shows that it is NlogN

algorithm i.e. the time required for this will be proportional to NlogN. Secondly, if we

have all the data ready, then it will be better to build a heap at once as it is a better

option than NlogN.

In the delete procedure, when we delete the root, a new element takes the place of

root. In case of min-heap, the minimum value will come up and the larger elements

will move downwards. In this regard, percolate procedures may be of great help. The

percolateDown procedure will move the smaller value up and bigger value down.

This way, we will create the heap at once, without calling the insert() method

internally. Let’s revisit it again:

 The general algorithm is to place the N keys in an array and consider it to be

an unordered binary tree.

 The following algorithm will build a heap out of N keys.

for (i = N/2; i > 0; i--)

percolateDown(i);

Suppose, there are N data elements (also called as N Keys). We will put this data in

an array and call it as a binary tree. As discussed earlier, a complete binary tree can be

stored in an array. We have a tree in an array but it is not a heap yet. It is not

necessary that the heap property is satisfied. In the next step, we apply the algorithm.

Why did we start the i from N/2? Let’s apply this algorithm on the actual data. We

will use the diagram to understand the BuildHeap. Consider the diagram given below:

CS301 – Data Structures Lecture No. 31

Page 361 of 505

1
65

2 31 3 32

4 26 5
21

6 19 7 68 i

8
13

9
24

10
15 11 14 12 16 13 5

14
70 15 12

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

65 31 32 26 21 19 68 13 24 15 14 16 5 70 12

In the above diagram, there is an array containing the elements as 65, 31, 32, 26, 21,

19, 68, 13, 24, 15, 14, 16, 5, 70, 12. We have all the data in this array. The zeroth

element of the array is empty. We kept it empty intentionally to apply the 2i, 2i+1

scheme. We will take this array as a complete binary tree. Let’s take the first element

that is 65, applying the 2i and 2i+1 formula. This element has 31 and 32 as its

children. Take the second element i.e. 32 and use the formula 2i and 2i+1. Its children

are 26 and 21. We can take the remaining elements one by one to build the tree. The

tree is shown in the above figure. This tree is not a min-heap as it has 65 as root

element while there are smaller elements like 13, 15, 5 as its children. So, this being a

binary tree has been stored in an array.

Let’s think about the above formula, written for the heap building. What will be the

initial value of i. As the value of N is 15, so the value of i (i=N/2) will be 7 (integer

division). The first call to percolateDown will be made with the help of the value of i

as 7. The element at 7 th position is 68. It will take this node as a root of subtree and

make this subtree a minimum heap. In this case, the left child of node 68 is 70 while

the right child of node 68 is 12. The element 68 will come down while the element 12

moves up.

CS301 – Data Structures Lecture No. 31

Page 362 of 505

1
65

2 31 3 32

4 26 5
21

6 19 7 12 i

8
13

9
24

10
15 11 14 12 16 13 5

14
70 15 68

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
65

2 31 3 32 i

4 13 5
14 6 5 7 12

8
26

9
24

10
15 11 21 12 16 13 19

14
70 15 68

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

65 31 32 26 21 19 12 13 24 15 14 16 5 70 68

Look at this subtree with 12 as the root node. Its left and right children are smaller

than root. This subtree is a minimum heap. Now in the loop, the value of i is

decreased by 1, coming to the mark of 6. The element at 6 th position is 19 that has

been passed to percolateDown method. It will convert this small tree into a minimum

heap. The element 19 is greater than both of its children i.e.16 and 5. One of these

will move up. Which node should move up? The node 5 will move up while node 19

will move down. In the next repetition, the value of i becomes 5, i.e. the element 21.

We apply the percolateDown() method again and convert it into minimum heap. Now

the subtree with node 26 will be converted into a minimum heap.

65 31 32 13 14 5 12 26 24 15 21 16 19 70 68

CS301 – Data Structures Lecture No. 31

Page 363 of 505

1
5

2 13 3 12

4 24 5
14 6 16 7 65

8
26

9
31

10
15 11 21 12 32 13 19

14
70 15 68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Here the value of i is 3. The element at 3rd position is 32. You can see that the level of

the node has also been changed. We have moved one level up. Now the

percolateDown method will take this node as the root of the tree. It needs to move the

minimum value at this position. The minimum value is 5 so the values 32 and 5 are

going to be exchanged with each other. Now 32 becomes the parent of node 16 and

node 19 which are smaller values. Therefore, it will further move down to node 16.

The dotted line in the above figure shows the path of nodes that will be replaced. This

subtree has been converted into the min-heap.

Now, the value of i is 2 while the element is 31. It will change its position with 13

first and then with 24. So the node 31 will move down and become a leaf node. You

have seen that some nodes are moving up and some moving downwards. This

phenomenon is known as percolate. Therefore we have named this method as

percolateDown as it makes big values move down and smaller values upward.

Finally the value of i is 1. The element at first position is 65. As it is not the smallest

value, so it will move down and the smallest value will move up. It will move to the

position 7 as it is greater than 68 and 70. The node 5 will move to the top of the tree.

The final figure is shown below:

5 13 12 24 14 16 65 26 31 15 21 32 19 70 68

Is this a minimum heap? Does the heap property satisfy or not? Let’s analyze this tree.

Start from the root of the tree. Is the value of the root is smaller than that of its left

and right children? The node 5 is smaller than the node 13 and node 12. Check this on

the next level. You will see that the values at each node are smaller than its children.

Therefore it satisfies the definition of the min-heap.

Now we have to understand why we have started the ‘for loop’ with i = N/2. We can

start i from N. As i moves from level to level in the tree. If we start i from N, it will

CS301 – Data Structures Lecture No. 31

Page 364 of 505

start from the right most leaf node. As long as i is l less than N/2 it will remain on leaf

nodes level. Is the leaf node alone is min-heap or not? Yes it is. As it does not have

any left or right child to compare that it is smaller or not. All the leaf nodes satisfy the

min-heap definition. Therefore we do not need to start with the leaf nodes. We can do

that but there is no reason to do that. For efficiency purposes we start i from N/2. This

is the one level up to the leaf node level. We applied the percolateDown method on

each node at this level. Due to this some nodes move down and some nodes move up.

We apply this on each level and reaches at the root. In the end we have a minimum

heap.

If we have data available, the use of BuildHeap method may be more appropriate as

compared to insert method. Moreover, BuildHeap method takes less time. How can

we prove that the BuildHeap method takes less time? Some mathematical analysis can

help prove it. As insert method is NlogN and BuildHeap method should be better than

that.

Other Heap Methods

Let’s have a look on some more methods of heap and see the C++ codes.

decreaseKey(p, delta)

This method lowers the value of the key at position ‘p’ by the amount ‘delta’. Since

this might violate the heap order, so it (the heap) must be reorganized with percolate

up (in min-heap) or down (in max-heap).

This method takes a pointer to the node that may be the array position as we are

implementing it as an array internally. The user wants to decrease the value of this

node by delta. Suppose we have a node with value 17 and want to decrease it by 10.

Its new value will be 10. By decreasing the value of a node, the heap order can be

violated. If heap order is disturbed, then we will have to restore it. We may not need

to build the whole tree. The node value may become smaller than that of the parents,

so it is advisable to exchange these nodes. We use percolateUp and percolateDown

methods to maintain the heap order. Here the question arises why we want to decrease

the value of some node? The major use of heap is in priority queues. Priority queues

are not FIFO or LIFO. The elements are taken out on some key value, also known as

priority value. Suppose we have some value in the priority queue and want to

decrease its priority. If we are using heap for the priority queue, the priority of the

some elements can be decreased so that it could be taken out later and some other

element that now has higher priority will be taken out first. You can find many real

life examples to understand why we need to increase or decrease the priority of

elements.

One of these examples is priorities of processes. You will read about this in the

operating system course. You can see the priorities of the processes using the task

manager. Task manager can be activated by pressing Ctrl+Alt+Del. Under the process

tab, we may see the priority of each process. Normally, there is one processor in a

computer and there is lot of processes running in it. How can we decide which process

should be given the CPU time and how much time should be given to this process?

We will cover all of these topics in the operating system course. Suppose we have 25

CS301 – Data Structures Lecture No. 31

Page 365 of 505

decreaseKey(p,) and then performing deleteMin().

processes with different priorities. How can we decide which process should be given

the CPU time? We gave the CPU to the highest priority process for one second. We

can schedule this by using the priority queue. For some reason, we decrease the

priority of some process. Now its turn will come later. We may increase the priority

of some process so that it should be given the CPU time. Therefore, we adopt the

increase and decrease methods. If we are implementing the priority queue by using

the heap, the increase or decrease method of priority queue will use the increase and

decrease method of heap internally. Using this method, the turn of the element will be

according to the new priority.

increaseKey(p, delta)

This method is the opposite of decreaseKey. It will increase the value of the element

by delta. These methods are useful while implementing the priority queues using

heap.

remove(p)

This method removes the node at position p from the heap. This is done first by

First of all, we will decrease the

value of the node by and call the method deleteMin. The deleteMin method deletes

the root. If we have a min-heap, the root node contains the smallest value of the tree.

After deleting the node, we will use the percolateDown method to restore the order of

the heap.

The user can delete any node from the tree. We can write a special procedure for this

purpose. Here we will use the methods which are already available. At first, the

decreaseKey method will be called and value of node decreased by . It will result in
making the value of this node smallest of all the nodes. If the value is in integers, this

node will have the smallest integer. Now this node has the minimum value, so it will

become the root of the heap. Now we will call the deleteMin() and the root will be

deleted which is the required node. The value in this node is not useful for us. The is
a mathematical notation. It is not available in the C++. Actually we want to make the

minimum possible value of this node supported by the computer.

C++ Code
Now we will look at the C++ code of the Heap class. The objects of Heap may be got

from this factory class. This class will contain the methods including those discussed

earlier and some new ones. Heap is used both in priority queues and sorting.

We have some public and private methods in the class. Let’s have a look on the code.

/* The heap class. This is heap.h file */

template <class eType>

class Heap

{

public:

Heap(int capacity = 100);

CS301 – Data Structures Lecture No. 31

Page 366 of 505

Void insert(const eType & x);

Void deleteMin(eType & minItem);

Const eType & getMin();

Bool isEmpty();

Bool isFull();

int Heap<eType>::getSize();

private:

int currentSize; // Number of elements in heap

eType* array; // The heap array

int capacity;

void percolateDown(int hole);

};

We may like to store different type of data in the heap like integers, strings, floating-

point numbers or some other data type etc. For this purpose, template is used. With

the help of template, we can store any type of object in the heap. Therefore first of all

we have:

template <class eType>

Here eType will be used as a type parameter. We can use any meaningful name. Then

we declare the Heap class. In the public part of the class, there is a constructor as

given below.

Heap(int capacity = 100);

We have a parameter capacity in the constructor. Its default value is 100. If we call it

without providing the parameter, the capacity will be set to 100. If we call the

constructor by providing it some value like 200, the capacity in the Heap object will

be 200.

Next we have an insert method as:

void insert(const eType & x);

Here we have a reference element of eType which is of constant nature. In this

method, we will have the reference of the element provided by the caller. The copy of

element is not provided through this method. We will store this element in the Heap.

Similarly we have a delete method as:

void deleteMin(eType & minItem);

This method is used to delete the element from the heap.

If we want to know the minimum value of the heap, the getMin method can be useful.

CS301 – Data Structures Lecture No. 31

Page 367 of 505

The signatures are as:

const eType & getMin();

This method will return the reference of the minimum element in the Heap. We have

some other methods in the Heap class to check whether it is empty or full. Similarly,
there is a method to check its size. The signatures are as:

bool isEmpty();

bool isFull();

int Heap<eType>::getSize();

When will Heap become full? As we are implementing the Heap with the help of an

array, the fixed data type, so the array may get full at some time. This is the

responsibility of the caller not to insert more elements when the heap is full. To

facilitate the caller, we can provide the methods to check whether the heap is full or

not. We can call the getSize() method to ascertain the size of the Heap.

In the private part, we have some data elements and methods. At first, we have

currentSize element. It will have the number of elements in the heap. Then we have

an array of eType. This array will be dynamically allocated and its size depends on the

capacity of the Heap. We have one private method as percolateDown.

This is our .h file, now we will see the implementation of these methods that is in our

.cpp file. The code is as under:

/* heap.cpp file */

#include "Heap.h“

template <class eType>

Heap<eType>::Heap(int capacity)
{

array = new eType[capacity + 1];
currentSize=0;

}

/* Insert item x into the heap, maintaining heap order. Duplicates

are allowed. */

template <class eType>

bool Heap<eType>::insert(const eType & x)

{

if(isFull()) {

cout << "insert - Heap is full." << endl;

return 0;

}

// Percolate up

int hole = ++currentSize;

for(; hole > 1 && x < array[hole/2]; hole /= 2)

CS301 – Data Structures Lecture No. 31

Page 368 of 505

array[hole] = array[hole / 2];

array[hole] = x;

}

template <class eType>

void Heap<eType>::deleteMin(eType & minItem)

{

if(isEmpty()) {

cout << "heap is empty.“ << endl;

return;

}

minItem = array[1];

array[1] = array[currentSize--];

percolateDown(1);

}

We include the heap.h file before having the constructor of the heap. If we do not

provide the value of capacity, it will be set to 100 that is default. In the constructor,

we are dynamically creating our array. We have added 1 to the capacity of the array

as the first position of the array is not in use. We also initialize the currentSize to zero

because initially Heap is empty.

Next we have insert method. This method helps insert item x into the heap, while

maintaining heap order. Duplicates are allowed. Inside the insert method, we will call

the isFull() method. If the heap is full, we will display a message and return 0. If the

heap is not full, we will insert the element in the heap and take a variable hole and

assign it currentSize plus one value. Then we will have a ‘for loop’ which will be

executed as long as hole is greater than 1. This is due to the fact that at position one,

we have root of the array. Secondly, the element which we want to insert in the array

is smaller than the array[hole/2]. In the loop, we will assign the array[hole/2] to

array[hole]. Then we divide the hole by 2 and again check the loop condition. After

exiting from the loop, we assign x to the array[hole]. To understand this insert

process, you can get help from the pictorial diagrams of the insert, discussed earlier.

We have a complete binary tree stored in an array and placed this new element at the

next available position in the array and with respect to tree it was left most leaf node.

This new node may have smaller value so it has to change its position. If we are

building the min-heap, this value should be moved upward. We will compare this

with the parent. If the parent is bigger, it will move down and child will move up.

Using the array notation, the parent of a child is at i/2 if child is at i position. We will

first try to find the final position of this new node and exchange the values. You might

want to remember the example of insert discussed in some earlier lecture. We have

shown a hole going up. Now the swapping function generally contains three

statements and is not an expensive operation. But if we perform swapping again and

again, it may cost some time. Therefore we will first find the final position of the new

node and then insert it at that position. In the ‘for loop’ we are finding the final

position of the node and the hole is moving upwards. In the statement array[hole] =

array[hole/2]; we are moving the parent down till the time final position of the new

node is achieved. Then we insert the node at its final position. It is advisable to

execute this code only for actual data and see how it works.

CS301 – Data Structures Lecture No. 31

Page 369 of 505

The next method is deletMin. First of all, it calls the isEmpty() method. If heap is

empty, it will display a message and return. If the heap is not empty, it will delete the

node. As the minimum value lies at the first position of the array, we save this value

in a variable and store the currentSize at the first position of the array. At the same

time, we reduce the currentSize by one as one element is being deleted. Then we call

the percolateDown method, providing it the new root node. It will readjust the tree.

We put the last element of the array which is the right most leaf node of the tree as the

root element will be deleted now. With this operation, the heap order can be

disturbed. Therefore we will call the percolateDown method which has the ability to

readjust the tree. This method will make the tree as min-heap again. There are some

more methods which we will cover in the next lecture.

CS301 – Data Structures Lecture No. 32

Page 370 of 505

Data Structures

Lecture No. 32

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 6

6.3

Summary

 perculateDown Method

 getMin Method

 buildHeap Method

 buildHeap in Linear Time

 Theorem

In the previous lecture, we defined a heap class and discussed methods for its

implementation. Besides, the insert and delete procedures were talked about. Here, we

will continue with discussion on other methods of the heap class. C++ language code

will be written for these procedures so that we could complete the heap class and use

it to make heap objects.

We are well aware of the deleteMin method. In this method, array[1] element (a root

element) is put in the minItem variable. In the min heap case, this root element is the

smallest among the heap elements. Afterwards, the last element of the array is put at

the first position of the array. The following two code lines perform this task.

minItem = array[1];

array[1] = array[currentSize--];

perculateDown Method
Then we call the perculateDown method. This is the same method earlier employed in

the build heap process. We passed it the node, say i, form where it starts its function

to restore the heap order. Let’s look at this perculateDown method. It takes the array

index as an argument and starts its functionality from that index. In the code, we give

the name hole to this array index. Following is the code of this method.

// hole is the index at which the percolate begins.

template <class eType>

void Heap<eType>::percolateDown(int hole)

{

int child;

eType tmp = array[hole];

for(; hole * 2 <= currentSize; hole = child)

{

child = hole * 2;

CS301 – Data Structures Lecture No. 32

Page 371 of 505

if(child != currentSize && array[child+1] < array[child])

child++; // right child is smaller

if(array[child] < tmp)

array[hole] = array[child];

else break;

}

array[hole] = tmp;

}

In the code of this function, it declares an integer variable named child before putting

the value at the index hole of the array in tmp variable. It is followed by a ‘for loop’,

the core of this method. The termination condition of this for loop is hole * 2 <=

currentSize; We know the 2i (or i * 2) formula that gives us index position of the left

child of i. In the code given above, we are using hole instead of i. This variable i.e.

hole is the loop variable. In other words, the termination condition means that the loop

will continue as long as the left child (hole * 2) is less than or equal to the current size

(currentSize) of the heap. Before looking at the third condition in which we change

the value of loop variable, let’s have a view of the iteration of for loop.

In the body of the ‘for loop’, we assign the value hole * 2 to the child variable. The

left child of an index i is located at the index 2i. So it is obvious that the child has the

index number of the left child of hole. Then there is an if statement. In this statement,

we check two conditions combined with && (logical AND) operator. This if

statement returns TRUE only if both the conditions are TRUE. The first condition in

this if statement checks that the child (index) should not be equal to the currentSize

while in the second condition, we compare the value at index child + 1 with the value

at index child. We check whether the value at child + 1 is less than the value at child.

The value at index child is the left child of its parent as we have found it by the

formula of 2i (here we used hole * 2). Thus the value at child + 1 will be the right

child of the parent (i.e. hole). Actually, we are comparing the left and right children of

hole. If both the conditions are TRUE, it means that right child is less than the left

child. Resultantly, we increment the child index by 1 to set it to the right child. Now

again in an if statement, we compare the value at index child (which is left or right

child depending upon our previous check in if statement) with the tmp value. If value

at child is less than the tmp value, we will put the value of index child at the index

hole. Otherwise, if tmp value is less than the child, we exit for loop by using the break

statement. Thus the value of child comes to the position of the parent (i.e. hole). The

hole gets downward and child goes upward. The ‘for loop’ continues, bringing the

hole downward and setting it to its proper position. When the hole reaches its

position, the ‘for loop’ exits (it may exit by meeting the break statement) and we put

the tmp value in the array at the index hole. In this method, at first, the final position

of hole is determined before putting value in it. Here the perculateDown procedure

ends.
Now the question arises why we are bringing the hole (index) downward? Why don’t
we exchange the values? We can execute the process of exchanging values. We will

use swap procedure to do this exchange. The swap process is carried out in three

statements. We have to do this swapping in the for loop. It is time-consuming process.

Contrast to it, in the perculateDown method, we execute one statement in for loop

instead of three swap statements. So it is better to use one statement instead of three

statements. This increases the efficiency with respect to time.

CS301 – Data Structures Lecture No. 32

Page 372 of 505

getMin Method
We discussed this method in the previous lectures while talking about the interface of

heap. Under this method, the minimum value in the heap is determined. We just try

that element and do not remove it. It is like the top method of stack that gives us the

element on the top of the stack but do not remove it from the stack. Similarly, the

getMin method gives us the minimum value in the heap, which is not deleted from the

heap. This method is written in the following manner.

template <class eType>

const eType& Heap<eType>::getMin()

{

if(!isEmpty())

return array[1];

}

Now we will discuss the buildHeap method.

buildHeap Method
This method takes an array along with its size as an argument and builds a heap out of
it. Following is the code of this method.

template <class eType>

void Heap<eType>::buildHeap(eType* anArray, int n)

{

for(int i = 1; i <= n; i++)

array[i] = anArray[i-1];

currentSize = n;

for(int i = currentSize / 2; i > 0; i--)
percolateDown(i);

}

In the body of this method, at first, there is a ‘for loop’ that copies the argument array

(i.e. anArray) into our internal array, called ‘array’. We do this copy as the array that

this method gets as an argument starts from index zero. But we want that the array

should start from index 1 so that the formula of 2i and 2i +1 could be used easily. In

this for loop, we start putting values in the internal array from index 1. Afterwards, we

set the currentSize variable equal to the number of the elements got as an argument.

Next is the for loop that we have already seen while discussing the build of heap. In

the previous lecture, we used ‘N’ for number of elements but here, it will be

appropriate to use the currentSize, which is also the number of elements. We start this

loop from the value i = currentSize / 2 and decrement the value of i by 1 for each

iteration and execute this loop till the value of i is greater than 0. In this for loop, we

call the method perculateDown to find the proper position of the value given as an

argument to this method. Thus we find the position for each element and get a heap.

Then there are three small methods. The isEmpty method is used to check whether the

heap is empty. Similarly the isFull method is used to check if the heap is full. The

getSize method is used to get the size of the heap. These three methods i.e. isEmpty,

isFull ans getSize are written below.

CS301 – Data Structures Lecture No. 32

Page 373 of 505

//isEmpty method

template <class eType>

bool Heap<eType>::isEmpty()

{

return currentSize == 0;

}

//isFull method

template <class eType>

bool Heap<eType>::isFull()

{

return currentSize == capacity;

}

//getSize method

template <class eType>
int Heap<eType>::getSize()

{

return currentSize;

}

buildHeap in Linear Time
We have seen that buildHeap takes an array to make a heap out of it. This process of

making heap (buildHeap algorithm) works better than N log2N. We will prove it

mathematically. Although our course is Data Structures, yet we have been discussing

the efficiency of the data structures from the day one of this course. We talked about

how efficiently a data structure uses memory storage and how much it is efficient with

respect to time. In different cases, mathematics is employed to check or compare the

efficiency of different data structures.

Here, we will show that the buildHeap is a linear time algorithm and is better than N

log2N algorithm which is not of linear nature. Linear algorithm is such a thing that if

we draw its graph, it will be a straight line with some slope. Whereas the graph of a

non-linear algorithm will be like a curve. We will discuss it in detail later. To prove

the superiority of the buildHeap over the N log2N, we need to show that the sum of

heights is a linear function of N (number of nodes). Now we will a mathematical

proof that proves that the buildHeap algorithm is better than N log2N. Now consider

the following theorem.

Theorem
According to this theorem, “For a perfect binary tree of height h containing 2h +1 – 1

nodes, the sum of the heights of nodes is 2h +1 – 1 – (h +1), or N-h-1”.

This theorem is about heights of tree. Let’s try to understand the concept of height. If

we start from the root node and go to the deepest leaf node of the tree, the number of

links we pass to go to the deepest leaf node is called the height of the tree. We have

been using the term depth and level for it also. Height can also be measured with

reference to the deepest leaf node at height zero and going upward to the root node.

Normally we start from the root and go to the deepest level to determine the height. A

perfect binary tree of height h has total number of nodes N equal to 2h +1 – 1. Now

according to the theorem, the sum of heights of nodes will be equal to N - h – 1. Let’s

CS301 – Data Structures Lecture No. 32

Page 374 of 505

prove it mathematically.

In a perfect binary tree, there are 20 nodes at level 0, 21 nodes at level 1, 22 nodes at

level 2 and so on. Generally, level n has 2n nodes. Now in terms of height, in a perfect

binary tree, if h is the height of the root node, there are 20 nodes at height h, 21 nodes

at height h-1, 22 nodes at height h-2 and so on. In general, there are 2i nodes at height

h-i. Following figure shows a perfect binary tree with the number of nodes at its

heights.

In the above figure, we can see that there are 21 nodes at height h-1and 23 nodes at

height h-3. The same is true about the number of nodes at other heights.

By making use of this property, we find the sum of heights of all the nodes

mathematically in the following manner. Suppose S is the sum of the heights of all the

nodes. Then

S = ∑ 2i (h - i), for i = 0 to h – 1

S = h + 2(h-1) + 4(h-2) + 8(h-3)+ ….. + 2h-1 (1)

Now multiplying by 2 the both sides of equation

2S = 2h + 4(h-1) + 8(h-2) + 16(h-3)+ ….. + 2h (2)

Now subtracting the equation 2 from equation 1

-S = h – 2 – 4 – 8 – 16 – …… – 2h-1 – 2h

S = -h + 2 + 4 + 8 + 16+ ….. + 2h-1 +2h

S = (2h+1 – 1) - (h+1)

Here S is the sum of heights. Thus it proves the theorem.

As stated earlier, in a perfect binary tree of height h, the total number of nodes N is

(2h+1 – 1). So by replacing it in the above equation, we get S = N – (h + 1).

Since a binary complete tree has nodes between 2h and 2h+1, the equation

S = (2h+1 – 1) - (h+1)

Can also be written as

A h : 20 nodes

B C h -1: 21 nodes

D E F G h -2: 22 nodes

H I J K L M N O h -3: 23 nodes

Figure 32.1: Perfect Binary Tree

CS301 – Data Structures Lecture No. 32

Page 375 of 505

S ~ N – Log2 (N+1)

In this equation, N stands for (2h+1 – 1) while Log2 (N+1) has taken the place of

(h+1). This equation is in term of N (number of nodes) and there is no h i.e. height in

this equation. Moreover, it also shows that with N getting larger, the log2(N +1) term

becomes insignificant and S becomes a function of N.

Suppose if N has a value 1000000, the value of log2 (1000000) will be approximately

20. We can see that it is insignificant with the value of N i.e. 1000000. Thus we can

say that S is approximately equal to N. This insignificance of log N shows that when

we build a heap from N elements, the values move up and down to maintain heap

order. Thus in buildHeap case, the values traverse the tree up and down. Now the

question arises what will be the maximum number of these traversals? This means

that if every node has to go up and down, what will be the maximum number of level

or height. We have proved that the sum of heights (i.e. S) is approximately equal to

the total number of nodes (i.e. N) as N becomes larger. Now in the buildHeap, the

maximum number of up down movement of values is actually the sum of heights i.e.

S. This S is the upper limit of number of movements in buildHeap. As this S is equal

to N, so this upper limit is N and there is not any log term involved in it. Thus

buildHeap is a linear time application.

Now let’s prove the previous theorem with a non-mathematical method. We know

that the height of a node in the tree is equal to the number of edges on the longest

downward path to a leaf. So if we want to find the height of a node, it will be

advisable to go to the deepest leaf node in the tree by following the links (edges) and

this path (the number of links traveled) to the leaf node is the height of that node. The

height of a tree is the height of its root node. After these definitions, consider the

following two points that prove the theorem.

 For any node in the tree that has some height h, darken h tree edges

–Go down the tree by traversing left edge then only right edges.

 There are N – 1 tree edges, and h edges on right path, so number of darkened

edges is N – 1 – h, which proves the theorem.

We will explain these two points with the help of figures.

Consider the perfect binary tree, shown in the figure below.

CS301 – Data Structures Lecture No. 32

Page 376 of 505

There are no values shown in the nodes. We are concerned with the heights of nodes

while the values do not matter. We mark the left edges of the nodes having height 1.

The leaf nodes are at height 0, so the one level above nodes has height 1, the left

edges of which are marked (shown light gray in above figure).

Now we mark the first left edge and the subsequent right edge up to the leaf node for

each node at height 2. These marked edges are shown in the figure below with gray

color.

Similarly we go to the nodes at height 3, mark the first left edge and the subsequent

right edge up to the leaf node. Thus we mark one left and then two right edges for the

nodes at height 3. This is shown in the following figure. The edges marked in this step

are seen as the dark lines.

Figure 32.2: Marking the left edges for height 1 nodes

Figure 32.3: Marking the first left edge and the subsequent

right edge for height 2 nodes

CS301 – Data Structures Lecture No. 32

Page 377 of 505

Now we reach at the root whose height is 4. We mark the first left edge and the

subsequent three right edges for this node. This is shown in the figure below.

Now consider the following figure. In this figure, we show all the marked edges (that

we have marked in the previous steps) in gray and the non-marked edges are shown

with dotted lines.

Figure 32.4: Marking the first left edge and the subsequent two right

edges for height 3 nodes

Figure 32.5: Marking the first left edge and the subsequent three

right edges for height 4 nodes

CS301 – Data Structures Lecture No. 32

Page 378 of 505

The marked links are the ones through which the data can move up and down in the

tree. We can move the data in any node at a height to a node at other height following

the marked links. However, for the movement of the data in the root node to right side

of it, we can have opposite of the above figure. The opposite of the above figure can

be drawn by symmetry of the above steps. That means we first mark the right edge

and then the subsequent left edges. This will give us the figure of marked links in

which we can move to the right subtree of root.

Now let’s sort out different aspects of the tree shown in above figure. We know that

in case of tree of N nodes, there will be N – 1. Now in the tree above there are 31

nodes that means n = 31, so the number of edges is 31 - 1 = 30. The height of the tree

is 4. Height is represented by the letter H. so H = 4. The number of dotted edges (that

were not marked) in the tree is 4 that is the same as the height of the tree. Now we put

these values in the formula for the sum of the heights of the nodes. We know the

formula i.e.

S = N – H – 1

By putting values in this formula, we get

S = 31 – 4 – 1 = 26

If we count the darkened edges (marled links) in the above tree, it is also 26 that is

equal to the sum of heights. Thus with the help of these figures, the theorem earlier

proved mathematically, is established by a non-mathematical way.

Figure 32.6: Marked and unmarked edges

CS301 – Data Structures Lecture No. 33

Page 379 of 505

Data Structures

Lecture No. 33

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 6, 8

6.3, 8.1

Summary

 Priority Queue Using Heap

 The Selection Problem

 Heap Sort

 Disjoint Set ADT

 Equivalence Relations

Priority Queue Using Heap
As discussed in the previous lecture, we generally prefer to employ the buildHeap to

construct heap instead of using insert if we have all the required data. buildHeap is

optimized as compared to insert method as it takes lesser time than Nlog2N . In the

previous discussion, we had proved a theorem that if the number of links in the tree

are counted, the sum of all is N-h-1. We have been iterating a lot of times that the best

use of heap is priority queue’s implementation. Let’s try to develop a class of priority

queue with the help of a heap. You are very familiar with the concept of bank

simulation. While explaining the bank simulation, we had used a priority queue that

was implemented by using an array. Now, we will implement the same queue with the

help of a heap. For this purpose, the code will be modified so that heap is used in

place of array. The interface (.h file) will remain the same. However, the

implementation (.cpp file) will be changed. Let’s see the following cpp code, which

also shows the change in the .cpp file:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

#include “Event.cpp”

#include “Heap.cpp”

#define PQMAX 30

class

{

PriorityQueue

public:

PriorityQueue()

{

heap = new Heap <Event> (PQMAX);

};

~PriorityQueue()

{

delete heap;

};

CS301 – Data Structures Lecture No. 33

Page 380 of 505

17.

18.

19.

20.

21.

22.

23.

24.

25.

Event * remove()

{

if(!heap->isEmpty())

{

Event * e;

heap->deleteMin(e);

return e;

}

cout << "remove - queue is empty." << endl;

26. return (Event *) NULL;
27. };

28.

29. int insert(Event * e)

30. {

31. if(!heap->isFull())

32. {

33. heap->insert(e);

34. return 1;

35. }

36. cout << "insert queue is full." << endl;

37. return 0;

38. };

39.

40. int full(void)

41. {

42. return heap->isFull();

43. };

44.

45. int length()

46. {

47. return heap->getSize();

48. };

49. };

The first line has a file Event.cpp that contains all the events used for simulation. We

are including .cpp files here as done in case of templates of C++. In the second line,

there is heap.cpp while a constant PQMAX has been defined in third line, declaring

the maximum size of the priority queue to be 30. In line 4, class PriorityQueue is

declared. public keyword is given at line 6 indicating that all class members below

will be of public scope. Line 7 starts the class constructor’s definition while in the line

9; a new heap object is being created. This object is a collection of Event type objects

and the number of elements in the collection is PQMAX. The address (pointer) of the

newly created heap is stored in the heap object pointer. The heap is a private pointer

variable of PriorityQueue class. Now there is the destructor of the class, where we

are deleting (deallocating the The first line is including a file Event.cpp, this is

containing all the events used for simulation. At the second line, we have included

heap.cpp. In the third line, we are defining a constant PQMAX, declaring the

maximum size of the priority queue to be 30. In line 4, class PriorityQueue is

CS301 – Data Structures Lecture No. 33

Page 381 of 505

declared. public keyword is given at line 6 indicating that all class members below

will be of public scope. Line 7 is starting the class constructor’s definition. At line 9, a

new heap object is being created, this object is a collection of Event type objects and

the number of elements in the collection is PQMAX. The address (pointer) of the

newly created heap is stored in the heap object pointer. The heap is a private pointer

variable of PriorityQueue class. Next comes the destructor of the class, where we are

deleting (deallocating the allocated resources) the pointer variable heap. Next is the

remove method that was sometimes, named as dequeue in our previous lectures.

remove method is returning an Event pointer. Inside remove, the first statement at line

19 is an if-condition; which is checking whether heap is not empty. If the condition is

true (i.e. the heap is not empty), a local variable (local to the block) Event* variable e

is declared. In the next line at line 22, we are calling deleteMin method to delete

(remove) an element from the heap, the removed element is assigned to the passed in

parameter pointer variable e. You might have noticed already that in this version of

deleteMin, the parameter is being passed by pointer, in the previous implementation

we used reference. In the next line, the retrieved value is returned, the function returns

by returning the pointer variable e. But if the heap was empty when checked at line

19, the control is transferred to the line 25. At line 25, a message is displayed to show

that the heap is empty and the next line returns a NULL pointer.

It is important to understand one thing that previously when we wrote the array based

remove method. We used to take an element out from the start of the array and shifted

the remaining elements to left. As in this implementation, we are using heap,

therefore, all the responsibilities of maintaining the heap elements lie with the heap.

When the deleteMin() is called, it returns the minimum number.

We now observe the insert method line by line. It is accepting a pointer type

parameter of type Event. As the heap may become full, if we keep on inserting

elements into it, so the first line inside the insert function is checking whether the

heap has gone full. If the heap is not full, the if-block is entered. At line 33 inside the

if-block, an element that is passed as a parameter to insert method of heap is inserted

into the queue by calling the insert method of heap. This insert call will internally

perform percolate up and down operations to place the new element at its correct

position. The returned value 1 indicates the successful insertion in the queue. If the

heap has gone full, a message is displayed i.e. ‘insert queue is full’. Note that we have

used the word queue, not heap in that message. It needs to be done this way.

Otherwise, the users of the PriorityQueue class are unaware of the internal

representation of the queue (whether it is implemented using a heap or an array). Next

line is returning 0 while indicating that the insert operation was not successful. Below

to insert, we have full() method. This method returns an int value. Internally, it is

calling isFull() method of heap. The full() method returns whatever is returned by the

isFull() method of heap. Next is length() method as the size of heap is also that of the

queue. Therefore, length() is internally calling the getSize() method of heap.

In this new implementation, the code is better readable than the PriorityQueue’s

implementation with array. While implementing the PriorityQueue with an array, we

had to sort the internal array every time at each insertion in the array. This new

implementation is more efficient as the heap can readjust itself in log2N times. Gain in

performance is the major benefit of implementing PriorityQueue with heap as

compared to implementation with array.

CS301 – Data Structures Lecture No. 33

Page 382 of 505

There are other significant benefits of the heap that will be covered in this course time

to time. At the moment, we will have some common example usages of heap to make

you clear about other uses of heap. The heap data structure will be covered in the

Algorithms course also.

The Selection Problem
 Given a list of N elements (numbers, names etc.) which can be totally ordered and

an integer k, find the kth smallest (or largest) element.

Suppose, we have list of N names (names of students or names of motor vehicles or a

list of numbers of motor vehicles or list of roll numbers of students or id card numbers

of the students, whatever). However, we are confronting the problem of finding out

the kth smallest element. Suppose we have a list of 1000 numbers and want to find the

10th smallest number in it. The sorting is applied to make the elements ordered. After

sorting out list of numbers, it will be very easy to find out any desired smallest

number.

 One way is to put these N elements in an array and sort it. The k
th

smallest of these
th

is at the k position.

It will take Nlog2N time ,in case we use array data structure. Now, we want to see if it

is possible to reduce the time from Nlog2N by using some other data structure or by

improving the algorithm? Yes, we can apply heap data structure to make this

operation more efficient.

 A faster way is to put the N elements into an array and apply the buildHeap

algorithm on this array.

 Finally, we perform k deleteMin operations. The last element extracted from the

heap is our answer.

The buildHeap algorithm is used to construct a heap of given N elements. If we

construct ‘min-heap, the minimum of the N elements, will be positioned in the root

node of the heap. If we take out (deleteMin) k elements from the heap, we can get the

Kth smallest element. BuildHeap works in linear time to make a min or a max-heap.

 The interesting case is k = ÀN/2Â as it is also is known as the median.

In Statistics, we take the average of numbers to find the minimum, maximum and

median. Median is defined as a number in the sequence where the half of the numbers

are greater than this number while the remaining half are smaller ones. Now, we can

come up with the mechanism to find median from a given N numbers. Suppose, we

want to compute the median of final marks of students of our class while the

maximum aggregate marks for a student are 100. We use the buildHeap to construct a

heap for N number of students. By calling deleteMin for N/2 times, the minimum

marks of the half number students will be taken out. The N/2 th marks would be the

median of the marks of our class. The alternate methods are there to calculate median.

However, we are discussing the possible uses of heap. Let’s see another use of heap.

Heap Sort
To take the 100th minimum element out from the min-heap, we will call deleteMin to

CS301 – Data Structures Lecture No. 33

Page 383 of 505

take out 1st element, 2nd element, 3rd element. Eventually we will call deleteMin 100th

time to take out our required 100th minimum element. Suppose, if the size of the heap

is 100 elements, we have taken out all the elements out from the heap. Interestingly

the elements are sorted in ascending order. If somehow, we can store these numbers,

let’s say in an array, all the elements sorted (in ascending order in this min-heap case)

can be had.

Hence,

 If k = N, and we record the deleteMin elements as they come off the heap. We will

have essentially sorted the N elements.

 Later in the course, we will fine-tune this idea to obtain a fast sorting algorithm

called heapsort.

We conclude our discussion on the heap here. However, it will be discussed in the

forthcoming courses. At the moment, let’ see another Abstract Data Type.

Disjoint Set ADT
Before actually moving to an Abstract Data Type (ADT), we need to see what that

ADT is, how it works and in which situations it can be helpful. We are going to cover

Disjoint Set ADT. Firstly, we will have its introduction, examples and later the ways

of its implementation.

 Suppose we have a database of people.

 We want to figure out who is related to whom.Initially, we only have a list of
people, and information about relations is obtained by updating the form “Haaris

is related to Saad”.Let’s say we have a list of names of all people in a locality but

are not aware of their relationships to each other. After having the list of all people,

we start getting some information about their relationships gradually. For example,

“Ali Abbas is the son of Abbas”.

The situation becomes interesting when we have relationships like “Ali Abbas is first
cousin of Ayesha Ali (i.e. fathers of both are brothers) but Ayesha Ali has other

immediate cousins also from her mother’s side. Therefore, other immediate cousins of

Ayesha Ali also get related to Ali Abbas despite the fact that they are not immediate

to him”.

So as we keep on getting relationship details of the people, the direct and indirect

relationships can be established.

 Key property: If Haaris is related to Saad and Saad is related to Ahmad, then

Haaris is related to Ahmad.

See the key property line’s first part above “Harris is related to Saad and Saad is

related to Ahmad”. Suppose we have a program to handle this list of people and their

relationships. After providing all the names “Harris, Saad and Ahmad” to that

program and their relationships, the program might be able to determine the

remaining part “Harris related to Ahmad”.

The same problem (the intelligence required in the program) is described in the

sentence below:

 Once we have relationships information, it will be easy for us to answer queries

like “Is Haaris related to Ahmad?”

CS301 – Data Structures Lecture No. 33

Page 384 of 505

To answer this kind of queries and have that intelligence in our programs, Disjoint Set

ADT is used. Before going for more information about Disjoint Set ADT , we see

another application of this ADT in image analysis. This problem is known as Blob

Coloring.

Blob Coloring

A well-known low-level computer vision problem for black and white images is the

 following:

Put together all the picture elements (pixels) that belong to the same "blobs", and give

each pixel in each different blob an identical label.

You must have heard of robots that perform certain tasks automatically. How do they

know from the images provided to them that in which direction should they move?

They can catch things and carry them. They do different things the way human beings

do. Obviously, there is a software working internally in robots’ body, which is doing

all this controlling part and vision to the robot. This is very complex problem and

broad area of Computer Science and Electrical Engineering called Robotics

(Computer Vision in particular).

Consider the image below:

`` Fig 33.1

This image is black and white, consisting of five non-overlapping black colored

regions of different shapes, called blobs. These blobs are two elliptics- n and u shaped

(two blobs) and one arc at the bottom. We can see these five blobs. How can robot

identify them? So the problem is:

 We want to partition the pixels into disjoint sets, one set per blob.

If we make one set per blob, there will be five sets for the above image. To

understand the concept of disjoint sets, we can take an analogy with two sets- A and B

(as in Mathematics) where none of the elements inside set A is present in set B. The

sets A and B are called disjoint sets.

Another problem related to the Computer Vision is the image segmentation problem.

See the image below on the left of an old ship in gray scales.

CS301 – Data Structures Lecture No. 33

Page 385 of 505

Fig 33.2

We want to find regions of different colors in this picture e.g. all regions in the picture

of color black and all regions in the image of color gray. The image on the right

represents the resultant image.

Different scanning processes carried out in hospitals through MRI (Magnetic

Resonance Imaging), CAT Scan or CT Scan views the inner parts of the whole body

of human beings. These scanned images in gray scales represent organs of the human

body. All these are applications of Disjoint Set ADT.

Equivalence Relations

Let’s discuss some Mathematics about sets. You might have realized that
Mathematics is handy whenever we perform analysis of some data structure.

 A binary relation R over a set S is called an equivalence relation if it has

following propertiesReflexivity: for all element x S, x R x

2. Symmetry: for all elements x and y, x R y if and only if y R x

3. Transitivity: for all elements x, y and z, if x R y and y R z then x R z

 The relation “is related to” is an equivalence relation over the set of people.

You are advised to read about equivalence relations yourself from your text books or

from the internet.

CS301 – Data Structures Lecture No. 34

Page 386 of 505

Data Structures

Lecture No. 34

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 8

8.1, 8.2, 8.3

Summary

 Equivalence Relations

 Disjoint Sets

 Dynamic Equivalence Problem

Equivalence Relations
We will continue discussion on the abstract data structure, ‘disjointSets’ in this lecture

with special emphasis on the mathematical concept of Equivalence Relations. You are

aware of the rules and examples in this regard. Let’s discuss it further and define the

concept of Equivalence Relations.

‘A binary relation R over a set S is called an equivalence relation if it has following
properties’:

1. Reflexivity: for all element x ξ S, x R x

2. Symmetry: for all elements x and y, x R y if and only if y R x

3. Transitivity: for all elements x, y and z, if x R y and y R z then x R z

The relation “is related to” is an equivalence relation over the set of people. This is an

example of Equivalence Relations. Now let’s see how the relations among people

satisfy the conditions of Equivalence Relation. Consider the example of Haris, Saad

and Ahmed. Haris and Saad are related to each other as brother. Saad and Ahmed are

related to each other as cousin. Here Haris “is related to” Saad and Saad “is related

to” Ahmed. Let’s see whether this binary relation is Equivalence Relation or not. This

can be ascertained by applying the above mentioned three rules.

First rule is reflexive i.e. for all element x ξ S, x R x. Suppose that x is Haris so Haris

R Haris. This is true because everyone is related to each other. Second is Symmetry:

for all elements x and y, x R y if and only if y R x. Suppose that y is Saad. According

to the rule, Haris R Saad if and only if Saad R Haris. If two persons are related, the

relationship is symmetric i.e. if I am cousin of someone so is he. Therefore if Haris is

brother of Saad, then Saad is certainly the brother of Haris. The family relationship is

symmetric. This is not the symmetric in terms of respect but in terms of relationship.

The transitivity is: ‘for all elements x, y and z. If x R y and y R z, then x R z’. Suppose

x is Haris, y is Saad and z is Ahmed. If Haris “is related to” Saad, Saad “is related to”

Ahmed. We can deduce that Haris “is related to” Ahmed. This is also true in

relationships. If you are cousin of someone, the cousin of that person is also related to

you. He may not be your first cousin but is related to you.

CS301 – Data Structures Lecture No. 34

Page 387 of 505

Now we will see an example of binary relationship that is not based on equivalence

relationship. The ≤ relationship is not an equivalence relation. We will prove this by

applying the three rules. The first rule is reflexive. It is reflexive, since x ≤ x, as x is

not less than x but surely is equal to x. Let’s check the transitive condition. Since x ≤ y

and y ≤ z implies x ≤ z., it is also true. However it is not symmetric as x ≤ y does not

imply y ≤ x. Two rules are satisfied but symmetric rule does not. Therefore ≤ is not an

equivalence relation.

Let’s see another example of binary relationship that is also equivalence relation. This

is from the electric circuit domain. Electrical connectivity, where all connections are

by metal wires, is an equivalence relation. You can make the circuit diagram on the

paper including transistor, resistors and capacitors etc. These parts are connected to

each other with the metal wire. Now let’s apply the rules of equivalence relations on

it. It is clearly reflexive, since the component is connected to itself. In a circuit, a

transistor is connected to itself. It is symmetric due to the fact that if component a is

connected to component b, then b must be electrically connected to a. Suppose we

have two capacitors a and b. If capacitor a is connected to b, capacitor b is also

connected to a. It is also transitive. If component a is connected to component b and b

is connected to c, then a is connected to c. This is also true in electrical connectivity.

All the three rules of equivalence relations satisfy in this case. Therefore this is

equivalence relation.

Disjoint Sets
In the beginning of the lecture, it was told that equivalence relationship partitioned the

set. Suppose we have a set of elements and a relation which is also equivalence

relation. Let’s see what it does mathematically to the set. An equivalence relation R

over a set S can be viewed as a partitioning of S into disjoint sets. Here we have an

equivalence relationship which satisfies the three conditions. Keep in mind the

examples of family relationships or electrical circuits. Here the second point is that

each set of the partition is called an equivalence class of R (all elements that are

related).

Consider the diagram below. We have a set in the shape of an ellipse.

This set has been partitioned into multiple sets. All these parts are disjoint sets and

belong to an equivalence class.

Let’s discuss an example to understand it. Suppose there are many people around you.

How can we separate those who are related to each other in this gathering? We make

CS301 – Data Structures Lecture No. 34

Page 388 of 505

groups of people who are related to each other. The people in one group will say that

they are related to each other. Similarly we can have many groups. So every group

will say that they are related to each other with family relationship and there is no

group that is related to any other group. The people in the group will say that there is

not a single person in the other group who is related to them. There is a possibility

that a boy from one group marries to a girl from the other group. Now a relation has

been established between these two groups. The people in both groups are related to

each other due to this marriage and become a bigger family. With the marriages

people living in different families are grouped together. We will do operations like

this in case of disjoint sets by combining two sets. You must be aware of the union

and intersection operations in sets.

Every member of S appears in exactly one equivalence class. We have divided a set

into many disjoint sets. One member of the set can appear in only one equivalence

class. Keeping in mind the example of family relations, if a person belongs to a group

he cannot go to some other group. The second point is to decide if a R b. For this

purpose, we need only to check whether a and b are in the same equivalence class.

Consider the example of pixels. If a pixel p1 is in a region and want to know the

relation of pixel p2 with it, there is only the need to confirm that these two pixels are

in the same region. Lastly, this provides a strategy to solve the equivalence problem.

With the help of second point we can get help to solve the equivalence problem. So

far, we have not seen the disjoint sets and its data structure.

Dynamic Equivalence Problem
Let’s talk about the data structure. Suppose we have a set and converted into disjoint

sets. Now we have to decide if these disjoint sets hold equivalence relation or not.

Keep in mind the example of family relations in which we had divided the people into

groups depending upon their relations. Suppose we have to decide that two persons

belong to the same family or not. You have to make this decision at once. We have

given a set of people and know the binary relation between them i.e. a person is a

cousin of other, a person is brother of other etc. So the relation between two persons is

known to us. How we can take that decision? What is the data available to us? We

have people (with their names) and the binary relation among them. So we have

names and the pair of relations. Think that Haris and Ahmed are related to each other

or not i.e. they belong to the same family or not. How can we solve this? One way to

find out the relationship is given below.

If the relation is stored as a two-dimensional array of booleans, this can be done in

constant time. The problem is that the relation is usually not explicitly defined, but

shown in implicit terms. Suppose we are given 1000 names of persons and relations

among them. Here we are not talking about the friendship as it is not a family relation.

We are only talking about the family relations like son-father, brother-brother, cousin-

cousin, brother-sister, etc. Can we deduce some more relations from these given

relations? Make a two dimensional array, write the names of persons as the columns

and rows headings. Suppose Haris is the name of first column and first row. Saad is

the name of 2nd col and 2nd row. Similarly Ahmed, Omar, Asim and Qasim are in the

3rd, 4th, 5th, and 6 th columns and rows respectively. The names are arranged in the

same way in columns and rows.

CS301 – Data Structures Lecture No. 34

Page 389 of 505

Haaris

Saad

Ahmed

Omar

Asim

Qasim

H

a
a A Q

r S h O A a

i a m m s s

s a e a i i

d d r m m

T T T

T T

T

T

T T

T

Now visit each cell of matrix. If two persons are related, store T(true) in the

corresponding column and row. As Haris and Saad are related to each other, so we

take the row of Haris and column of Saad and store T in that cell. Also take the row of

Saad and column of Ahmed and mark it with T. By now, we do not know that Haris

and Ahmed are related so the entry in this regard will be false. We cannot write

T(True) here as this relationship has not be stated explicitly. We can deduce that but

cannot write it in the matrix. Take all the pairs of relations and fill the matrix. As

Haris is related to Haris so we will write T in the Haris row and Haris column.

Similarly, the same can be done in the Saad row and Saad column and so on. This will

be square matrix as its rows and columns are equal. All of the diagonal entries are T

because a person is related to himself. This is a self relation. Can we find out that

Haris and Ahmed are related? We can find the answer of this question with the help of

two relations between Haris & Saad and Saad & Ahmed. Now we can write T in the

Haris row and Ahmed column. The problem is that this information was not given

initially but we deduced this from the given information. We have 1000 people so the

size of the matrix will be 1000 rows * 1000 columns. Suppose if we have 100,000

people, then the size of the array will be 100,000*100,000. If each entry requires one

byte then how much storage will be required to store the whole array? Suppose if we

have one million people, the size will be 10 to the power 14. Do we have as much

memory available in the computer? We have one solution but it is not efficient in

terms of memory. There is always need of efficient solution in terms of space and

time. For having a fast algorithm, we can compromise on the space. If we want to

conserve memory, a slow algorithm can be used. The algorithm we discussed is fast

but utilized too much space.

Let’s try to find out some more efficient solution of this problem. Consider another

example. Suppose the equivalence relation is defined over the five-element set {a1,

CS301 – Data Structures Lecture No. 34

Page 390 of 505

a2, a3, a4, a5}. These elements can be the name of people, pixels, electrical

components etc. How many pairs we can have in this set? We have a pair a1-a1, a1-

a2, a1-a3, a1-a4, a1-a5, a2-a2, a2-a3 etc. The pair a1-a2 and a2-a1 are equal due to

symmetric. We also find some self-pairs (i.e. a1-a1, a2-a2 etc). There are 25 pairs of

elements, each of which is related or not (30 pairs – 5 self-pairs = 25). These are the

total pairs and we may not have as much relations. What will be size of array with

five elements? The size will be 5*5 = 25. We are also given relations i.e.

• a1 R a2,

• a3 R a4,

• a5 R a1,

• a4 R a2,

We have five people in the example and their relation is given in four pairs. If two

persons are brothers, then cousin of one brother is also the cousin of other. We can

find out this information with the help of a matrix. We would like to be able to infer

this information quickly.

We made nodes of each element. These five nodes are as a1, a2, a3, a4, a5.

As a1 R a2, so we link the nodes a1 and a2. Similarly a3 R a4, these two nodes are

also linked. Following this pattern, it is established that a5 R a1 and a4 R a2. So we

connect these nodes too. It is clear from the figure that all of these nodes are related to

each other. If they are related to each other as cousin, then all of these five persons

belong to the same family. They need to be in the same set. They are not in disjoint

sets. Is a3 R a5? You can easily say yes. How you get this information? This relation

is not provided in the given four relations. With the above tree or graph we can tell

that a3 is related to a5. We can get the information of relationship between different

persons using these nodes and may not need the matrix.

We want to get the information soon after the availability of the input data. So the

data is processed immediately. The input is initially a collection of n sets, each with

one element. Suppose if we have 1000 people, then there will be need of 1000 sets

having only one person. Are these people related to each other? No, because every

person is in different set. This initial representation is that all relations (except

reflexive relations) are false. We have made 1000 sets for 1000 people, so only the

reflexive relation (every person is related to himself) is true. Now mathematically

speaking, each set has a different element so that Si ∩ Sj = Ø which makes the sets

a1

a2 a5

a3 a4

CS301 – Data Structures Lecture No. 34

Page 391 of 505

disjoint. A person in one set has no relation with a person in another set, therefore

there intersection is null. Now here we have 1000 sets each containing only one

person. Only the reflexive relation is true and all the 1000 sets are disjoint. If we take

intersection of any two sets that will be null set i.e. there is no common member in

them.

Sometimes, we are given some binary relations and are asked to find out the

relationship between two persons. In other words, we are not given the details of

every pair of 1000 persons. The names of 1000 persons and around 50 relations are

provided. With the help of these 50 relations, we can find out more relations between

other persons. Such examples were seen above while find out the relationship with the

help of graph.

There are two permissible operations in these sets i.e. find and union. In the find

method, we are given one element (name of the person) and asked to find which set it

belongs to. Initially, we have 1000 sets and asked in which set person 99 is? We can

say that every person is in a separate set and person 99 is in set 99. When we get the

information of relationships between different persons, the process of joining the sets

together can be started. This is the union operation. When we apply union operation

on two sets, the members of both sets combined together and form a new set. In thi s

case, there will be no duplicate entry in the new sets as these were disjoint. The

definitions of find and union are:

 Find returns the name of the set (equivalence class) that contains a given

element, i.e., Si = find(a)

 Union merges two sets to create a new set Sk = Si U Sj.

We give an element to the find method and it returns the name of the set. The method

union groups the member of two sets into a new set. We will have these two

operations in the disjoint abstract data type. If we want to add the relation a R b, there

is need to see whether a and b are already related. Here a and b may be two persons

and a relation is given between them. First of all we will see that they are already

related or not. This is done by performing find on both a and b to check whether they

are in the same set or not. At first, we will send a to the find method and get the name

of its set before sending b to the find method. If the name of both sets is same, it

means that these two belong to the same set. If they are in the same set, there is a

relation between them. We did not get any useful information with this relation. Let’s

again take the example of the Haris and Saad. We know that Haris is the brother of

Saad, so they can be placed into a new set. Afterwards, we get the information that

Saad is the brother of Haris.

Now the question arises, if they are not in the same set, what should we do? We will

not waste this information and apply union which merges the two sets a and b into a

new set. This information will be helpful later on. We keep on building the database

with this information. Let’s take the example of pixels. Suppose we have two pixels

and are told that these two belong to the same region, have same color or these two

pixels belong to the liver in CT scan. We will keep these two pixels and put them in

one set. We can name that set as liver. We will use union operation to merge two sets.

The algorithm to do this is frequently known as Union/Find for this reason.

CS301 – Data Structures Lecture No. 34

Page 392 of 505

There are certain points to note here. We do not perform any operations comparing

the relative values of set elements. That means that we are not considering that one

person is older than the other, younger or one electrical component is bigger than

other etc. We merely require knowledge of their location, i.e., which set an element,

belongs to.

Let’s talk about the algorithm building process. We can assume that all elements are

numbered sequentially from 1 to n. Initially we have Si = {i} for i = 1 through n. We

can give numbers to persons like person1, person2 etc. Consider the example of jail.

In a jail, every prisoner is given a number. He is identified by a number, not by the

name. So you can say that persons in a cell of jail are related. We will use these

numbers to make our algorithm run faster. We can give numbers to every person,

every pixel, each electrical component etc. Under this scheme, the member of S10 is

number 10. That number 10 can be of a person, a pixel or an electrical component.

We are concerned only with number.

Secondly, the name of the set returned by find is fairly arbitrary. All that really

matters is that find(x) = find(y) if and only if x and y are in the same set. We will now

discuss a solution to the union/find problem that for any sequence of at most m finds

and up to n-1 unions will require time proportional to (m + n). We are only storing

numbers in the sets and not keeping any other relevant information about the

elements. Similarly we are using numbers for the names of the sets. Therefore we may

want that the method find just returns the number of the set i.e. the person 10 belongs

to which set number. The answer may be that the person 10 belongs to set number 10.

Similarly the set number of person 99 may be set 99. So if the set numbers of two

persons is not equal, we can decide that these two persons do not belong to the same

set. With the help of this scheme, we will develop our algorithm that will run very

fast. In the next lecture, we will discuss this algorithm and the data structure in detail.

CS301 – Data Structures Lecture No. 35

Page 393 of 505

Data Structures

Lecture No. 35

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 8

Summary

8.2, 8.3

 Dynamic Equivalence Problem

 Example 1

 Parent Array

o Initialization

o Find (i)

o Union (i, j)

 Example 2

o Initialization

o union operation

o find Operation

 Running Time Analysis

Before talking about the data structure implementation in detail, we will recap the

things discussed in the previous lecture. The concepts that came under discussion in

the last lecture included the implementation of the disjoint set. It was observed that in

case of data elements, we assign a unique number to each element to make sets from

these numbers. Moreover, techniques of merger and searching in these sets by using

the operations union and find were, talked about. It was seen that if we send a set item

or a number to find method, it tells us the set of which this item is a member. It will

return the name of the set. This name of set may also be a number. We talked about

the union method in which members of two sets join together to form a new set. The

union method returns the name or number of this new set.

Now we will discuss the data structure used to implement the disjoint sets, besides

ascertaining whether this data structure implements the find and union operations

efficiently.

Dynamic Equivalence Problem
We are using sets to store the elements. For this purpose, it is essential to remember

which element belongs to which set. We know that the elements in a set are unique

and a tree is used to represent a set. Each element in a tree has the same root, so the

root can be used to name the set. The item (number) in the root will be unique as the

set has unique values of items. We use this root as the name of set for our

convenience. Otherwise, we can use any name of our choice. So the element in the

root (the number) is used as the name of the set. The find operation will return this

name. Due to the presence of many sets, there will be a collection of trees. In this

collection, each tree will be representing one set. If there are ten elements, we will

CS301 – Data Structures Lecture No. 35

Page 394 of 505

have ten sets initially. Thus there will be ten trees at the beginning. In general, we

have N elements and initially there will be N trees. Each tree will have one element.

Thus there will be N trees of one node. Now here comes a definition for this

collection of trees, which states that a collection of trees is called a forest.

The trees used for the sets are not necessarily binary trees. That means it is not

necessary that each node should have a maximum of two children nodes. Here a node

may have more than two children nodes.
To execute the union operation in two sets, we merge the two trees of these sets in

such a manner that the root of one tree points to the root of other. So there will be one

root, resulting in the merger of the trees. We will consider an example to explain t he

union operation later.

In the find operation, when we call find (x), it helps us to know which set this x

belongs to. Internally, we find this x in a tree in the forest. When this x is found in a

tree the find returns the number at root node (the name of the set) of that tree.

Example 1

Now let’s consider an example to understand this phenomenon. Suppose, we have
developed a data structure and apply the union and find operations on it. There are

eight elements in this data structure i.e.1 to 8. These may be the names of people to

which we have assigned these numbers. It may be other distinct eight elements. We

will proceed with these numbers and make a set of each number. The following figure

shows these numbers in different sets.

Now we carry out union operation on the sets 5 and 6. The call union(5,6) means,
merge the sets 5 and 6 and return the new set developed due to the merger of the sets-

5 and 6. In the following figure, we see this union. We put the set 6 below set 5,

which join together.

After the merger, the new set contains two members 5 and 6. Now the question arises
what will be the name of this new set. In the above union operation, the set 6 becomes

1 2 3 4 5 6 7 8

Figure 35.1: Eight elements, initially in different sets

1 2 3 4 5 7 8

6

Figure 35.2: After union (5, 6)

CS301 – Data Structures Lecture No. 35

Page 395 of 505

the node of 5. It may be in reverse i.e. 5 could be a node of 6. In the above figure, we

put 6 as node of 5. Moreover the arrow joining these is from 6 to 5. In the new set

formed due to the merger of 5 and 6, it seems that 5 has some superiority. So the

name of the new set is 5. We passed two arguments 5 and 6 to the union function.

And the union made 6 a member of 5. Thus, if we pass S1 and S2 to the union

function, the union will make S2 a member of S1. And the name of the new set will

be S1. That means the name of first argument will be the name of the new set.

Now we call union (7,8). After this call, 7 and 8 form a new set in which 8 is a

member of 7 and the name of this new set is 7 (that is the first argument in the call).

In other words, 7 is root and 8 its child. This is shown in the following figure.

Now we call the union function by passing it set 5 and set 7 as arguments i.e. we call
union (5,7). Here the sets 5 and 7 have two members each. 5 and 6 are the members

of 5 and similarly the two members of 7 are 7 and 8. After merging these sets, the

name of the new set will be 5 as stated earlier that the new set will be named after the

first argument. The following figure (figure 35.4) shows that now in the set 5, there

are four members i.e. 5, 6, 7 and 8.

We can see that there are four unique set members in this set (i.e. 5).

We will demonstrate the union operation with the help of another example. Suppose,

we have made another union that is union (3,4). This call merges the set 4 with the set

3. The following figure shows this.

1 2 3 4 5 7

6 8

Figure 35.3: After union (7, 8)

1 2 3 4 5

6 7

8

Figure 35.4: After union (5, 7)

CS301 – Data Structures Lecture No. 35

Page 396 of 505

In this figure, we see that there are four sets that are 1, 2, 3 and 5. Now we unite the

sets 4 and 5 and make a call union (4,5). The following figure shows the outcome of

this call. In this figure, the set 5 points to 3 whereas we made a call union (4,5).

So we conclude that it is not necessary that the caller should send the roots to union. It

is necessary that the union function should be such that if a caller sends elements of

two sets, it should find the sets of those elements, merge them and return the name of

new set. Thus our previous call i.e. union (4,5) was actually carried out in the way that

first the union finds the root of 4 that is 3. Then it looks for 5 that itself is a root of its

set. After this, it merges both the trees (sets). This merger is shown in the above figure

i.e. Figure 35.6.
Up to now, we have come to know that the formation of this tree is not like a binary

tree in which we go down ward. Moreover, a binary tree has left and right children

that are not seen yet in the tree we developed. This is a tree like structure with some

properties.

Let’s talk about these properties.

1 2 3 5

4 6 7

8

Figure 35.5: After union (3, 4)

1 2 3

4 5

6 7

8

Figure 35.6: After union (4, 5)

CS301 – Data Structures Lecture No. 35

Page 397 of 505

Here we see that typical tree traversal (like inorder, preorder or postorder) is not

required. So there is no need for pointers to point to the children. Instead, we need a

pointer to parent, as it’s an up-tree. We call it up-tree due to the fact that it is such a

tree structure in which the pointers are upward. These parent pointers can be stored in

an array. Here we have to keep (and find) pointer to the parent of a node unlike a

binary tree in which we keep pointer to child nodes. In the array, we will set the

parent of root to –1. We can write it as

Now we will keep these tree structures (forest) in an array in the same manner. With

the merger of the trees, the parents of the nodes will be changed. There may be nodes

that have no parent (we have seen this in the previous example). For such nodes, we

will keep –1 in the array. This shows that this node has no parent. Moreover, this node

will be a root that may be a parent of some other node.

Now we will develop the algorithm for find and union. Let’s consider an example to

see the implementation of this disjoint set data structure with an array.

Parent Array

Initialization

We know that at the start we have n elements. These n elements may be the original

names of the elements or unique numbers assigned to them. Now we take an array and

with the help of a for loop, keep these n elements as root of each set in the array.

These numbers are used as the index of the array before storing –1 at each location

from index zero to n. We keep –1 to indicate a number as root. In code, this for loop is

written as under.

for (i = 0; i < n ; i ++)

Parent [i] = -1 ;

Find (i)

Now look at the following code of a loop. This loop is used to find the parent of an

element or the name of the set that contains that element.

// traverse to the root (-1)

for(j=i; parent[j] >= 0; j=parent[j])

;

return j;

In this loop, i is an argument passed to the find function. The execution of the loop

starts from the value, passed to the find function. We assign this value to a variable j

and check whether its parent is greater than zero. It means that it is not –1. If it is

greater than zero, its parent exists, necessitating the re-initialization of the j with this

parent of j for the next iteration. Thus this loop continues till we find parent of j

(parent [j]) less than zero (i.e. -1). This means that we come to the root before

Parent[i] = -1 // if i is the root

CS301 – Data Structures Lecture No. 35

Page 398 of 505

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 35.7: Eight elements, initially in different sets

returning this number j.

Union (i, j)

Now let’s see the code for the function of union. Here we pass two elements to the

function union. The union finds the roots of i and j. If i and j are disjoint sets, it will
merge them. Following is the code of this function.

root_i = find(i);

root_j = find(j);

if (root_i != root_j)
parent[root_j] = root_i;

In the code, we see that at first it finds the root of tree in which i exists by the find(i)

method and similarly finds the root of the set containing j by find(j). Then there is a

check in if statement to see whether these sets (roots) are same or not. If these are not

the same, it merges them in such a fashion that the root i is set as the parent of root j.

Thus, in the array where the value of root j exists, the value of root i becomes there.

Example 2

To understand these concepts, let’s consider an example. We re-consider the same

previous example of eight numbers and see how the initialization, union and find
work.

Initialization

In the following figure (figure 35.7), we have shown the initialization step. Here we
make an array of eight locations and have initialized them with –1 as these are the

roots of the eight sets. This –1 indicates that there is no parent of this number. We

start the index of array from 1 for our convenience. Otherwise, we know that the

index of an array starts from zero.

-1 -1 -1 -1 -1 -1 -1 -1

Union Operation

Now we come to the union operation. First of all, we call union (5,6). This union

operation forms an up-tree in which 5 is up and 6 down to it. Moreover 6 is pointing

CS301 – Data Structures Lecture No. 35

Page 399 of 505

1 2 3 4 5 7 8

6

1 2 3 4 5 6 7 8

Figure 35.8: After union (5, 6)

1 2 3 4 5 7

6 8

1 2 3 4 5 6 7 8

Figure 35.9: After union (7, 8)

to 5. In the array, we put 5 instead of –1 at the position 6. This shows that now the

parent of 6 is 5. The other positions have –1 that indicates that these numbers are the

roots of some tree. The only number, not a root now is 6. It is now the child of 5 or in

other words, its parent is 5 as shown in the array in the following figure.

-1 -1 -1 -1 -1 5 -1 -1

Now we carry out the same process (i.e. union) with the numbers 7 and 8 by calling

union (7,8). The following figure represents this operation. Here we can see that the

parent of 8 is 7 and 7 itself is still a root.

-1 -1 -1 -1 -1 5 -1 7

Now we execute the union (5,7). The following figure represents the tree and array

status after the performance of this union operation.

CS301 – Data Structures Lecture No. 35

Page 400 of 505

1 2 3 4 5

6 7

8

1 2 3 4 5 6 7 8

Figure 35.10: After union (5, 7)

1 2 3 5

4 6 7

8

1 2 3 4 5 6 7 8

Figure 35.11: After union (3, 4)

-1 -1 -1 -1 -1 5 5 7

The tree in the figure shows that 7 points to 5 now. In the array, we see that the value

at position 7 is 5. This means that the parent of 7 is 5 now. Whereas the parent of 5 is

still –1 that means it is still a root. Moreover, we can see that the parent of 8 is 7 as

before.

Afterwards, we call union (3,4). The effect of this call is shown in the following

figure. Here in the array at position 4, there is 3 instead of –1. This shows that the

parent of 4 is 3.

-1 -1 -1 3 -1 5 5 7

By looking at the array only, we can know that how many trees are there in the

collection (forest). The number of trees will be equal to the number of –1 in the array.

In the above figure, we see that there are four –1 in the array so the number of trees is

CS301 – Data Structures Lecture No. 35

Page 401 of 505

1 2 3

4 5

6 7

8

1 2 3 4 5 6 7 8

Figure 35.12: After union (4, 5)

four and the trees in the figure confirms this. These four trees are with the roots 1, 2 3

and 5 respectively.

Now we carry out another union operation. In this operation, we do the union of 4 and

5 i.e. union (4, 5). Here the number 4 is not a root. Rather, it is an element of a set.

We have already discussed that the union operation finds the set (root) of the element

passed to it before putting together those sets. So here the union finds the set

containing 4 that is 3. The element 5 itself is a name (root) of a set. Now the union

operation merges the two sets by making the second set a member of the first set. In

this call (union (4, 5)), the first set is 3 (that is found for the element 4) and second is

5. So the union joins 5 with 3 while 5 is pointing to 3. Due to this union operation,

now, in the array, there is 3 at position 5 instead of –1. The 3 at this position 5

indicates that the parent of 5 is 3. The following figure shows the tree and array after

the operation union (4,5).

-1 -1 -1 3 3 5 5 7

These were the union operations while using parent array. Now let’s look at the find

operation.

Find Operation

To understand the find operation, we make a call find (8) in the above forest. This call

means that the caller wants to know the set in which number 8 is lying. We know that

the root of the tree is also the name of the set. By looking at the trees in the figure

below, we come to know that 8 is in the tree with 3 as root. This means 8 is in set 3.

CS301 – Data Structures Lecture No. 35

Page 402 of 505

1 2 3

4 5

6 7

8

1 2 3 4 5 6 7 8

Figure 35.13: find (8)

-1 -1 -1 3 3 5 5 7

Thus from the figure, we find the set containing 8. This is being implemented with the

parent array to ultimately find it in the array. For this find operation in the array, we

have discussed the algorithm in which we used a ‘for loop. This ‘for loop’ starts from

the position that given to the find function. Here it is 8. The condition in the for loop

was that as long as parent [j] is greater than zero, set this parent [j] to j. Now we

execute the loop with the value of j equal to 8. First of all, the loop goes to position 8

and looks for the value of parent of 8. This value is 7, which sets the value of j to 7

and goes to position 7. At that position, the value of parent of 7 is 5. It goes to

position 5. At position 5, the value of parent is 3. So the loop sets the value of j equal

to 3 and goes to the position 3. Here it finds that the parent of 3 is –1 i.e. less than

zero so the loop ends. This position 3 is the root and name of the set as parent of it is –

1. Thus the name of the set that contains 8 is 3. The find will return 3 which mean that

8 is a member of set 3.

Similarly, in the above array, we can execute the operation find (6). This will also

return 3 as the loop execution will be at the positions 6 before going to 5 and finally to

3. It will end here, as the parent of 3 is –1. Thus find (6) returns 3 as the set that

contains 6.

Running Time analysis
Now we will discuss how the implementation of disjoint set is better. We must

remember that while discussing the implementation of disjoint set, we talked about

Boolean matrix. This is a two dimensional structure in which the equivalence

relations is kept as a set of Boolean values. Here in the parent array, we also are

keeping the same information. The union will be used when the two items are related.

In the two-dimensional matrix, we can easily find an item by its index. Now we are

CS301 – Data Structures Lecture No. 35

Page 403 of 505

using an array that is a single dimensional structure and seems better with respect to

space. We keep all the information in this array which is at first kept in a matrix. Now

think about a single dimension array versus a two dimensional array. Suppose we

have 1000 set members i.e. names of people. If we make a Boolean matrix for 1000

items, its size will be 1000 x 1000. Thus we need 1000000 locations for Boolean

values. In case of an array, the number of locations will be 1000. Thus this use of

array i.e.tree like structure is better than two-dimensional array in terms of space to

keep disjoint sets and doing union and find operations. Moreover, we do not use

pointers (addresses) that are used in C++. We use array indices as pointers. In case of

find, we follow some indices (pointers) to find the set containing a particular member.

From these points of discussion, we conclude that

 union is clearly a constant time operation.

 Running time of find(i) is proportional to the height of the tree containing
node i.

 This can be proportional to n in the worst case (but not always)

 Goal: Modify union to ensure that heights stay small

We will discuss these points in detail in the next lecture.

CS301 – Data Structures Lecture No. 36

Page 404 of 505

Data Structures

Lecture No. 36

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 8

8.4, 8.5, 8.6

Summary

 Running Time Analysis

 Union by Size

 Analysis of Union by Size

 Union by Height

 Sprucing up find

 Timing with Optimization

Running Time Analysis
In the previous lecture, we constructed up trees through arrays to implement disjoint
sets. union and find methods along with their codes were discussed with the help of

figures. We also talked about the ways to improve these methods. As far as the union

operation is concerned, considering the parent array, it was related to changing the

index of the array. The root value of the merging tree was put into that. In case of

find, we have to go to the root node following the up pointers.

While studying the balanced trees, we had constructed a binary search tree from the

already sorted data. The resultant tree becomes a linked list with height N. Similar

kind of risks involved here. Suppose, we have eight members i.e.1, 2, 3, 4, 5, 6, 7 and

8 as discussed in an example in the previous lecture. Suppose their unions are

performed as union(1,2), union(2,3), union(3,4) and so on up to union(7,8). When the

trees of these unions are merged together, there will be a longer tree of height 8. If we

perform a find operation for an element that is present in the lowest node in the tree

then N-1 links are traversed. In this particular case, 8-1=7 links.

We know that with reduced tree (with lesser height), the time required for find

operation will also be reduced. We have to see whether it is possible to reduce the size

(in terms of height) of the resultant tree (formed after unions of trees). Therefore, our

goal is:

 Goal: Modify union to ensure that heights stay small

We had already seen this goal in the last slide of our previous lecture, which is given

below in full:

 union is clearly a constant-time operation.

 This can be proportional to n in the worst case (but not always)
 Running time of find(i) is proportional to the height of the tree containing node i.

CS301 – Data Structures Lecture No. 36

Page 405 of 505

 Goal: Modify union to ensure that heights stay small

You might be thinking of employing the balancing technique here. But it will not be

sagacious to apply it here. Due to the use of array, the ‘balancing’ may prove an error-

prone operation and is likely to decrease the performance too. We have an easier and

appropriate method, called Union by Size or Union by Weight.

Union by Size

Following are the salient characteristics of this method:

 Maintain sizes (number of nodes) of all trees, and during union.

We want to maintain the sizes of the trees as given in the first point. Until now, we are

not maintaining the size but only the parent node. If the value for parent in a node is –

1, then this indicates that the node is the root node. Consider the code of the find

operation again:

// find(i):

// traverse to the root (-1)

for(j=i; parent[j] >= 0; j=parent[j])

;

return j;

The terminating condition for loop is checking for non-negative values. At any point

when the value of parent[j] gets negative, the loop terminates. Note that the condition

does not specify exactly the negative number. It may be the number –1, –2 , –3 or

some other negative number that can cause the loop to be terminated. That means we

can also put the number of nodes (size) in the tree in this place. We can put the

number of nodes in a tree in the root node in the negative form. It means that if a tree

consists of six nodes, its root node will be containing –6 in its parent. Therefore, the

node can be identified as the root being the negative number and the magnitude (the

absolute value) of the number will be the size (the number of nodes) of the tree.

When the two trees would be combined for union operation, the tree with smaller size

will become part of the larger one. This will cause the reduction in tree size. That is

why it is called union-by-size or union-by-weight.

Let’s see the pseudo-code of this union operation (quite close to C++ language). This

contains the logic for reducing tree size as discussed above:

//union(i,j):

1. root1 = find(i);

2. root2 = find(j);

 This is also called union-by-weight.

to -k if tree rooted at i has k nodes.
 Implementation: for each root node i, instead of setting parent[i] to -1, set it
 Make smaller tree, the subtree of the larger one.

CS301 – Data Structures Lecture No. 36

Page 406 of 505

3. if (root1 != root2)

4. if (parent[root1] <= parent[root2])

5. {

6. // first tree has more nodes

7. parent[root1] += parent[root2];

8. parent[root2] = root1;

9. }

10. else

11. {

12. // second tree has more nodes

13. parent[root2] += parent[root1];

14. parent[root1] = root2;

15. }

This operation performs the union of two sets; element i’s set and element j’s set. The

first two lines are finding the roots of the sets of both the elements i.e.i and j. Line 3 is

performing a check that the root1 is not equal to root2. In case of being unequal, these

are merged together. In next statement (line 4), the numbers in parent variables of

root nodes are compared. Note that, the comparison is not on absolute values. So the

tree with greater number of nodes would contain the lesser number mathematically.

The condition at line 4 will be true, if the tree of root1 is greater in size than that of

root2. In line 7, the size of the smaller tree is being added to the size of the greater

one. Line 8 is containing the statement that causes the trees to merge. The parent of

root2 is being pointed to root1. If the root2 tree is greater in size than the root1 tree,

the if–condition at line 4 returns false and the control is transferred to else part of the

if-condition. The parent of root1 (the size of the root1 tree) is added in the parent of

root2 in line 13 and the root1 tree is merged into the root2 tree using the statement at

line 14.

Let’s practice this approach using our previous example of array of eight elements.

-1 -1 -1 -1 -1 -1 -1 -1

1 2 3 4 5 6 7 8

Eight elements, initially in different sets.

Fig 36.1

These are eight nodes containing initially –1 in the parent indicating that each tree

contains only one node. Let’s unite two trees of 4 and 6. The new tree will be like the

one shown in Fig 36.2.

1 2 3 4 5 6 7 8

CS301 – Data Structures Lecture No. 36

Page 407 of 505

Union(4,6)

-1 -1 -1 -2 -1 4 -1 -1

1 2 3 4 5 6 7 8

Fig 36.2

From the figure, you can see the node 6 has come down to node 4. The array also

depicts that the parent at position 4 is containing –2. The number of nodes has

become 2. The position 6 is set to 4 indicating that parent of 6 is 4. Next, we similarly

perform the union operation on nodes 2 and 3.

After union(2,3)

1 2 3 4 5

6 7 8

Fig 36.3

Let’s perform the union operation further and merge the trees 1 and 4.

8 7 5 3 2 1 4

6

-1 -2 2 -2 -1 4 -1 -1

1 2

3

4

6

5 7 8

CS301 – Data Structures Lecture No. 36

Page 408 of 505

union(1,4)

1 2 3

4 5 6 7 8

Fig 36.4

1 was a single node tree (-1 in the array at position 1) and 4 was the root node of the

tree with two elements (-2 in the array at position 4) 4 and 6. As the tree with root 4 is

greater, therefore, node 1 will become part of it. Previously (when the union was not

based on weight), it happened contrary to it with second argument tree becoming the

part of the first tree.

In this case, the number of levels in the tree still remains the same (of two levels) as

that in the greater tree (with root 4). But we apply our previous logic i.e. the number

of levels of the trees would have been increased from two to three after the union.

Reducing the tree size was our goal of this approach.

In the next step, we merge the trees of 2 and 4. The size of the tree with root 2 is 2

(actually –2 in the parent array) while the size of the tree with root 4 is 3 (actually –3).

So the tree of node 2 will be joined in the tree with root 4.

union(2,4)

1 2 3

4 5 6 7 8

Fig 36.5

The latest values in the array i.e. at position 4, have been updated to –5 (indicating the

size of the tree has reached 5). At position 2, the new value is 4, which indicates that

the up node of 2 is 4.

8 7 5 4

2 1 6

3

8 7 5 4

1 6

2

3

4 -2 2 -3 -1 4 -1 -1

4 4 2 -5 -1 4 -1 -1

CS301 – Data Structures Lecture No. 36

Page 409 of 505

4

2 1 6 5

3

1 2 3 4

Next, we perform the union(5,4) operation. We know that the size of the tree with

node 4 is 5 (-5 in the array) and node 5 is single node tree. As per our rules of union

by size, the node 5 will become part of the tree 4.

union(5,4)

4 4 2 -6 4 4 -1 -1

5 6 7 8

Fig 36.6

The updates inside the array can be seen as the value at position 4 has been changed

to –6 and new value at position 5 is 4. This is the tree obtained after applying the

union-by-size approach. Consider, if we had applied the previous method of union,

tree’s depth would have been increased more.

It seems that we have achieved our goal of reducing the tree size up to certain extent.

Remember, the benefit of reducing the tree height is to increase performance while

finding the elements inside the tree.

Analysis of Union by Size

 If unions are done by weight (size), the depth of any element is never greater than
log2n.

By following the previous method of union where second tree becomes the part of the

first tree, the depth of the tree may extend to N. Here N is the number of nodes in the

tree. But if we take size into account and perform union by size, the depth of tree is
log2n maximum. Suppose the N is 100,000 i.e.for 100,000 nodes. The previous

methods may give us a tree with depth level as 100,000. But on the other hand,
log2100000 is approximately 20.Union-by-size gives us a tree of 20 levels of depth

maximum. So this is a significant improvement.

Mathematical proof of this improvement is very complex .We are not covering it here

but only providing the logic or reasoning in intuitive proof.

Intuitive Proof:

7 8

CS301 – Data Structures Lecture No. 36

Page 410 of 505

 Initially, every element is at depth zero.

 When its depth increases as a result of a union operation (it’s in the smaller tree),

it is placed in a tree that becomes at least twice as large as before (union of two

equal size trees).

 How often can each union be carried out? -- log2n times, because after at most

log2n unions, the tree will contain all n elements.

Union by Height
 Alternative to union-by-size strategy: maintain heights,

 During union, make a tree with smaller height a subtree of the other.

 Details are left as an exercise.

This is an alternate way of union-by-size that we maintain heights of the trees and join

them based on their heights. The tree with smaller height will become part of the one

with greater height. This is quite similar with the union-by-size. In order to implement

Disjoint Set ADT, any of these solutions can work. Both the techniques i.e. union-by-

size and union-by-height are equivalent, although, there are minor differences when

analyzed thoroughly.

Now, let’s see what can we do for find operation to make it faster.

Sprucing up Find

 So far we have tried to optimize union.

 Can we optimize find?

 Yes, it can be achieved by using path compression (or compaction).

Considering performance, we can optimize the find method. We have already

optimized the trees union operation and now we will see how can optimize the find

operation using the path compression.

 During find(i), as we traverse the path from i to root, update parent entries for all

these nodes to the root.

 This reduces the heights of all these nodes.

 Pay now, and reap the benefits later!

 Subsequent find may do less work.

To understand the statements above, let’s see the updated code for find below:

find (i)

{

if (parent[i] < 0)

return i;

else

return parent[i] = find(parent[i]);

CS301 – Data Structures Lecture No. 36

Page 411 of 505

}

We have modified the code in the body of the find. This implementation is of

recursive nature. parent[i] negative means that we have reached the root node.

Therefore, we are returning i. If this is not the root node, then find method is being

called recursively. We know that parent[i] may be positive or negative. But in this

case it will not be negative due to being an index. To understand this recursive call,

we elaborate it further with the help of figure. We call the find method with argument

1.

This tree is bigger as compared to the ones in our previous examples, it has been

constructed after performing some union operations on trees. Now we have called find

method with argument 1. We want to find the set with node 1. By following the

previous method of find, we will traverse the tree from 1 to 2, from 2 to 9, 9 to 4, 4 to

13 and finally from 13 to 7, which is the root node, containing the negative number.

So the find will return 7.

If we apply recursive mechanism given in the above code, the recursive call will start

from find(1). The parent (find(1)) will return 2. The recursive call for 2 will take the

control to node 9, then to 4, 13 and then eventually to 7. When find(7) is called, we

get the negative number and reach the recursion stopping condition. Afterwards, all

the recursive calls, on the stack are executed one by one. The call for 13, find(13)

returns 7. find(4) returns 7 because find(parent(4)) returns 7. That is why the link

between 4 and 13 has been dropped and a new link is established between 4 and 7 as

shown in the Fig 36.7. So the idea is to make the traversal path shorter from a node to

the root. The remaining recursive calls will also return 7 as the result of find

operation. Therefore, for subsequent calls we establish the links directly from the

node to the root.

7

13
8 3 22 6

4 5
10

9 31 32 11 30 20 16 14 12

2 35
Find (1)

1 13

17 18 19 Fig 36.7

CS301 – Data Structures Lecture No. 36

Page 412 of 505

Similarly the node 2 is directly connected to the root node and the interlink between

the node 2 and 9 is dropped.

The same will happen with 1.

7

13
8 3 22 6

4 5
10

9 31 32 11 30 20 16 14 12

2 35
Find (1)

1 13

17 18 19 Fig 36.8

7

13
8 3 22 6

4 5
10

9 31 32 11 30 20 16 14 12

2 35
Find (1)

1 13

17 18 19 Fig 36.9

CS301 – Data Structures Lecture No. 36

Page 413 of 505

The union operation is based on size or weight but the reducing the in-between links

or path compression from nodes to the root is done by the find method. The find
method will connect all the nodes on the path to the root node directly.

The path compression is depicted by the following tree:

7

13
8 3 22 6

4 5
10

9 31 32 11 30 20 16 14 12

2 35
Find (1)

1 13

17 18 19 Fig 36.10

7

13
8 3 22 6

4 5
10

9 31 32 11 30 20 16 14 12

2 35
Find (1)

1 13

17 18 19 Fig 36 .11

CS301 – Data Structures Lecture No. 36

Page 414 of 505

If we have called find(a) then see the path from node a to the root node f. a is

connected to root node f through b, c, d and e nodes. Notice that there may be further

subtrees below these nodes. After we apply this logic of path compression for find

operation, we will have the tree as follows:

Fig 36.13

We see, how much is the impact on performance in find by a theorem.

Timing with Optimization
 Theorem: A sequence of m union and find operations, n of which are find

operations, can be performed on a disjoint-set forest with union by rank (weight or

height) and path compression in worst case time proportional to (mÑ (n))

 Ñ(n) is the inverse Ackermann’s function which grows extremely slowly. For all

f

e

d

Find(a)

c

b

a

Fig 36.12

f

Find(a)

a b c d e

CS301 – Data Structures Lecture No. 36

Page 415 of 505

practical purposes, Ñ(n) R 4.

 Union-find is essentially proportional to m for a sequence of m operations, linear

in m.

There are number of things present in this theorem regarding analysis, which are

difficult to cover in this course. We sill study these in course of Algorithm Analysis.

At the moment, consider if there are m union operations out of which n are finds. The

average time for union-find will be linear in m and it will grow not quadratically or

exponentially. union and find operations using this data structure are very efficient

regarding both space and time.

CS301 – Data Structures Lecture No. 37

Page 416 of 505

Data Structures

Lecture No. 37

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 8

Summary

 Review

 Image Segmentation

 Maze Example

 Pseudo Code of the Maze Generation

Review
In the last lecture, we talked about union and find methods with special reference to

the process of optimization in union. These methods were demonstrated by reducing

size of tree with the help of the techniques-union by size or union by weight.

Similarly the tree size was reduced through path optimization in the find method. This

was due to the fact that we want to reduce the tree traversal for the find method. The

time required by the find/union algorithm is proportional to m. If we have m union and

n find, the time required by find is proportional to m+n. Union is a constant time

operation. It just links two trees whereas in the find method tree traversal is involved.

The disjoint sets are increased and forest keeps on decreasing. The find operation

takes more time as unions are increased. But on the average, the time required by find

is proportional to m+n.

Now we will see some more examples of disjoint sets and union/find methods to

understand their benefits. In the start, it was told that disjoint sets are used in image

segmentation. We have seen the picture of a boat in this regard. We have also talked

about the medical scanning to find the human organs with the help of image

segmentation. Let’s see the usage of union/find in image segmentation.

Image segmentation is a major part of image processing. An image is a collection of

pixels. A value associated with a pixel can be its intensity. We can take images by

cameras or digital cameras and transfer it into the computer. In computer, images are

represented as numbers. These numbers may represent the gray level of the image.

The zero gray level may represent the black and 255 gray level as white. The numbers

between 0 and 255 will represent the gray level between black and white. In the color

images, we store three colors i.e. RGB (Red, Green, Blue). By combining these three

colors, new ones can be obtained.

Image Segmentation
In image segmentation, we will divide the image into different parts. An image may

CS301 – Data Structures Lecture No. 37

Page 417 of 505

be segmented with regard to the intensity of the pixels. We may have groups of pixels

having high intensity and those with pixels of low intensity. These pixels are divided

on the basis of their threshold value. The pixels of gray level less than 50 can be

combined in one group, followed by the pixels of gray level less between 50 and 100

in another group and so on. The pixels can be grouped on the basis of threshold for

difference in intensity of neighbors. There are eight neighbors of the pixel i.e. top,

bottom, left, right, top-left, top-right, bottom-left and bottom-right. Now we will see

the difference of the threshold of a pixel and its neighbors. Depending on the

difference value, we will group the pixels. The pixels can be grouped on the basis of

texture (i.e. a pattern of pixel intensities). You will study all these in detail in the

image processing subject.

Let’s see an example. Consider the diagram below:

It seems a sketch or a square of black, gray and white portions. These small squares

represent a pixel or picture element. The color of these picture elements may be white,

gray or black. It has five rows and columns each. This is a 5 * 5 image. Now we will

have a matrix of five rows and five columns. We will assign the values to the

elements in the matrix depending on their color. For white color, we use 0, 4 for black

and 2 for gray color respectively.

When we get the image from a digital device, it is stored in numbers. In the above
matrix, we have numbers from 0 to 4. These can be between 0 and 255 or may be

more depending upon the digital capturing device. Now there is a raw digital image.

We will apply some scheme for segmentation. Suppose we need the pixels having

value 4 or more and the pixels with values less than 4 separately. After finding such

pixels, put 1 for those that have values more than 4 and put 0 for pixels having less

than 4 values. We want to make a binary array by applying the threshold. Let’s apply

this scheme on it.

0 1 2 3 4

0 1 2 3 4

0 0 0 0 4 4

1 2 0 4 4 0

2 4 2 2 4 4

3 4 4 0 4 4

4 0 2 2 4 0

CS301 – Data Structures Lecture No. 37

Page 418 of 505

0 0 0 0 1 1

1 0 0 1 1 0

2 1 0 0 1 1

3 1 1 0 1 1

4 0 0 0 1 0

We have applied threshold equal to 4. We have replaced all 4’s with 1 and all the

values less than 4, have been substituted by zero. Now the image has been converted

into a binary form. This may represent that at these points, blood is present or not.

The value 4 may represent that there is blood at this point and the value less than 4

represents that there is no blood. It is very easy to a program for this algorithm.

Our objective was to do image segmentation. Suppose we have a robot which captures

an image. The image obtained contains 0, 2 and 4 values. To know the values above

and below the threshold, it may use our program to get a binary matrix. Similarly, for

having the knowledge regarding the region of 1’s and region of 0’s, the robot can use

the algorithm of disjoint sets. In the figure above, you can see that most of the 1’s are

on the right side of the matrix.

We will visit each row of the matrix. So far, there are 25 sets containing a single

element each. Keep in mind the example discussed in union/find algorithm. In the

zeroth row, we have three 0’s. We can apply union on 0’s. Yet we are interested in

1’s. In the 3rd column, there is an entry of 1. Now the left neighbor of this element is

0 so we do not apply union here and move to the next column. Here, the entry is 1. Its

left neighbor is also 1. We apply union here and get a set of two elements. We have

traversed the first row completely and moved to the next row. There is 0 in the 0th and

1st column while in the 2nd column; we have an entry of 1. Its left neighbor is 0 so we

move to the next column where entry is also 1. We apply union here. There is a set of

1 at the top of this set also. So we take union of these two sets and combine them.

There is a set of four 1’s, two from row 0 and two from row 1. In the next row, we

have 1, 0, 0, 1, 1. In the row 2 column 3, there is 1. At the top of this element, we

have 1. We apply union to this 1 and the previous set of four 1’s. Now we have a set

of five 1’s. In the next column again, there is 1, also included in the set as the sixth

element. In the row 3, we have 1 at the 0 column. There is 1 at the top of this so we

have set of these two 1’s. The next element at the row 3 is again 1, which is included

in the left side set of 1’s. Now we have another set of 1’s having 3 elements. The 1’s

at column 3 and column 4 are included in the set of six 1’s making it a set of eight

elements. In the last row, we have single 1 at the column 3 which will be included

with the eight element set. So there are two sets of 1’s in this matrix.

We have two disjoint sets and it is clearly visible that where are the entries of 1’s and

0’s. This is the situation when we have set the threshold of 4 to obtain a binary image.

We can change this threshold value.

0 1 2 3 4

0 0 0 0 1 1

1 0 0 1 1 0

2 1 0 0 1 1

3 1 1 0 1 1

4 0 0 0 1 0

CS301 – Data Structures Lecture No. 37

Page 419 of 505

Let’s take the value 2 as threshold value. It means that if the value of pixel is 2 or

more than 2, replace it by 1 otherwise 0. The new image will be as:

We can apply the union scheme on it to find the region of 1’s. Here we have a blob of

1.

The region is shaded. The image has been segmented. With the help of union/find

algorithm, we can very quickly segment the image. The union/find algorithm does not

require much storage. Initially, we have 25 sets that are stored in an array i.e. the up-

tree. We do all the processing in this array without requiring any extra memory. For

the image segmentation, disjoint sets and union-find algorithm are very useful. In the

image analysis course, you will actually apply these on the images.

Maze Example
You have seen the maze game in the newspapers. This is a puzzle game. The user

enters from one side and has to find the path to exit. Most of the paths lead to blind

alley, forcing the user to go back to square one.

This can be useful in robotics. If the robot is in some room, it finds its path between

the different things. If you are told to build mazes to be published in the newspaper, a

new maze has to be developed daily. How will you do that? Have you done like this

before? Did anyone told you to do like this? Now you have the knowledge of disjoint

sets and union-find algorithm. We will see that the maze generation is very simple

with the help of this algorithm.

Let’s take a 5 * 5 grid and generate a 5 * 5 maze. A random maze generator can use

union-find algorithm. Random means that a new maze should be generated every

time.

0 1 2 3 4

0 0 0 0 1 1

1 1 0 1 1 0

2 1 1 1 1 1

3 1 1 0 1 1

4 0 1 1 1 0

0 1 2 3 4

0 0 0 0 1 1

1 1 0 1 1 0

2 1 1 1 1 1

3 1 1 0 1 1

4 0 1 1 1 0

CS301 – Data Structures Lecture No. 37

Page 420 of 505

Consider a 5x5 maze:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Here we have 25 cells. Each cell is isolated by walls from the others. These cells are

numbered from 0 to 24. The line between 0 and 1 means that there is a wall between

them, inhibiting movement from 0 to 1. Similarly there is a wall between 0 and 5.

Take the cell 6, it has walls on 4 sides restricting to move from it to anywhere. The

internal cells have walls on all sides. We will remove these walls randomly to

establish a path from the first cell to the last cell.

This corresponds to an equivalence relation i.e. two cells are equivalent if they can be

reached from each other (walls been removed so there is a path from one to the other).

If we remove the wall between two cells, then there can be movement from one cell to

the other. In other way, we have established an equivalence relationship between

them. This can be understood from the daily life example that when the separation

wall of two persons is removed, they become related to each other. In maze

generation, we will remove the walls, attaching the cells to each other in some

sequence. In the end, we will have a path from the start cell to the end cell.

First of all, we have to decide an entrance and an exit. From the entrance, we will

move into the maze and have to reach at the exit point. In our example, the entrance is

from the cell 0 and the exit will be at cell 24.

How can we generate maze? The algorithm is as follows:

 Randomly remove walls until the entrance and exit cells are in the same set.

the same set.

We will take cells randomly. It means that the probability of each cell is equal. After

selecting a cell, we will choose one of its surrounding walls. The internal cells have

four walls around them. Now we will randomly choose one wall. In this way, we will

choose the neighboring cell. Initially we have 25 sets. Now after removing a wall

between 2 cells, we have combined these two cells into one set. Here the union

method has been applied to combine these two cells. If these cells are already in the

same set, we will do nothing.

 Do not remove a randomly chosen wall if the cells it separates are already in

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

 Removal of the wall is the same as doing a union operation.

CS301 – Data Structures Lecture No. 37

Page 421 of 505

We will keep on randomly choosing the cells and removing the walls. The cells will

merge together. The elements of the set will keep on growing and at some point, we

may have the entrance cell (cell 0) and the exit cell (cell 24) in the same set. When the

entrance cell and the exit cell are in the same set, it means that we have a set in which

the elements are related to each other and there is no wall between them. In such a

situation, we can move from start to the end going through some cells of this set. Now

we have at least one path from entrance to exit. There may be other paths in which we

have the entrance cell but not the exit. By following this path, you will not reach at

the exit as these paths take you to the dead end. As these are disjoint sets, so unless

the entrance and exit cell are in the same set, you will not be able to find the solution

of the maze.

Pseudo Code of the Maze Generation
Let’s take a look at the pseudo code of the maze generation. We will pass it to the size

argument to make a maze of this size. We will use the entrance as 0 and exit as size-1

by default.

MakeMaze(int size) {

entrance = 0; exit = size-1;

while (find(entrance) != find(exit)) {

cell1 = randomly chosen cell

cell2 = randomly chosen adjacent cell

if (find(cell1) != find(cell2) {

knock down wall between cells

union(cell1, cell2)

}

}

}

After initializing the entrance and exit, we have a while loop. The loop will keep on

executing till the time the find(entrance) is not equal to find(exit). It means that the

loop will continue till the set returned by the find(entrance) and find(exit) are not

same. When the entrance and exit cells are in the same set, the loop will stop. If these

cells are not in the same set, we will enter into the loop. At first, we will randomly

choose a cell from the available cells e.g. from 0 to 24 from our example. We are not

discussing here how to randomly choose a cell in C++. There may be some function

available to do this. We store this value in the variable cell1 and choose randomly its

neighboring cell and store it in cell2. This cell may be its top, bottom, left or right

cell, if it is internal cell. If the cell is at the top row or top bottom, it will not have four

neighbors. In case of being a corner cell, it will have only two neighboring cells. Then

we try to combine these two cells into one set. We have an if statement which checks

that the set returned by find(cell1) is different than the set returned by find(cell2). In

this case, we remove the wall between them. Then we apply union on these two cells

to combine them into a set.

We randomly choose cells. By applying union on them, the sets are joined together

and form new sets. This loop will continue till we have a set which contains both

entrance and exit cell. This is a very small and easy algorithm. If we have the union-

find methods, this small piece of code can generate the maze. Let’s take a pictorial

CS301 – Data Structures Lecture No. 37

Page 422 of 505

look at different stages of maze generation. You can better understand this algorithm

with the help of these figures. We are using the disjoint sets and union-find algorithm

to solve this problem.

Initially, there are 25 cells. We want to generate a maze from these cells.

Apply the algorithm on it. We randomly choose a cell. Suppose we get cell 11. After

this, we randomly choose one of its walls. Suppose we get the right wall. Now we will

have cell 11 in the variable cell1 and cell 12 in the variable cell2.

By now, each cell is in its own set. Therefore find(cell 11) will return set_11 and

find(cell 12) will return set_12. The wall between them is removed and union is

applied on them. Now we can move from cell 11 to cell 12 and vice versa due to the

symmetry condition of disjoint sets. We have created a new set (set_11 = {11,12})
that contains cell 11 and cell 12 and all other cells are in their own cells.

Now we randomly choose the cell 6 and its bottom wall. Now the find(cell 6) will

return set_6. The find(cell 11) will return set_11 which contains cell 11 and cell 12.

The sets returned by the two find calls are different so the wall between them is

removed and union method applied on them. The set set_11 now contains three

elements cell 11, cell 12 and cell 6. These three cells are joined together and we can

move into these cells.

Now we randomly select the cell 8. This cell is not neighbor of set_11 elements. We

can randomly choose the cell 6 again and its bottom wall. However, they are already

in the same set so we will do nothing in that case. We randomly choose the cell 8 and

its top wall (cell 3). As these two cells are in different sets, the wall between them is

removed so that union method could be applied to combine them into a set (set_8 =

{8, 3}).

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

CS301 – Data Structures Lecture No. 37

Page 423 of 505

Now we randomly choose the cell 14 and its top i.e. cell 9. Now we keep on

combining cells together but so far entrance and exit cells are not in the same set.

We randomly choose cell 0 and its bottom wall so the cell 0 and cell 5 are combined

together.

If you keep on using this algorithm, the walls between cells will keep on vanishing,

resulting in the growth of set elements. At some point, the entrance and exit cell will

come into one set and there will be a path taking us from the start to exit. There may

be some other sets which do not contain the exit cell. Take it as a programming

exercise and do it. This is very interesting exercise. Find some information on the

internet regarding maze generation. In the next lecture, we will talk about the new

data type i.e. table.

0 1 2 3

8

4

5 6 7 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3

8

4

5 6 7 9

14 10 11 12 13

15 16 17 18 19

20 21 22 23 24

0

5

1 2 3

8

4

6 7 9

14 10 11 12 13

15 16 17 18 19

20 21 22 23 24

CS301 – Data Structures Lecture No. 38

Page 424 of 505

Data Structures

Lecture No. 38

Summary

 Table and Dictionaries

 Operations on Table ADT

 Implementation of Table

o Unsorted Sequential Array

o Sorted Sequential Array

 Binary Search

We will discuss the concepts of Tables and Dictionaries in this lecture with special

reference to the operations on Table ADT and the implementation.

Tables and Dictionaries

The table, an abstract data type, is a collection of rows and columns of information.

From rows and columns, we can understand that this is like a two dimensional array.

But it is not always a two dimensional array of same data type. Here in a table, the

type of information in columns may be different. The data type of first column may be

integer while the type of second column is likely to be string. Similarly there may be

other different data types in different columns. So the two-dimensional array used for

table will have different data types.

A table consists of several columns, known as fields. These fields are some type of

information. For example a telephone directory may have three fields i.e. name,

address and phone number. On a computer system, the user account may have fields-

user ID, password and home folder. Similarly a bank account may have fields like

account number, account title, account type and balance of account.

Following is a table that contains three fields (We are calling columns as fields).

These three fields are name, address and phone. Moreover, there are three rows
shown in the table.

Name Address Phone

Sohail Aslam 50 Zahoor Elahi Rd, Gulberg-4, Lahore 567-4567

Imran Ahmad 30-T Phase-IV, LCCHS, Lahore 517-2349

Salman Akhtar 131-D Model Town, Lahore 756-5678

Figure 38.1: A table having three fields.

Each row of the table has a set of information in the three fields. The fields of a row

are linked to each other. The row of a table is called a record. Thus the above table

contains three records. It resembles to the telephone directory. There may be other

fields in the phone directory like father’s name or the occupation of the user. Thus the

data structure that we form by keeping information in rows and columns is called

table.

During the discussion on the concept of table, we have come across the word,

CS301 – Data Structures Lecture No. 38

Page 425 of 505

dictionary. We are familiar with the language dictionary, used to look for different

words and their meanings. But for a programmer, the dictionary is a data type. This

data is in the form of sets of fields. These fields comprise data items.

A major use of table is in Databases where we build and use tables for keeping

information. Suppose we are developing payroll software for a company. In this case,

a table for employees will be prepared. This table of employees has the name, id

number, designation and salary etc of the employees. Similarly there may be other

tables in this database e.g. to keep the leave record of the employees. There may be a

table to keep the personal information of an employee. Then we use SQL (Structured

Query Language) to append, select, search and delete information (records) from a

table in the database.

Another application of table is in compilers. In this case, symbol tables are used. We

will see in compilers course that symbol table is an important structure in a compiler.

In a program, each variable declared has a, type and scope. When the compiler

compiles a program, it makes a table of all the variables in the program. In this table,

the compiler keeps the name, type and scope of variables. There may be other fields

in this table like function names and addresses. In the compiler construction course,

we will see that symbol table is a core of compiler.

When we put the information in a table, its order will be such that each row is a

record of information. The word tuple is used for it in databases. Thus a row is called

a record or tuple. As we see there is a number of rows (records) in a table. And a

record has some fields.

Now here are some things about tables.

To find an entry in the table, we only need to know the contents of one of the fields

(not all of them). This field is called key. Suppose we want to see information (of a

record) in dictionary. To find out a record in the dictionary, we usually know the

name of the person about whom information is required. Thus by finding the name of

the person, we reach a particular record and get all the fields (information) about that

person. These fields may be the address and phone number of the person. Thus in

telephone directory, the key is the name field. Similarly in a user account table, the

key is usually user id. By getting a user id, we can find its information that consists of

other fields from the table. The key should be unique so that there is only one record

for a particular value of key. In the databases, it is known as primary key. Thus, in a

table, a key uniquely identifies an entry. Suppose if the name is the key in telephone

book then no two entries in the telephone book have the same name. The key uniquely

identifies the entries. For example if we use the name “imran ahmed” in the following

table that contains three entries, the name “imran ahmed” is there only at one place in

the following table. In this record, we can also see the address and phone number of

“imran ahmed”.

Name Address Phone

Sohail Aslam 50 Zahoor Elahi Rd, Gulberg-4, Lahore 567-4567

Imran Ahmad 30-T Phase-IV, LCCHS, Lahore 517-2349

Salman Akhtar 131-D Model Town, Lahore 756-5678

Figure 38.2: A table having three fields.

Similarly if we use “salman akhtar” as key we find out one record for this key in the

table.

CS301 – Data Structures Lecture No. 38

Page 426 of 505

The purpose of this key is to find data. Before finding data, we have to add data. On

the addition of the data in the table, the finding of data will be carried through this

key. We may need to delete some data from the table. For example, in the employees’

table, we want to delete the data of an employee who has left the company. To delete

the data from the table, the key i.e. name will be used. However in the employees’

table, the key may be the employee id and not the name.

Operations on Table ADT
Now we see the operations (methods) that can be performed with the table abstract

data type.

insert

As the name shows this method is used to insert (add) a record in a table. For its

execution, a field is designated as key. To insert a record (entry) in the table, there is

need to know the key and the entry. The insert method puts the key and the other

related fields in a table. Thus we add records in a table.

find

Suppose we have data in the table and want to find some particular information. The

find method is given a key and it finds the entry associated with the key. In other

words, it finds the whole record that has the same key value as provided to it. For

example, in employees table if employee id is the key, we can find the record of an

employee whose employee id is, say, 15466.

remove

Then there is the remove method that is given a value of the key to find and remove
the entry associated with that key from the table.

Implementation of Table
Let’s talk about why and how we should implement a table. Our choice for

implementation of the Table ADT depends on the answers to the following.

 How often entries are inserted, found and removed?

 How many of the possible key values are likely to be used?

 What is the likely pattern of searching for keys? Will most of the accesses be

to just one or two key values?

 Is the table small enough to fit into the memory?

 How long will the table exist?

In a table for searching purposes, it is best to store the key and the entry separately

(even though the key’s value may be inside the entry). Now, suppose we have a

record of a person ‘Saleem’ whose address is ‘124 Hawkers Lane’ while the phone

number is ‘9675846’. Similarly we have another record of a person ‘Yunus’. The

address and phone fields of this person are ‘1 Apple crescent’ and ‘622455’

respectively. For these records in the table, we will have two parts. One part is the

complete entry while the other is the key in which we keep the unique item of the

entry. This unique item is twice in a record one as part of the entry and the second in a

field i.e. the key field. This key will be used for searching and deletion purposes of

CS301 – Data Structures Lecture No. 38

Page 427 of 505

records. With the help of key, we reach at the row and can get other fields of it. We

also call TableNode to row of the table. Its pictorial representation is given below.

key entry

Figure 38.3: key and entry in table

Now we will discuss the implementation of table with different data structures. The

first implementation is the unsorted sequential array.

Unsorted Sequential Array

In this implementation, we store the data of table in an array such that TableNodes are

stored consecutively in any order. Each element of the row will have a key and entry

of the record.

Now let’s think how we can store the data of a table in an array. For a telephone
directory, there may be a field name i.e. a string. Then there is ‘address’, which is also

a string but of large size as compared to the name. The phone number may be a string

or integer. Each record in the directory has these three fields with different types.

How can we store this information in an array? Here comes the class. Suppose we

make a class Employee, with an ultimate aim of developing objects. An object of

Employee will contain the name, address, designation and salary. Similarly we can

make a class of PhoneDirectoryEntry that will have name, address and phone number.

We can add other fields to these classes. Thus we have Employee and

PhoneDirectoryEntry objects. Now we make an array of objects. In this array, every

object is a table entry. To insert a new object (of Employee or PhoneDirectoryEntry),

we add it to the back of the array. This insert operation in the array is fast as we

directly put the data at the last available position. Thus we add the data to the array as

soon as it is available. In other words, we don’t have an order of the data. Now if

there are n entries in the array, the find operation searches through the keys one at a

time and potentially all of the keys to find a particular key. It has to go through all the

entries (i.e. n) if the required key is not in the table. Thus the time of searching will be

proportional to the number of entries i.e. n. Similarly the remove method also requires

time proportional to n. The remove method, at first, has to find the key, needed to be

removed. It consumes the time of find operation that is proportional to the number of

entries i.e. n. If the entry is found, the remove method removes it. Obviously it does

nothing if the entry is not found.
Here we see that in unsorted sequential array, the insertion of data is fast but the find
operation is slow and requires much time. Now the question arises if there is any way

to keep an array in which the search operation can be fast? The use of sorted

sequential array is a solution to this problem.

“Yunus”

“Saleem

TableNod

“Saleem”, “124 Hawkers Lane”, “9675846”

“Yunus”, “1 Apple Crescent”, “0044 1970

CS301 – Data Structures Lecture No. 38

Page 428 of 505

Sorted Sequential Array

We have studied in the tree section that binary search tree is used to search the

information rapidly. Equally is true about the sorted sequential array. But in this case,

we want to put the data in an array and not in a tree. Moreover, we want to search the

data in this array very fast. To achieve this objective, we keep the data in the array in

a sorted form with a particular order. Now suppose we are putting the information in

the telephoneDirectory table into an array in a sorted form in a particular order. Here,

for example, we put the data alphabetically with respect to name. Thus data of a

person whose name starts with ‘a’ will be at the start of the table and the name

starting with ‘b’ will be after all the names that start with ‘a’. Then after the names

starting with ‘b’ there will be names starting with ‘c’ and so on. Suppose a new name

starting from ‘c’ needs to be inserted. We will put the data in the array and sort the

array so that this data can be stored at its position with respect to the alphabetic order.

Later in this course, we will read about sorting.
Let’s talks about the insert, find and remove methods for sorted data.

For the insertion of a new record in the array, we will have to insert it at a position in

the array so that the array should be in sorted form after the insertion. We may need to

shift the entries that already exist in the array to find the position of the new entry. For

example, if a new entry needs to be inserted at the middle of the array, we will have to

shift the entries after the middle position downward. Similarly if we have to add an

entry at the start of the array, all the entries will be moved in the array to one position

right (down). Thus we see that the insert operation is proportional to n (number of

entries in the table). This means insert operation will take considerable time.

find

The find operation on a sorted array will search out a particular entry in log n time by

the binary search. The binary search is a searching algorithm. Recall that in the tree,

we also find an item in log n time. The same is in the case of sorted array.

remove

The remove operation is also proportional to n. The remove operation first finds the

entry that takes log n time. While removing the data, it has to shuffle (move) the

elements in the array to keep the sorted order. This shuffling is proportional to n.

Suppose, we remove the first element from the array, then all the elements of the

array have to be moved one position to left. Thus remove method is proportional to n.

Binary Search
The binary search is an algorithm of searching, used with the sorted data. As we have
sorted elements in the array, binary search method can be employed to find data in the

array. The binary search finds an element in the sorted array in log n time. If we have

100000 elements in the array, the log 1000000 will be 20 i.e. very small as compared

to 100000. Thus binary search is very fast.

The binary search is like looking up a phone number in the directory or looking up a

word in the dictionary. For looking a word in the dictionary, we start from the middle

in the dictionary. If the word that we are looking for comes before words on the page,

it shows that the word should be before this page. So we look in the first half.

insert

CS301 – Data Structures Lecture No. 38

Page 429 of 505

Otherwise, we search for the word in the second half of the dictionary. Suppose the

word is in the first half of the dictionary, we consider first half for looking the word.

We have no need to look into the second half of the dictionary. Thus the data to be

searched becomes half in a step. Now we divide this portion into two halves and look

for the word. Here we again come to know that the word is in the first half or in the

second half of this portion. The same step is repeated with the part that contains the

required word. Finally, we come to the page where the required word exists. We see

that in the binary search, the data to be searched becomes half in each step. And we

find the entry very fast. The number of maximum steps needed to find an entry is log

n, where n is the total number of entries. Now if we have 100000 entries, the

maximum number of attempts (steps) required to find out the entry will be 20 (i.e. log

1000000).

CS301 – Data Structures Lecture No. 39

Page 430 of 505

Data Structures

Lecture No. 39

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 10

10.4.2

Summary

 Searching an Array: Binary Search

 Binary Search - Example 1

 Binary Search - Example 2

 Binary Search - Example 3

 Binary Search – C++ Code

 Binary Search – Binary Tree

 Binary Search - Efficiency

 Implementation 3 (of Table ADT): Linked List

 Implementation 4 (of Table ADT): Skip List

 Skip List - Representation

 Skip List - Higher Level Chains

 Skip List - Formally

Searching an Array: Binary Search
In the previous lecture, we had started discussion on Binary Search Tree algorithm.

The discussion revealed that if already sorted data is available, then it is better to

apply an algorithm of binary search for finding some item inside instead of searching

from start to the end in sequence. The application of this algorithm will help get the

results very quickly. We also talked about the example of directory of employees of a

company where the names of the employee were sorted. For efficient searching, we

constructed the binary search tree for the directory and looked for information about

an employee named ‘Ahmed Faraz’.

We also covered:

 Binary search is like looking up a phone number or a word in the dictionary

 Start in middle of book

 If the name you're looking for, comes before names on the page, search in the first
half

 Otherwise, look into the second half

The telephone directory is the quotable example to understand the way the binary

CS301 – Data Structures Lecture No. 39

Page 431 of 505

search method works.

In this lecture, we will focus on data structures for performing search operation.

Consider the data is present in an array as we discussed in the previous lecture. For

the first implementation, we supposed that the data is not sorted in the array. For

second implementation, we considered that the data inside the array is put in sorted

array. The advantage of the effort of putting the data in the array in sorted order pays

off when the searches on data items are performed.

Now, let’s first see the algorithm (in pseudo code) for this operation below. It is

important to mention that this algorithm is independent of data type i.e. the data can

be of any type numeric or string.

if (value == middle element)

value is found

else if (value < middle element)

search left half of list with the same method

else

search right half of list with the same methodThe item we are

searching for in this algorithm is called value. The first comparison of this value is

made with the middle element of the array. If both are equal, it means that we have

found our desired search item, which is present in the middle of the array. If this is not

the case, then the value and the middle element are not the same. The else-if part of

the algorithm is computed, which checks if the value is less than the middle element.

If so, the left half part of the array is searched further in the same fashion (of logically

splitting that half part of array into two further halves and applying this algorithm

again). This search operation can also be implemented using the recursive algorithm

but that will be discussed later. At the moment, we are discussing only the non-

recursive algorithm. The last part of the algorithm deals with the case when the value

is greater than the middle element. This processes the right half of the array with the

same method.

Let’s see this algorithm in action by taking an example of an array of elements:

Binary Search – Example 1
Case 1: val == a[mid]

val = 10

low = 0, high = 8

mid = (0 + 8) / 2 = 4

a:

0 1 2 3 4 5 6 7 8

low mid high

Fig 39.2

You can see an array a in the Fig 39.2 with indexes 0 to 8 and values 1, 5, 7, 9, 10, 13,

17, 19 and 27. These values are our data items. Notice that these are sorted in
ascending (increasing) order.

1 5 7 9 10 13 17 19 27

CS301 – Data Structures Lecture No. 39

Page 432 of 505

You can see in the first line of case 1 that val = 10, which indicates that we are

searching for value 10. From second line, the range of data to search is from 0 to 8. In

this data range, the middle position is calculated by using a simple formula (low +

high)/2. In this case, it is mid =(0+8)/2=4. This is the middle position of the data

array. See the array in the above figure Fig 39.2, which shows that the item at array

position 4 is 10, exactly the value we are searching for. So, in this case, we have

found the value right away in the middle position of the array. The search operation

can stop here and an appropriate value can be returned back.

Let’s see the case 2 now:

Binary Search – Example 2
Case 2: val > a[mid]

val = 19

low = 0, high = 8

mid = (0 + 8) / 2 = 4

new low = mid + 1 = 5

a:

0 1 2

low

3 4

mid

5 6

new

7 8

high

Fig 39.3
low

The second case is about the scenario when value (val) is greater than the middle

value (a[mid]). The range of data items (low and high) is the same as that in case 1.

Therefore, the middle position (mid) is also the same. But the value (val) 19 is greater

than the value at the middle (mid) 10 of the array. As this array is sorted, therefore,

the left half of the array must not contain value 19. At this point of time, our

information about val 19 is that it is greater than the middle. So it might be present in

the right half of the array. The right half part starts from position 5 to position 8. It is

shown in Fig 39.3 that the new low is at position 5. With these new low and high

positions, the algorithm is applied to this right half again.

Now, we are left with one more case.

Binary Search – Example 3
Case 3: val < a[mid]

val = 7

low = 0, high = 8

mid = (0 + 8) / 2 = 4
new high = mid - 1 =5

1 5 7 9 10 13 17 19 27

CS301 – Data Structures Lecture No. 39

Page 433 of 505

a:

0 1

low

2 3

new

high

4 5

mid

6 7 8

high

Fig 39.4

The value to be searched (val) in this case is 7. The data range is the same starting

from low=0 to high=8. Middle is computed in the same manner and the value at the

middle position (mid) is compared with the val. The val is less than the value at mid

position. As the data is sorted, therefore, a value lesser than the one at mid position

should be present in the lower half (left half) of the array (if it is there). The left half

of the array will start from the same starting position low=0 but the high position is

going to be changed to mid-1 i.e. 3. Now, let’s execute this algorithm again on this

left half.

val = 7

a:

1

5

7

9 10 13

17

19

27

 0 1 2 3 4 5 6 7 8

a:

1

5

7

9 10 13

17

19

27

 0 1 2 3 4 5 6 7 8

a:

1

5

7

9

10

13

17

19

27

 0 1 2 3 4

Fig 39 .5

5 6 7 8

Firstly, we will compute the middle of 0 and 3 that results in 1 in this integer division.

This is shown in the top array in Fig 39.5. Now, the val 7 is compared with the value

at the middle position (mid) i.e.5. As 7 is greater than 5, we will process the right half

of this data range (which is positioned from low=0 to high=3). The right half of this

data range starts from position 2 and ends at position 3. The new data range is low=2

and high=3. The middle position (mid) is computed as (2+3)/2=2. The value at the

mid position is 7. We compare the value at mid position (7) to the val we are looking

for. These are found to be equal and finally we have the desired value.

Our desired number is found within positions- 0 to 8 at position 2. Without applying

this binary search algorithm, we might have performed lot more comparisons. You

might feel that finding this number 7 sequentially is easier as it is found at position 2

only. But what will happen in case we are searching for number 27. In that case, we

1 5 7 9 10 13 17 19 27

CS301 – Data Structures Lecture No. 39

Page 434 of 505

have to compare with each element present in the array to find out the desired

number. On the other hand, if this number 27 is searched with the help of the binary

search algorithm, it is found in third comparison.

Actually, we have already seen binary search while studying the binary search tree.

While comparing the number with the root element of the tree, we had come to know

that if the number was found smaller than the number in the root, we had to switch to

left-subtree of the root (ensuring that it cannot be found in the right subtree).

Now, let’s see the C++ code for this algorithm:

CS301 – Data Structures Lecture No. 39

Page 435 of 505

Binary Search – C++ Code
int isPresent(int *arr, int val, int N)

{

int low = 0;

int high = N - 1;

int mid;

while (low <= high)

{

mid = (low + high)/2;

if (arr[mid] == val)

return 1; // found!

else if (arr[mid] < val)

low = mid + 1;

else

high = mid - 1;

}

return 0; // not found

The name of the routine is isPresent, which expects an int pointer (an array in actual);

an int value val is required to be searched. Another int value is N that indicates the

maximum index value of the array. Inside the body of the function, int variables low,

high and mid are declared. low is initialized to 0 and high is initialized to N-1. while

loop is based on the condition that executes the loop until low <= high. Inside the

loop, very first thing is the calculation of the middle position (mid). Then comes the

first check inside the loop, it compares the val (the value being searched) with the

number at middle position (arr[mid]). If they are equal, the function returns 1. If this

condition returns false, it means that the numbers are unequal. Then comes the turn of

another condition. This condition (arr[mid] < val) is checking if the value at the

middle is less than the value being searched. If this is so, the right half of the tree is

selected by changing the position of the variable low to mid+1 and processed through

the loop again. If both of these conditions return false, the left half of the array is

selected by changing the variable high to mid-1. This left half is processed through the

loop again. If the loop terminates and the required value is not found, then 0 is

returned as shown in the last statement of this function.

You change this function to return the position of the value if it is found in the array
otherwise return –1 to inform about the failure. It is important to note that this
function requires the data to be sorted to work properly. Otherwise, it will fail.

This algorithm is depicted figurative in Fig 39.6.

CS301 – Data Structures Lecture No. 39

Page 436 of 505

First half Second half

Binary Search – Binary Tree

Fig 39.6

 The search divides a list into two small sub-lists till a sub-list is no more divisible.

You might have realized about the good performance of binary trees by just looking at

these if you remember the fully balanced trees of N items discussed earlier.

Binary Search - Efficiency
To see the efficiency of this binary search algorithm, consider when we divide the

array of N items into two halves first time.

After 1 bisection N/2 items

After 2 bisections N/4 = N/22 items

. . .

After i bisections N/2i =1 item

i = log2 N

First half contains N/2 items while the second half also contains around N/2 items.

After one of the halves is divided further, each half contains around N/4 elements. At

this point, only one of N/4 items half is processed to search further. If we carry out

three bisections, each half will contain N/8 items. Similarly for i bisections, we are

left with N/2 i, which is at one point of time is only one element of the array. So we

have the equation here:

N/2i =1

Computing the value of i from this gives us:
i = log2 N

Which shows that after maximum log2 N bisections, either you will be successful in

finding your item or fail to do so.

This was our second implementation of table or dictionary abstract data type using

sorted sequential array. As discussed at start of it that if we implement table or

An entire sorted list

First half

First half Second half

First half

First half Second half

CS301 – Data Structures Lecture No. 39

Page 437 of 505

dictionary abstract data type using an array, we have to keep the array elements in

sorted order. An easier way to sort them can be that whenever we want to insert an

element in the array, firstly we find its position (in sorted order) in the array and then

shift the right side (of that position) elements one position towards right to insert it. In

worst case, we might have to shift all the elements one position towards right just to

keep the data sorted so this will be proportional to N. Similarly the remove operation

is also proportional to N. But after keeping the data sorted, the search operation is

returned within maximum log2 N bisections.

Implementation 3 (of Table ADT): Linked List
We might also use linked list to implement the table abstract data type. We can keep
the data unsorted and keep on inserting the new coming elements to front in the list. It

is also possible to keep the data in sorted order. For that, to insert a new element in the

list, as we did for array, we will first find its position (in sorted order) in the list and

then insert it there. The search operation cannot work in the same fashion here

because binary search works only for arrays. Because the linked list may not be

contiguous in memory, normally its nodes are scattered through, therefore, binary

search cannot work with them.

 TableNodes are again stored consecutively (unsorted or sorted)

 insert: add to front; (1or n for a sorted list)

 find: search through potentially all the keys, one at a time; (n for unsorted or for
a sorted list

 remove: find, remove using pointer alterations; (n)

key entry

and so on
Fig 39.7

Well, linked list is one choice to implement table abstract data type. For unsorted

elements, the insertion at front operation will take constant time. (as each element is

inserted in one go). But if the data inside the list is kept in sorted order then to insert a

new element in the list, the entire linked list is traversed through to find the

appropriate position for the element.

For find operation, all the keys are scanned through whether they are sorted or

unsorted. That means the time of find is proportional to N.

For remove operation, we have to perform find first. After that the element is removed

CS301 – Data Structures Lecture No. 39

Page 438 of 505

40 60 50 30 20

and the links are readjusted accordingly.

We know that when we used sorted array, the find operation was optimized. Let’s

compare the usage of array and linked list for table abstract data type. The fixed size

of the array becomes a constraint that it cannot contain elements more than that.

Linked list has no such constraint but the find operation using linked list becomes

slower. Is it possible to speed up this operation of find while using linked list? For

this, a professor of University of Maryland introduced a new data structure called skip

list. Let’s discuss little bit about skip list.

Implementation 4 (of Table ADT): Skip List
 Overcome basic limitations of previous lists

o Search and update require linear time

 Fast Searching of Sorted Chain

 Provide alternative to BST (binary search trees) and related tree structures.

Balancing can be expensive.

 Relatively recent data structure: Bill Pugh proposed it in 1990.

Important characteristics of skip list are stated above. Now, we see skip list in bit

more detail.

Skip List - Representation

Can do better than n comparisons to find

element in chain of length n
head

tail

Fig 39.8

As shown in the figure. The head and tail are special nodes at start and end of the list

respectively. If we have to find number 60 in the list then we have no other choice but

starting from head traverse the subsequent nodes using the next pointer until the

required node is found or the tail is reached. To find 70 in the list, we will scan

through the whole list and then get to know that it is not present in it. The professor

Pugh suggested something here:

head

Example: n/2 + 1 If we keep pointer to

middle element

Fig 39.9

tail

60 50 40 30 20

CS301 – Data Structures Lecture No. 39

Page 439 of 505

Firstly, we use two pointers head and tail. Secondly, the node in the middle has two

next pointers; one is the old linked list pointer leading to next node 50 and the second

is leading to the tail node. Additionally the head node also has two pointers, one is the

old liked list pointer pointing to the next node 20 and second one is pointing to the

middle element’s next pointer, which is (as told above) further pointing to the tail

node.

Now, if we want to find element 60 in the above list. Is it possible to search the list in

relatively quick manner than the normal linked list shown in Fig 39.8? Yes, it is with

the help of the additional pointers we have placed in the list. We will come to the

middle of the list first and see that the middle element (40) is smaller than 60,

therefore the right half part of the list is selected to process further (as the linked list is

sorted). Isn’t it the same we did in binary search? It definitely is.

What if we can add additional pointers (links) and boost the performance. See the

figure below.

Skip List - Higher Level Chains

head

Level 1 & 2 chains

Fig 39.10

tail

 For general n, level 0 chain includes all elements

 level 1 every other element, level 2 chain every fourth, etc.

 level i, every 2i th elementLevel 0 chain is our old linked list chain as shown in
Fig 39. Level 1 is new chain added to contain the link of every other node (or
alternate node). Level 2 chain contains links to every 4 th node. We keep on adding

levels of chains so that we generalize that for level i chain includes 2ith elements.
After adding these pointers, the skip list is no more our old linked list; it has become
sort of binary tree. Still, there are still few important things to consider.

 Skip list contains a hierarchy of chains

 In general level i contains a subset of elements in level i-1Skip list becomes a

hierarchy of chains and every level contains a subset of element of previous level.

Using this kind of skip list data structure, we can find elements in log2n time. But the

problem with this is that the frequency of pointers is so high as compared to the size

of the data items that it becomes difficult to manage them. The insert and remove

operations on this kind of skip list become very complex because single insertion or

removal requires lot of pointers to readjust.

Professor Pugh suggested here that instead of doing leveling in powers of 2, it should

be done randomly. Randomness in skip lists is a new topic for us. Let’s see a formal

definition of skip list.

60 50 40 30 26 20 57

CS301 – Data Structures Lecture No. 39

Page 440 of 505

Skip List - Formally
 A skip list for a set S of distinct (key, element) items is a series of lists S0, S1 , …

, Sh such that

o Each list Si contains the special keys and

o List S0 contains the keys of S in non-decreasing order Each list is a

subsequence of the previous one, i.e.,

S0 S1 … Sh

o List Sh contains only the two special keys

You are advised to study skip list from your text books. The idea of randomness is

new to us. We will study in the next lecture, how easy and useful becomes the skip

list data structure after employing randomness.

CS301 – Data Structures Lecture No. 40

Page 441 of 505

Data Structures

Lecture No. 40

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 10

Summary

10.4.2

 Skip List

 Skip List Search

 Insertion in Skip List

 Deletion from Skip List

In the previous lecture, we had started the discussion on the concept of the skip lists.

We came across a number of definitions and saw how the use of additional pointers

was effective in the list structures. It was evident from the discussion that a

programmer prefers to keep the data in the linked list sorted. If the data is not sorted,

we cannot use binary search algorithm. And the insert, find and remove methods are

proportional to n. But in this case, we want to use the binary search on linked list. For

this purpose, skip list can be used. In the skip list, there is no condition of the upper

limit of the array.

Skip List
A skip list for a set S of distinct (key, element) items is a series of lists S0, S1 , … , Sh

such that

• Each list Si contains the special keys + and -

• List S0 contains the keys of S in non-decreasing order

• Each list is a subsequence of the previous one, i.e.,

S0 S1 … Sh

• List Sh contains only the two special keys

Now let’s see an example for the skip list. First of all, we have S0 i.e. a linked list. We

did not show the arrows in the list in the figure. The first and last nodes of S0 contain

- and + respectively. In the computer, we can put these values by –max(int) and

max(int). The values can also be used about which we are sure that these will not be

in the data items. However, for the sake of discussion to show these values, the -

and + are the best notations. We can see that - is less than any value of data item

while + is greater than any value of data item. If we insert any value much ever, it is

large the + will be greater than it. Moreover, we see that the numbers in S0 are in
the non- decreasing order. This S0 is the first list in which all keys are present.

Now we will take some nodes from this list and link them. That will be not every

other node or every fourth node. It may happen this way. However, we will try that

the node should not be every other or fourth node. It will be a random selection. Now

we see S1 i.e. a subset of S0. In S1 we selected the nodes 23, 31, 34 and 64. We have

CS301 – Data Structures Lecture No. 40

Page 442 of 505

S3

S2

S1

S0

Figure 40.1:

+78 64 56 34 31 26 23 12 -

+64 34 31 23 -

chosen these nodes randomly with out any order or preference. Now from this S1, we

make S2 by selecting some elements of S1. Here we select only one node i.e. 31 for

the list S2. The additional pointer, here, has to move from - to 31 and from 31 to

+. Now the next list i.e. S3 will be subset of S2. As there is only one node in S2, so

in S3, there will only the special keys. In these lists, we use pointers to link all the

nodes in S0. Then with additional pointers, we linked these nodes additionally in the

other lists. Unlike 2i, there is not every other node in S1 or every fourth node in S2.

The following figure represents these lists.

-

+

-

31

+

Now we have the list i.e. from S0 to S3. Actually, these list are made during insert

operation. We will see the insert method later. Let’s first talk about the search

method.

Skip List Search
Suppose we have a skip list structure available. Let’s see what is its benefit. We

started our discussion from the point that we want to keep linked list structure but do

not want to search n elements for finding an item. We want to implement the

algorithm like binary search on the linked list.

Now a skip list with additional pointers is available. Let’s see how search will work

with these additional pointers. Suppose we want to search an item x. Then search

operation can be described as under.

We search for a key x in the following fashion:

• We start at the first position of the top list

• At the current position p, we compare x with y key(after(p))

• x = y: we return element(after(p))

• x > y: we “scan forward”

• x < y: we “drop down”

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

CS301 – Data Structures Lecture No. 40

Page 443 of 505

S3

S2

S1

S0

Figure 40.2: Search for 78

+78 64 56 34 31 26 23 12 -

+64 34 31 23 -

To search a key x, we start at the first position of the top list. For example, we are

discussing the top list is S3. We note the current position with p. We get the key in the

list after the current list (i.e. in which we are currently looking for key) by the key

(after(p)) function. We get this key as y. Then we compare the key to be searched for

i.e. x with this y. If x is equal to y then it means y is the element that we are searching

for so we return element(after(p)). If x is greater than y, we scan forward and look at

the next node. If x is less than y, we drop down and look in the down lists. No if we

drop down and past the bottom list, it means that the element (item) is not there and

we return NO_SUCH_KEY.

To see the working of this search strategy let’s apply it on the skip list, already

discussed and shown in the figure 40.1. This figure shows four lists. Remember that

these four lists are actually in the one skip list and are made by the additional pointers

in the same skip list. There is not such situation thatS1 is developed by extracting the

data from S0 and S1 duplicates this data. Actually every node exists once and is

pointed by additional pointers. For example, the node 23 exists once but has two next

pointers. One is pointing to 26 while the other pointing to 31. In the same way, there

are three pointers in node 31, two are to the node 34 and the third is toward the +.

-

+

-

31

+

Suppose we want to search 78. We start from the first node of the top list i.e. S3. The

78 will be the current node and we denote it with p. Now we look at the value in the

node after p. In the figure, it is +. Now as the + is greater than 78, we drop down
to S2. Note in the figure that we drop down vertically. We don’t go to the first

element p in the down list. This process of going down will be discussed later. Now

we drop from S3 to S2. This is our current pointer. Now we look for the value in the

next node to it. We see that this value is 31. Now 31 is less than 78, so we will do

scan forward. The next node is + that is obviously greater than 78. So we drop from
here and go to the list S1. In this list, the current position is 34. We compare 78 with

this node. As 34 is less than 78, we scan forward in the list. The next node in the list is

64 that is also less than 78. So we look at the next node and note that the next node is

+ that is greater than 78. Due to this we drop down to list S0. Here we look at the

next node of 64 and find that this is 78. Thus at last we reach at the node that we are

CS301 – Data Structures Lecture No. 40

Page 444 of 505

searching for. Now if we look at the arrows that are actually the steps to find out the

value 78 in the skip list. Then we come to know that these are much less than the links

that we have to follow while starting from the -+ in the list S0. In S0 we have to
traverse the nodes 12, 23, 26, 31, 34, 44, 56, and 64 to reach at 78. This traversal

could be larger if there were more nodes before 31. But in our algorithm, we reach at

node 31 in one step. Thus we see that the search in the skip list is faster than the

search in a linear list. By the steps that we do in searching an element and see that this

search is like the binary search scheme. And we will see that this skip list search is

also log2 N as in binary search tree. Though the skip list is not a tree, yet its find

method works like the binary search in trees. As we know that find method is also

involved in the remove method, so remove method also becomes fast as the find

method is fast.

Insertion in Skip List

When we are going to insert (add) an item (x,0) into a skip list, we use a randomized

algorithm. Note that here we are sending the item in a pair. This is due to the fact that

we keep the data and the key separately to apply the find and remove methods on

table easily. In this pair, x is the key, also present in the record. The 0 denotes the data

(i.e. whole record). Now the randomized algorithm for insertion of this value is

described below.

The first step of the algorithm is that

 We repeatedly toss a coin until we get tails, and we denote with i the number

of times the coin came up heads.

This first step describes that we toss a coin while knowing a 50 percent probability for
both head and tail. We keep a counter denoted with i to count the heads that come up.

Now if the head comes up, i becomes 1. We again toss the coin if again the head

comes up we add 1 to the counter i. We continue this counting until the tail comes up.

When tail comes up, we stop tossing and note the value of i.

After this, the second step of algorithm comes, stating that

 If i > h, we add to the skip list new lists Sh+1, … , Si +1, each containing only

the two special keys

Here we compare i (that is the count of heads came up) with h (that is the number of
list) if i is greater than or equal to h then we add new lists to the skip list. These new

lists are Sh+1, … , Si +1. Suppose if i is 8 and h is 4 , we add additional lists S5, S6,

S7, S8 and S9. These lists initially will contain the only two special keys that means -

 and +. The next steps are:

 We search for x in the skip list and find the positions p0, p1 , …, pi of the

items with largest key less than x in each list S0, S1, … , Si

 For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

Now we will start from the left most node of the top list i.e. Si and will find the

position for the new data item. We find this position as we want to keep the data in

the list sorted.

Let’s see this insert position with the help of figures. Suppose we have a skip list ,

CS301 – Data Structures Lecture No. 40

Page 445 of 505

S2

S1

S0

Figure 40.3:

+36 23 10 -

shown in the figure below. Here are only three items 10, 23 and 36 in it. There are

also additional layers S1 and S2. These were made when 10, 23 and 36 were inserted.

-

+

-

23

+

Now we proceed with this list and insert a value in it. The value that we are going to

insert is 15. We have tossed the coin and figured out that the value of i is 2. As it is

randomized algorithm so in this case, the value of i has become 2. The value of I is

the count number of heads before the tail comes up by tossing the coin. From the

above figure, we see that the value of h is 2. As h and i are equal, we are not adding

S3, S4 and S5 to the list. Rather, we will apply the search algorithm. We start from

the left most node of the top list. We call this position p2. We label these positions for

their identification. We see that the item being added i.e.15 is less than the +, so we
drop down to list S1. We denote this step with p1. In this list, the next value is 23 that

is also greater than 15. So we again drop down and come in the list S0. Our current

position is still the first node in the list as we did not have any scan forward. Now the

next node is 10 that is less than 15. So we skip forward. We note this skip forward

with p0. Now after p0 the value in next node is 23 that is greater than 15. As we are in

the bottom list, there is no more drop down. So here is the position of the new node.

This position of new node is after the node 10 and before the node 23. We have

labeled the positions po, p1 and p2 to reach there. Now we add the value 15

additionally to the list that we have traversed to find the positions and labeled them to

remember. After this we add a list S3 that contains only two keys that are - and +,
as we have to keep such a list at the top of the skip list. The following figure shows

this insertion process.

CS301 – Data Structures Lecture No. 40

Page 446 of 505

S3

S2

S1

S0

Figure 40.4: Insertion of 15

+36 23 15 10 -

-

+

-

15

+

-

15

23

+

Here we see that the new inserted node is in three lists. The value that we insert must

will be in S0 as it is the data list in which all the data will reside. However, it is also

present in the lists that we have traversed to find its position. The value of i in the

insertion method is randomly calculated by tossing the coin. How can we toss a coin

in computers? There is routine library available in C and C++ that generates a random

number. We can give it a range of numbers to generate a number in between them.

We can ask it to give us only 0 and 1 and assign 1 to head and 0 to tail respectively.

Thus the count number of 1’s will give us the number of heads that come up. We can

also use some other range like we can say that if the random number is less than some

fixed value (whatever we fixed) that it means head otherwise it will mean tail. The

algorithms that use random numbers are generally known as randomized algorithms.

So

 A randomized algorithm performs coin tosses (i.e., uses random bits) to

control its execution

 It contains statements of the type

b random()

if b <= 0.5 // head

do A …

else // tail

do B …

 Its running time depends on the outcome of the coin tosses, i.e, head or tail

In the randomized algorithm, we take a number from the random() function between 0

and 1. This number is up to one decimal place. However, we can keep it up to nay

decimal places. As stated above ,after getting a number we check its value. If this is

less than or equal to 0.5, we consider it as head and execute the process A. In our

algorithm, we increase the value of i by 1. However, if value is greater than 0.5, we

consider it as tail and do the process B. In our algorithm, the process B takes place

when we note the value of I and stop the tossing. We do this process of tossing in a

while loop. The while condition comes false when the tail (i.e. number greater than

0.5) comes. We cannot predict how many times this loop will execute as it depends

upon the outcome of the toss. It is also a random number. There may be only one or a

large number of heads before the tail comes up.

CS301 – Data Structures Lecture No. 40

Page 447 of 505

S3

S2

S1

S0

Figure 40.5 (a) : Remove key 34

+45 34 23 12 -

S2

S1

S0

Figure 40.5 (b): After removal of key 34

+45 23 12 -

Deletion from Skip List
In the remove method, we find the item to be removed with the find item and remove

it from the list. In the lists where ever this item has links, we bypass them. Thus, the

procedure is quite easy. Now let’s talk about this method.

To remove an item with key x from a skip list, we proceed as follows:

We search for x in the skip list and find the positions p0, p1 , …, pi of the items with

key x, where position pj is in list Sj. This means that we look for the links of the item

to be removed . We know that an item in the list has necessarily link in the list S0.

Moreover it may have links in other lists up to Si or say Sj. After this, we remove

positions p0, p1 , …, pi from the lists S0, S1, … , Si. We remove all the lists except

the list containing only the two special keys.

Let’s consider the skip list shown in the figure below.

-

+

-

34

+

-

23

34

+

-

+

-

23

+

Suppose we want to remove the node 34 from the list. When this node 34 was

inserted, it came not only in list S0 but there were its additional links o in S1 and S2
lists respectively. The list S3 has only the two special keys. Now for finding 34, we

CS301 – Data Structures Lecture No. 40

Page 448 of 505

start from the top list. There is + as the next node, so we drop down to the list S2 as

+ is greater than 34. In S2, we are at node 34. Now we are at the point to remove

34. From here, we go to the remaining lists and reach list S0. We also label the links
being traversed. It is evident that we have labeled the links as p2, p1 and p0. Now we

remove the node 34 and change the pointers in the lists. We see that in S3, this was

the single node. After removing this node, there is only one link that is from - to

+. The list S3 already has link from - to +. Instead of keeping these two i.e. S2

and S3, we keep only S2. Thus we have removed the node 34 from the skip list. We

see that the remove method is simple. We don’t have randomness and need not

tossing. The tossing and random number was only in the case of insertion. In the

remove method, we have to change some pointers.

Thus in this data structure, we need not to go for rotations and balancing like AVL

tree. In this data structure- Skip-list, we get rid of the limitation of arrays. This way,

the search gets very fast. Moreover, we have sorted data and can get it in a sorted

form.

CS301 – Data Structures Lecture No. 41

Page 449 of 505

Data Structures

Lecture No. 41

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 10

10.4.2

Summary

 Review

 Quad Node

 Performance of Skip Lists

 AVL Tree

 Hashing

 Examples of Hashing

Review
In the previous lecture, we studied three methods of skip list i.e. insert, find and

remove and had their pictorial view. Working of these methods was also discussed.

With the help of sketches, you must have some idea about the implementation of the

extra pointer in the skip list.

Let’s discuss its implementation. The skip list is as under:

S3

S2

S1

S0

We have some nodes in this skip list. The data is present at 0, 1 st and 2nd levels. The

actual values are 12, 23, 34 and 45. The node 34 is present in three nodes. It is not

necessary that we want to do the same in implementation. We need a structure with

next pointers. Should we copy the data in the same way or not? Let’s have a look at

the previous example:

34 23 12

23

34

34

45

CS301 – Data Structures Lecture No. 41

Page 450 of 505

head
tail

Here, the data is 20, 26, 30, 40, 50, 57, 60. At the lowest level, we have a link list. A

view of the node 26, node 40 and node 57 reveals that there is an extra next ‘pointer’.

The head pointer is pointing to a node from where three pointers are pointing at

different nodes.

We have seen the implementation of link list. At the time of implementation, there is

a data field and a next pointer in it. In case of doubly link list, we have a previous

pointer too. If we add an extra pointer in the node, the above structure can be

obtained. It is not necessary that every node contains maximum pointers. For

example, in the case of node 26 and node 57, there are two next pointers and the node

40 has three next pointers. We will name this node as ‘TowerNode’.

TowerNode will have an array of next pointers. With the help of this array of pointers,

a node can have multiple pointers. Actual number of next pointers will be decided by

the random procedure. We also need to define MAXLEVEL as an upper limit on

number of levels in a node. Now we will see when this node is created. A node is

created at a time of calling the insert method to insert some data in the list. At that

occasion, a programmer flips the coin till the time he gets a tail. The number of heads

represents the levels. Suppose we want to insert some data and there are heads for six

times. Now you know how much next pointers are needed to insert which data. Now

we will create a listNode from the TowerNode factory. We will ask the factory to

allocate the place for six next pointers dynamically. Keep in mind that the next is an

array for which we will allocate the memory dynamically. This is done just due to the

fact that we may require different number of next pointers at different times. So at the

time of creation, the factory will take care of this thing. When we get this node from

the factory, it has six next pointers. We will insert the new data item in it. Then in a

loop, we will point all these next pointers to next nodes. We have already studied it in

the separate lecture on insert method.

If your random number generation is not truly so and it gives only the heads. In this

case, we may have a very big number of heads and the Tower will be too big, leading

to memory allocation problem. Therefore, there is need to impose some upper limit on

it. For this purpose, we use MAXLEVEL. It is the upper limit for the number of next

pointers. We may generate some error in our program if this upper limit is crossed.

The next pointers of a node will point at their own level. Consider the above figure.

Suppose we want to insert node 40 in it. Its 0 level pointer is pointing to node 50. The

2nd pointer is pointing to the node 57 while the third pointer pointing to tail. This is

the case when we use TowerNode. This is one of the solutions of this problem.

Tower Node

57 30 26 20 50 40 60

CS301 – Data Structures Lecture No. 41

Page 451 of 505

Quad Node
Let’s review another method for this solution, called Quad node. In this method, we

do not have the array of pointers. Rather, there are four next pointers. The following

details can help us understand it properly.

A quad-node stores:

• item

• link to the node before

• link to the node after

• link to the node below

• link to the node above

This will require copying of the key (item) at different levels. We do not have an

array of next pointers in it. So different ways are adopted to create a multilevel node

of skip list. While requiring six levels, we will have to create six such nodes and copy

the data item x in all of these nodes and insert these in link list structure. The

following figure depicts it well.

S3

S2

S1

S0

You can see next and previous and down and up pointers here. In the bottom layer, the

down pointer is nil. Similarly the right pointers of right column are nil. In the top

78 64 56 44 34 31 26 23 12

64 34 31 23

31

x

CS301 – Data Structures Lecture No. 41

Page 452 of 505

layer, the top pointers are nil. You can see that the values 23, 34, and 64 are copied

two times and the value 31 is copied three times. What are the advantages of quad

node? In quad node, we need not to allocate the array for next pointers. Every list

node contains four pointers. The quad node factory will return a node having four

pointers in it. It is our responsibility to link the nodes up, bottom, left and right

pointers with other nodes. With the help of previous pointer, we can also move

backward in the list. This may be called as doubly skip list.

Performance of Skip Lists
Let’s analyze this data structure and see how much time is required for search and

deletion process. The analysis is probability-based and needs lot of time. We will do

this in some other course. Let’s discuss about the performance of the skip list

regarding insert, find and remove methods.

In a skip list, with n items the expected space used is proportional to n. When we

create a skip list, some memory is needed for its items. We also need memory to

create a link list at lowest level as well as in other levels. This memory space is

proportional to n i.e. number of items. For n items, we need n memory locations. The

items may be of integer data type. If we have 100 items, there will be need of 100

memory locations. Then we need space for next pointers that necessitates the

availability of 2n memory locations. We have different layers in our structure. We do

not make every node as towerNode neither we have a formula for this. We randomly

select the towerNode and their height. The next pointers can be up to maxLevel but

normally these will be few. We do not require pointers at each level. We do not need

20n or 30n memory locations. If we combine all these the value will be 15n to 20n.

Therefore the proportionality constant will be around 15 or 20 but it cant be n2 or n3.

If this is the case then to store 100 items we do need 100 2 or 1003 memory locations.

There are some algorithms in which we require space in square or cubic times. This is

the space requirement and it is sufficient in terms of space requirements. It does not

demand too much memory.

Let’s see the performance of its methods. The expected search, insertion and deletion

time is proportional to log n. It looks like binary tree or binary search tree (BST). This

structure is proposed while keeping in mind, the binary search tree. You have

witnessed that if we have extra nodes, search process can be carried out very fast. We

can prove it with the probabilistic analyses of mathematics. We will not do it in this

course. This information is available in books and on the internet. All the searches,

insertions and deletions are proportional to log n. If we have 100,000 nodes, its log n

will be around 20. We need 20 steps to insert or search or remove an element. In case

of insert, we need to search that this element already exists or not. If we allow

duplicate entries then a new entry would be inserted after the previous one. In case of

delete too, we need to search for the entry before making any deletion. In case of

binary search tree, the insertion or deletion is proportional to log n when the tree is a

balanced tree. This data structure is very efficient. Its implementation is also very

simple. As you have already worked with link list, so it will be very easy for you to

implement it.

AVL Tree
The insertion, deletion and searches will be performed on the basis of key. In the

nodes, we have key and data together. Keep in mind the example of telephone

CS301 – Data Structures Lecture No. 41

Page 453 of 505

directory or employee directory. In the key, we have the name of the person and the

entry contains the address, telephone number and the remaining information. In our

AVL tree, we will store this data in the nodes. Though, the search will be on the key,

yet as we already noticed that the insert is proportional to log n. Being a balanced tree,

it will not become degenerated balance tree. The objective of AVL tree is to make the

binary trees balanced. Therefore the find will be log n. Similarly the time required for

the removal of the node is proportional to log n.

key entry

We have discussed all the five implementations. In some implementations, time

required is proportional to some constant time. In case of a sorted list, we have to

search before the insertion. However for an unsorted list, a programmer will insert the

item in the start. Similarly we have seen the data structure where insertions, deletions

and searches are proportional to n. In link list, insertions and deletions are

proportional to n whereas search is log n. It seems that log n is the lower limit and we

cannot reduce this number more.

Is it true that we cannot do better than log n in case of table? Think about it and send

your proposals. So far we have find, remove and insert where time varies between

constant and log n. It would be nice to have all the three as constant time operations.

We do not want to traverse the tree or go into long loops. So it is advisable to find the

element in first step. If we want to insert or delete, it should be done in one step. How

can we do that? The answer is Hashing.

Hashing
The hashing is an algorithmic procedure and a methodology. It is not a new data

structure. It is a way to use the existing data structure. The methods- find, insert and

remove of table will get of constant time. You will see that we will be able to do this

in a single step. What is its advantage? If we need table data structure in some

program, it can be used easily due to being very efficient. Moreover, its operations are

of constant time. In the recent lectures, we were talking about the algorithms and

procedures rather than data structure. Now we will discuss about the strategies and

methodologies. Hashing is also a part of this.

key entry key entry

key entry

Download More Highlighted Handouts From

 VUAnswer.com

CS301 – Data Structures Lecture No. 41

Page 454 of 505

We will store the data in the array but TableNodes are not stored consecutively. We

are storing the element’s data in the TableNodes. You have seen the array

implementation of the Table data structure. We have also seen how to make the data

sorted. There will be no gap in the array positions whether we use the sorted or

unsorted data. This means that there is some data at the 1 st and 2nd position of array

and then the third element is stored at the 6 th position and 4th and 5th positions are

empty. We have not done like this before. In case of link list, it is non-consecutive

data structure with respect to memory.

In Hashing, we will internally use array. It may be static or dynamic. But we will not

store data in consecutive locations. Their place of storage is calculated using the key
and a hash function. Hash function is a new thing for you. See the diagram below:

We have a key that may be a name, or roll number or login name etc. We will pass

this key to a hash function. This is a mathematical function that will return an array

index. In other words, an integer number will be returned. This number will be in

some range but not in a sequence.

Keys and entries are scattered throughout the array. Suppose we want to insert the

data of our employee. The key is the name of the employee. We will pass this key to

the hash function which will return an integer. We will use this number as array

index. We will insert the data of the employee at that index.

key entry

4

10

123

The insert will calculate place of storage and insert in TableNode. When we get a new

data item, its key will be generated with the help of hash function to get the array

Key
hash

function

array

index

CS301 – Data Structures Lecture No. 41

Page 455 of 505

index. Using this array index, we insert the data in the array. This is certainly a

constant time operation. If our hash function is fast, the insert operation will also

rapid. It will take only one step to perform this.

Next we have find method. It will calculate the place of storage and retrieve the entry.

We will get the key and pass it to the hash function and obtain the array index. We get

the data element from that array position. If data is not present at that array position, it

means data is not found. We do not need to find the data at some other place. In case

of binary search tree, we traverse the tree to find the element. Similarly in list

structure we continue our search. Therefore find is also a constant time operation with

Hashing.

Finally, we have remove method. It will calculate the place of storage and set it to

null. That means it will pass the key to the hash function and get the array index.

Using this array index, it will remove the element.

Examples of Hashing
Let’s see some examples of hashing and hash functions. With the help of these
examples you will easily understand the working of find, insert and remove methods.

Suppose we want to store some data. We have a list of some fruits. The names of

fruits are in string. The key is the name of the fruit. We will pass it to the hash

function to get the hash key.

Suppose our hash function gave us the following values:

HashCode ("apple") = 5

hashCode ("watermelon") = 3

hashCode ("grapes") = 8

hashCode ("cantaloupe") = 7

hashCode ("kiwi") = 0

hashCode ("strawberry") = 9

hashCode ("mango") = 6

hashCode ("banana") = 2

Our hash function name is hashCode. We pass it to the string “apple”. Resultantly, it

returns a number 5. In case of “watermelon” we get the number 3. In case of “grapes”

there is number 8 and so on. Neither we are sending the names of the fruits in some

order to the function, nor is function returning the numbers in some order. It seems

that some random numbers are returned. We have an array to store these strings. Our

array will look like as:

CS301 – Data Structures Lecture No. 41

Page 456 of 505

0

1

2

3

4

5

6

7

8

9

kiwi

banana

watermelon

apple

mango

cantaloupe

grapes

strawberry

We store the data depending on the indices got from the hashCode. The array size is

10. In case of apple, we get the index 5 from hashCode so “apple” is stored at array

index 5. As we are dealing with strings, so the array will be an array of strings. The

“watermelon” is at position 3 and so on every element is at its position. This array

will be in the private part of our data structure and the user will not know about i t. If

our array is table then it will look like as under:

table[5] = "apple"

table[3] = "watermelon"

table[8] = "grapes"

table[7] = "cantaloupe"

table[0] = "kiwi"

table[9] = "strawberry"

table[6] = "mango"
table[2] = "banana"

We will store our data in the Table array using the string copy. The user is storing the

data using the names of the fruits and wants to retrieve or delete the data using the

names of fruits. We have used the array for storage purposes but did not store the data

consecutively. We store the data using the hash function which provides us the array

index. You can note that there are gaps in the array positions.

Similarly we will retrieve the data using the names of fruit and pass it to the hashCode

to get the index. Then we will retrieve the data at that position. Consider the table

array, it seems that we are using the names of fruits as indices.

table["apple"]

table["watermelon"]

table["grapes"]

table["cantaloupe"]

table["kiwi"]

CS301 – Data Structures Lecture No. 41

Page 457 of 505

table["strawberry"]

table["mango"]

table["banana"]

We are using the array as table [“apple”], table [“watermelon”] and so on. We are not

using the numbers as indices here. Internally we are using the integer indices using

the hashCode. Here we have used the fruit names as indices of the array. This is

known as associative array. Now this is the internal details that we are thinking it as

associative array or number array.

Let’s discuss about the hashCode. How does it work internally? We pass it to strings

that may be persons name or name of fruits. How does it generate numbers from

these? If the keys are strings, the hash function is some function of the characters in

the strings. One possibility is to simply add the ASCII values of the characters.

Suppose the mathematical notation of hash function is h. It adds all the ASCII values

of the string characters. The characters in a string are from 0 to length - 1. Then it will

take mod of this result with the size of the table. The size of the table is actually the

size of our internal array. This formula can be written mathematically as:

 length 1

h(str)

 str[i]
i0

%TableSize

Example : h(ABC) (65 66 67) TableSize

Suppose we use the string “ABC” and try to find its hash value. The ASCII values of

A, B and C are 65, 66 and 67 respectively. Suppose the tableSize is 55. We will add

these three numbers and take mod with 55. The result (3.6) will be the hash value. To

represent character data in the computer ASCII codes are used. For each character we

have a different bit pattern. To memorize this, we use its base 10 values. All the

characters on the keyboard like $, %, ‘ have ASCII values. You can find the ASCII

table in you book or on the internet.

Let’s see the C++ code of hashCode function.

int hashCode(char* s)

{

int i, sum;

sum = 0;

for(i=0; i < strlen(s); i++)

sum = sum + s[i]; // ascii value

return sum % TABLESIZE;

}

The return type of hashCode function is an integer and takes a pointer to character. It

declares local variable i and sum, then initializes the sum with zero. We use the strlen

function to calculate the length of the string. We run a loop from 0 to length – 1. In

the loop, we start adding the ASCII values of the characters. In C++, characters are

CS301 – Data Structures Lecture No. 41

Page 458 of 505

stored as ASCII values. So we directly add s[i]. Then in the end, we take mod of sum

with TABLESIZE. The variable TABLESIZE is a constant representing the size of the

table.

This is the one of the ways to implement the hash function. This is not the only way

of implementing hash function. The hash function is a very important topic. Experts

have researched a lot on hash functions. There may be other implementations of hash

functions.

Another possibility is to convert the string into some number in some arbitrary base b

(b also might be a prime number). The formula is as:

length 1
i

h(str)

 str[i] b %T
i0

Example : h(ABC) (65b0 66b1 67b2)%T

We are taking the ASCII value and multiply it by b to the power of i. Then we

accumulate these numbers. In the end, we take the mod of this summation with

tableSize to get the result. The b may be some number. For example, we can take b as

a prime number and take 7 or 11 etc. Let’s take the value of b as 7. If we want to get

the hash value of ABC using this formula:

H(ABC) = (65 * 7 ^0 + 66 * 7^1 + 67 * 7^2) mod 55 = 45

We are free to implement the hash function. The only condition is that it accepts a

string and returns an integer.

If the keys are integers, key%T is generally a good hash function, unless the data has

some undesirable features. For example, if T = 10 and all keys end in zeros, then

key%T = 0 for all keys. Suppose we have employee ID i.e. an integer. The employee

ID may be in hundreds of thousand. Here the table size is 10. In this case, we will take

mod of the employee ID with the table size to get the hash value. Here, the entire

employee IDs end in zero. What will be the remainder when we divide this number

with 10? It will be 0 for all employees. So this hash function cannot work with this

data. In general, to avoid situations like this, T should be a prime number.

CS301 – Data Structures Lecture No. 42

Page 459 of 505

Data Structures

Lecture No. 42

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 5

5.1, 5.2, 5.4.1, 5.4.2

Summary
 Collision

 Linear Probing

In the previous lecture, we were discussing about the hash functions. The hash

algorithm depends on the hash function. The hash function generates the array index

to enable us to insert data in the table array. We have seen two examples of hash

functions in the previous lecture. Both the functions use the ASCII values of

characters to generate the index. Here the question arises how can we implement the

hash function in case of having integer data? We may have employee ID, user ID or

student ID as integers. Here we may take mod with some number or table size and the

result is used as an array index.

If the keys are integers then key%T is generally a good hash function unless the data

has some undesirable features. If we want to store the employee record, user record or

student record in the table, this can be done through hash function. We take the mod

of the value with the T. The value of T may be 10, 15 or 100 depending on the

requirements. There may be some problem. For example, if T = 10 and all keys end in

zeros, then key%T = 0 for all keys. The hash function gives 0 for all the keys, used as

array index. Now it is a problem. We cannot store our values as all the records have

same index i.e. 0. In general, to avoid such situations, T should be a prime number.

Internally, we have to store the data in the array and there is complete freedom to use

this array by taking the size of our own choice.

We have to store some data in the array. As the array is private, we will decide about

its size on our own. We will take the size of the array in prime numbers. To store 100

records, we will take prime number near 100. We will select this prime number as

MAXTABLESIZE. Then we will use this number in our hash function. This will help

resolve the problem arising due to situation where all keys end with 0. Using the

prime number, the values from the hash function will not be 0 for all the keys.

With the help of prime number, we cannot solve this problem completely. Similarly, it

cannot be made sure that the values from the hash function are unique for all the keys.

Sometimes, we may have same index for two different keys. This phenomenon is

known as collision i.e. the hash values are same of two different keys. How can we

solve this collision problem?

Collision
Collision takes place when two or more keys (data items) produce the same index.

CS301 – Data Structures Lecture No. 42

Page 460 of 505

Let’s see the previous example of storing the names of fruits. Suppose our hash

function gives us the following values:

0

1

2

3

4

5

6

7

8

9

We store these data items in the respective index in the array. In the above example,

the index given by the hash function does not collide with any other entry. Suppose

we want to add another fruit “honeydew” in it. When “honeydew” is passed to the

hash function, we get the value 6 i.e.

hash("honeydew") = 6

This is not the responsibility of the hash function to see the data in the array before

generating the index. Hash function is generally a mathematical formula that takes the

keys and returns a number. It is responsibility of the caller to find its solution. We

have already “mango” at position 6. The user of our ADT calls the insert function

giving the value “honeydew”. We call the hash function to find out its index that

comes out to be 6. Now the problem is this that position 6 is already occupied. What

should we do to avoid it?

There are a lot of solutions of this problem. These solutions can be divided into two

main categories. One type of solutions is the changing of the hash function. Even with

the introduction of a new function, it is not guaranteed that there will be no collision

with future data. Second option is that we live with the collision and do something to

resolve it.

The definition of collision is:

“When two values hash to the same array location, this is called a collision”

We cannot say that the usage of this hash function will not result in collision

kiwi

banana

watermelon

apple

mango

cantaloupe

grapes

strawberry

hash("apple") = 5
hash("watermelon") = 3

hash("grapes") = 8

hash("cantaloupe") = 7

hash("kiwi") = 0

hash("strawberry") = 9

hash("mango") = 6
hash("banana") = 2

CS301 – Data Structures Lecture No. 42

Page 461 of 505

especially when the data is changing. Collisions are normally treated as a

phenomenon of “first come, first served”, the first value that hashes to the location

gets it. We have to find something to do with the second and subsequent values that

hash to the same location.

As we have seen above in the example that at position 6, there is the data item mango

while another item honeydew is trying to acquire the same position. First come first

served means that the mango will remain at its position and we will do something for

honeydew. We will see three solutions for this problem:

Solution #1: Search for an empty location

• Can stop searching when we find the value or an empty location.

• Search must be wrap-around at the end.

Let’s apply this solution on the above example. We have mango at position 6. Now

the position for honeydew is also 6. We find another empty location in the array. Keep

in mind that in hashing, we do not store data at consecutive positions. Rather, data is

scattered. We know that there are some empty locations in the array. We do not want

to refuse the user that we cannot store the data due to the occupation of the position

by some other item. Therefore, we will store the data item at the empty location. We

will see an example in a short while.

Solution #2: Use a second hash function

• ...and a third, and a fourth, and a fifth, ...

We have a primary hash function, we pass it to the string honeydew. It returns 6. As

the position 6 is occupied, so we call another hash function that is implemented in a

different way. This hash function will return an integer. If this location is empty, we

will store our data here and the problem is solved. But if the array location at the

index number returned by this function is also occupied. Then we will call the third

hash function. There is a possibility of collision so we will have three, four, five or

more hash functions. When there is a collision, we call these hash functions one by

one till the time, there is an index with empty location. We will store the data at this

empty location.

Solution #3: Use the array location as the header of a linked list of values that hash to

this location

In this solution, we will not store the data directly in the array. Our array will be an

array of pointers to TableNode. We will create a list node and store the data in it. The

array will have a pointer to the node. If we want to store some data at location 6, we

will store a pointer at location 6 that points to the node containing the data. When we

have another data at the position 6, we create a list node and attach it with the

previous node. There is a possibility of having a link list from each location of the

table. At least, it will have one node.

There are some more strategies for the resolution of this problem. But we will study

only the above-mentioned three solutions. Now we will see how we can implement

the methods of Table and Dictionary ADT using the hashing function. Firstly, we will

see how the insert, find and remove methods will work with the first solution.

CS301 – Data Structures Lecture No. 42

Page 462 of 505

Linear Probing
The first solution is known as open addressing. When there is a collision, we try to

find some other place in our array. This approach of handling collisions is called open

addressing; it is also known as closed hashing. The word open is used with

addressing and the word closed is used with hashing. Be careful when naming these.

More formally, cells at h0(x), h1(x), h2(x), … are tried in succession where

hi(x) = (hash(x) + f(i)) mod TableSize, with f(0) = 0.

Here hash is our hash function. If there is some collision, we add f(i) value to it before

taking its mod with TableSize. The function, f, is the collision resolution strategy.

We use f(i) = i, i.e., f is a linear function of i. Thus

location(x) = (hash(x) + i) mod TableSize

The function f can be any function. So our first implementation of f is that whatever

integer (i) we gave to it, it returns it back. That is f(i) is a linear function. We can

implement function f as it returns the square of i. That will be quadratic function.

Similarly, we can have cubic functions. We are free to implement it.

In the above example, we are given x for insertion. This can be string such as

honeydew. We call the hash(x) that returns a number. We will see that this location is

empty or not. In case of collision, we add i to this number. The value of i can be

0,1,2,3 etc. We will take the mod of this value with TableSize and try to store the data

there. The collision resolution strategy is called linear probing as it scans the array

sequentially (with wrap around) in search of an empty cell. Let’s consider an example

to understand how it works. Keep in mind that when there is a collision, some other

location in the array is found. This is known as linear probing. Here we are trying to

probe the array linearly that where is the empty location.

Let’s see an example. Here we have names of birds being stored in the array. We have

a larger array. We already have some data in the array that is as under:

. . .

141

142

143

144

145

146

147

148

. . .

robin

sparrow

hawk

seagull

bluejay

owl

CS301 – Data Structures Lecture No. 42

Page 463 of 505

This is a part of array. There is some data before and after these locations. As shown

above, the locations 142, 143, 144, 145, 147 and 148 contains data. Suppose we want

to add seagull to this hash table. With respect to ADT, someone is using this Table or

Dictionary and calls the insert method of this Table. Now we have to use the seagull

as key and have to store its associated data. We will call the hashCode function to get

the array index and pass it the string “seagull” as:

hashCode(“seagull”) = 143

Now the location 143 is not empty and we have a bird, sparrow at this location. That

is table[143] is not empty. The seagull is different than sparrow i.e. table[143] !=

seagull. If it already exists and we are not allowing duplicates, we can say that the

data already exists. This is not the case here. We will check the next position, 143+1

(here i is 1) i.e. 144. At location 144, we have a bird hawk. So this position is also not

empty and not equal to seagull. Here also we have different data. Now we check the

next position 143+2 (here i is 2) i.e. 145. This location is empty so we store our data

at this location. We have two collisions here at 143 and 144 positions. We have found

the empty position in the array with single jumps. First we add 1, then 2 and so on.

Suppose we want to add some existing data. As collisions are happening here, so

when we get the index value from hash function, the data may not be at that position.

We have to follow this linear chain. Suppose you want to add hawk to this hash table.

The table is as under:

. . .

141

142

143

144

145

146

147

148

. . .

We know that hawk is already in the table. Also seagull is added in the table. We will

see that that data that we want to insert already exists or not. First of all, we call the

hash function that is hashCode as:

hashCode(“hawk”) = 143

robin

sparrow

hawk

seagull

bluejay

owl

CS301 – Data Structures Lecture No. 42

Page 464 of 505

We use this value as the table index to insert this data in the table. The table[143] is

not empty. Then we check the data at position 143. We have stored sparrow here so

table[143] != hawk. At this point, we cannot decide whether the data item hawk exists

in the table or not. As we are doing linear probing and there are chances that this data

may exist at some other location. Therefore we will check it further taking any final

decision. Now we check the next position i.e. 144. It is also not empty but the data

here is hawk that is table[144] == hawk. We have two options here. One is that hawk

is already in the table, so do nothing. The other option is that user might want to

modify the data associated with hawk.

The size of our internal array is fixed and we store it in the constant TableSize. In

linear probing, at the time of collisions, we add one to the index and check that

location. If it is also not empty, we add 2 and check that position. Suppose we keep on

incrementing the array index and reach at the end of the table. We were unable to find

the space and reached the last location of the array. Now what does it mean? Is the

table completely filled? There are chances that we started from the position 143.

Suppose that the table size is 500. We were unable to find any empty location. Can we

say that the array locations before 143 are also not available? There is a possibility

that we find some empty spaces there. We will not stop at the end of the table and go

to the start of this table array. We will start linear probing from the start and if we find

some empty spaces, the data will be stored there. This process is called wrap around.

There is a chance that in wrap around, we could not find space and come back to the

143 position. The solution of this problem is to get a larger array. We may want to

create an array of size 1000 or some prime number larger than 500. Then copy all the

data in this new array. This new data may be inserted with the help of linear probing.

The other solution is that we may want to keep multiple arrays. In this case, when one

array is filled we go to the second array.

Let’s see the example of wrap around process. Suppose we want to add cardinal to

this hash table. We will use the above table to insert this data. Also suppose that 148

is the last position of this table. We call the hashCode function as:

hashCode(“cardinal”) = 147

We get the array index as 147. This position is already filled in the table. The data at

this position is bluejay. So we will add 1 to the index and check the 148 position. This

position is also filled. We do not stop here and go back to the start of the array. We

cannot increment the array index further. We will treat the table as circular; after 148

comes 0. Now we will check the position 0. If it is occupied, we will see the position

1 then 2 and so on. We have seen the insert method using the linear probing. Now we

will see the find method.

Suppose we want to find hawk in this hash table. We call the hashCode as:

hashCode(“hawk”) = 143

The table[143] is not empty. However, the data at this position is not hawk. So with

the linear probing procedure, we add 1 to the index and check the 144 position. This

position is also not empty. We compare it with hawk that is true. We use the same

procedure for looking things up in the table as generally done for inserting them.

CS301 – Data Structures Lecture No. 42

Page 465 of 505

Let’s have a look on the delete procedure. If an item is placed in array[hash(key)+4],

the item just before it is deleted. How will probe determine that the “hole” does not

indicate the item is not in the array? We may have three states for each location as:

• Occupied

• Empty (never used)

• Deleted (previously used)

Using the linear probe, we insert data where we get some empty space in the array.

Firstly, we try to insert it at the index position given by the hash function. If it is

occupied, we move to the next position and so on. In this way, we have a chain to

follow. Now if an element of the chain is deleted, how can we know that it was filled

previously. As we have seen in the above example that seagull collided twice before

getting a space in the array. Despite having a hash value of 143, it was stored at 145.

The three locations 143, 144 and 145 have different data values but are a part of a

chain. These three names collide with each other with respect to hash function.

Suppose we delete the 2nd name i.e. hawk due to some reason. Now there are two

names, which collide. A space has been created due to the deletion of hawk. If we try

to search seagull using the linear probing, there will be a hash value of 143. It is filled

but has different data. We move to the next position that is empty. How can linear

probing know that do not stop here because there was some data previously at this

position, which has not been deleted. And there is some data after this position, which

is part of this chain due to the collisions and that data is seagull.

To deal with such situations, we keep three states in our array. 1) It is empty (never

used) and has no data in it. 2) It is filled with some legal data and is occupied and 3) it

had some data which is now deleted and currently it is empty. We will use this state if

we have to go to next position using the linear probing.

One problem with linear probing technique is the tendency to form “clusters”. A

cluster is a group of items not containing any open slots. The bigger a cluster gets, the

more likely the new values will hash into the cluster, and make it even bigger.

Clusters cause efficiency to degrade. Suppose we want to add another bird in our

table. The hash function returns the index as 143. Now we have already three items

that collided at 143. The array locations at 143, 144, 145 are already occupied. So we

will insert this new data at 146 using the linear probing. The data is getting gathered

instead of scattering because linear probing inserts the data in the next position. It

seems as the normal use of the array in which we insert data in the array from first

position then next position and so on. It may depend on our data or our hash function.

This gathering of data is called clustering.

We were trying to store the data in the array in a constant time or in a single step.

Similarly the find and remove methods should be of constant time. That attribute has

now been lost. What should we do now? One of the solutions is quadratic probing.

Quadratic probing uses different formula:

 Use F(i) = i2 (square of i) to resolve collisions

 If hash function resolves to H and a search in cell H is inconclusive, try H +

12, H + 22, H + 32, …

CS301 – Data Structures Lecture No. 42

Page 466 of 505

In the quadratic probing when a collision happens we try to find the empty location at

index + 12. If it is filled then we add 22 and so on. Let’s take the above example. We

want to insert seagull. The hash function generates the value 143 and this location is

already occupied. Now we will start probing. First of all, we add 1 2 in the 143 and

have 144. It is also not empty. Now we will add 2 2 in the 143 and have 147. If it is

also occupied, we will add 32 in 143 and we have 152. The data is now getting

scattered. Unfortunately, there are some problems with quadratic probing also.

Let’s discuss the third solution that we will use the link list for the collision

resolution. Each table position is a linked list. When we are going to insert new data,

we will insert the keys and entries anywhere in the list (front easiest). It is shown in

the below diagram.

4

10

123

On the left side, we have vertical array that contains the pointers in it. When we insert

the first item, we attach a list node. When we have collision, the new item is inserted

in the start of the link list. Suppose an item is stored at position 4 and we have another

data, requiring the position 4. So there is a collision and we will insert the data at the

start of the list.

Let’s compare the link list and open addressing.

key entry key entry

key entry key entry

key entry

CS301 – Data Structures Lecture No. 42

Page 467 of 505

 Advantages over open addressing:

• Simpler insertion and removal

• Array size is not a limitation

 Disadvantage

• Memory overhead is large if entries are small.

The problem in linear probing is that when our array is full what we should do. This

problem can be solved using the link list.

In the next lecture, we will continue our discussion on hashing. We will see an

animation. Hashing is very important methodology and can be used in data structures

besides Table and Dictionary.

CS301 – Data Structures Lecture No. 43

Page 468 of 505

Data Structures

Lecture No. 43

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 5, 7

5.4, 5.5, 5.6, 7.1

Summary

 Hashing Animation

Hashing Animation
In the previous lecture, we discussed about collision strategies in hashing. We studied

three solutions, Linear Probing, Quadratic Probing and Linked List chaining. Hashing

is vast research field, which covers hash functions, storage and collision issues etc. At

the moment, we will see hashing in implementation of table ADT. Operations of

insert, delete and find are performed in constant time using this hashing strategy.

Constant time means the time does not increase with the increase in data volume.

However, if collisions start happening then the time does not remain constant.

Especially if we see linear probing, we had to insert the data by sorting the array

sequentially. Similar was the case with quadratic. In case of linked list, we start

constructing linked list that takes time and memory. But later we will see some

situations where hashing is very useful.

Today, we will study these three strategies of hash implementation using animations.

These animations will be provided to you in a Java program. It is important to

mention here that all the data structures and algorithms we have studied already can

be implemented using any of the languages of C/C++ or Java. However, it is an

important decision to choose the programming language because every language has

its strong area, where it has better application. Java has become very popular because

of its facilities for Internet. As you already know C++, therefore, Java is easy to learn

for you. The syntax is quite similar. If we show you the java code you will say it is

C++.

Let’s see the hashing animation. This animation will be shown in the browser. This is

an applet written in java language. We will see linear probing, quadratic probing and

link list chaining in it. This is an example of how do we solve collision.

We have an array shown in four different columns. The size of the array is 100 and

the index is from 0 to 99. Each element of the array has two locations so we can store

200 elements in it. When we have first collision the program will use the 2 nd part of

the array location. When there is a 2nd collision the data is stored using the linear

probing. At the top right corner we have hash function x and its definition is “mod

Elementary Selection Algorithms

Sorting

When Hashing is Suitable?

Applications of Hashing

 Selection Sort

CS301 – Data Structures Lecture No. 43

Page 469 of 505

100”. That is when a number is passed to it, it will take mod with 100 and return the

result which is used as index of the array.

In this example we are using numbers only and not dealing with the characters. We

also have a statistical table on the right side. This program will generate 100 random

numbers and using the hash function it will store these in the array. The numbers will

be stored in the array at different locations. In the bottom left we have hashing

algorithms. We have chosen the linear probing. Now the program will try to solve this

problem using the linear probing. Press the run button to start it. It is selecting the

numbers randomly, dividing it by 100 and the remainder is the hash value which is

used as array index.

Here we have number 506. It is divided by 100 and the remainder is 6. It means that

this number will be stored at the sixth array location. Similarly we have a number

206, now its remainder is also 6. As location 6 is already occupied so we will store

206 at the 2nd part of the location 6. Now we have the number 806. Its remainder is

also 6. As both the parts of location 6 are occupied. Using the linear probing we will

store it in the next array location i.e. 7. If we have another number having the

remainder as 6, we will store it at the 2nd part of location 7. If we have number 807, its

remainder is 7. The location 7 is already occupied due to the linear probing. Therefore

the number 807 will be stored using the linear probing in the location 8. Now you can

understand how the numbers are stored in the array. You can also see some clustering

effect in it. See the location 63. All the numbers having remainder as 63 are clustered

around location 63.

Let’s change the collision resolution algorithm to quadratic probing. Run the

animation again. Now we have array size as 75 and the array is shown in three

columns. Each location of the array can store two numbers. In quadratic probing we

add square of one first i.e. 1 and then the square of two and so on in case of collisions.

Here we have used a different hash function. We will take the mod with 75. When the

both parts of the array location is filled we will use the quadratic probing to store the

next numbers. Analyze the numbers and see where the collisions have happened.

Lets see the animation using the linked list chaining. Now the hash function uses 50 to

take mod with the numbers. So far pointers are not shown. When both parts of the

location are filled, we will see the link list appearing. We have four numbers having

remainder 0. The two numbers will be stored in the array and the next two will be

stored using the link list which is attached at the 0 location.

We are not covering the hashing topic in much depth here as it is done in algorithms

and analysis of algorithms domain. This domain is not part of this course. For the time

being, we will see the usage of hashing. For certain situations, table ADT can be used,

which internally would be using hashing.

Applications of Hashing
Let’s see few examples of those applications where hashing is highly useful. The

hashing can be applied in table ADT or you can apply hashing using your array to

 Compilers use hash tables to keep track of declared variables (symbol table).

store and retrieve data.

CS301 – Data Structures Lecture No. 43

Page 470 of 505

Compilers use hash tables in order to implement symbol tables. A symbol table is an

important part of compilation process. Compiler puts variables inside symbol table

during this process. Compiler has to keep track of different attributes of variables. The

name of the variable, its type, scope and function name where it is declared etc is put

into the symbol table. If you consider the operations on symbol table, those can be

insertion of variable information, search of a variable information or deletion of a

variable. Two of these insert and find are mostly used operations. You might have

understood already that a variable name will be parameter (or the key) to these

operations. But there is one slight problem that if you named a variable as x outside of

a code block and inside that code block, you declared another variable of the similar

type and name then only name cannot be the key and scope is the only differentiating

factor. Supposing that all the variables inside the program have unique names,

variable name can be used as the key. Compiler will insert the variable information by

calling the insert function and by passing in the variable information. It retrieves the

variable value by passing in the variable name. Well, this exercise is related to your

Compiler Construction course where you will construct you own language compiler.

Another usage of hashing is given below:

 A hash table can be used for on-line spelling checkers — if misspelling detection

(rather than correction) is important, an entire dictionary can be hashed and

You must have used spell checkers in a word processing program like MS Word. That

spell checker finds out mistakes, provides you correct options and prompts you to

choose any of the synonyms. You can also set the correct the words automatically.

Hashing can be used to find the spelling mistakes. For that you first take all the words

from the dictionary of spoken English and construct a hash table of those. To find the

spelling mistakes, you will take first word from the text that is being checked and

compare it with all the words present inside the hash table. If the word is not found in

the hash table then there is a high probability that the word is incorrect, although there

is a low probability that the word is correct but it is not present in the dictionary.

Based on the high probability a message can be displayed to the user of the

application that the word is wrong. MS Word does the same. As far the automatic

correct feature is concerned, it is another algorithm, which we are not going to discuss

here.

Let’s see few more examples in this connection.

 Game playing programs use hash tables to store seen positions, thereby saving

computation time if the position is encountered again.

Normal computer games are graphical, there are positions that are chosen by the

computer or by the player. Consider the game of chess where one player has chosen

one position again. Here we can use the positions of the pieces (64 pieces) at that time

as the key to store it in the hash table. If our program wants to analyze that if a player

has encountered the similar situation before, can pass in the positions of the pieces to

the function find. Inside the function, when the positions are hashed again then the

previously present index is returned, which shows that the similar situation has been

encountered before.

words checked in constant time.

CS301 – Data Structures Lecture No. 43

Page 471 of 505

See another example below:

 Hash functions can be used to quickly check for inequality — if two elements hash

to different values they must be different.

Sometimes in your applications, you don’t want to know which value is smaller or

bigger but you are only interested in knowing if they are equal or not. For this, we can

use hashing. If the two data items don’t collide, then their hash values will be

different. Based on this two values are said to be unequal.

Above was the situation when hashing can be useful. You may like to know in what

circumstances hashing is not a good solution to apply.

When Hashing is Suitable?
 Hash tables are very good if there is a need for many searches in a reasonably

stable table.

We have just seen the excellent example of reasonably stable hash table when we

discussed hash table for English dictionary. We had constructed a hash table of all the

words inside dictionary and were looking for different words in it. So majorly, there

were frequent look up operations and insertions were in very minor frequency.

 Hash tables are not so good if there are many insertions and deletions, or if table

traversals are needed — in this case, AVL trees are better.

In some applications, it is required to frequently read and write data. In these kinds of

applications hash table might not be a good solution, AVL tree might be a good

option. But bear in mind that there are no hard and fast statistics to go for hash table

and then to AVL tree. You have to be a good software engineer to choose relevant

data structure.

 Also, hashing is very slow for any operations which require the entries to be

sorted
o e.g. Find the minimum key

At times, you do other operations of insert, delete and find but additionally, you

require the data in sorted order or the minimum or maximum value. We have

discussed it many times that we insert data in the array of hash table without any sort

order and it is scattered through the array in such a fashion that there are holes in the

array. In these circumstances, the hash table is not useful. You might be remembering

from the animation we saw earlier on in this lecture that there was no real sequence of

filling of array. Some clusters were formed because of collision but there was no

order as such. So hashing is not really useful in these circumstances.

We are finishing with our discussion on hashing. The important thing is how we

thought about one data structure and internally we implemented in six different ways.

You must be remembering that as long as the interface of the data structures remains

the same, different internal implementations does not really matter from the client

perspective. Occasionally, somebody might be interested in knowing the internal

implementation of your data structure because that might be important for him in

order to use your data structure.

CS301 – Data Structures Lecture No. 43

Page 472 of 505

Let’s move on to the next topic of Sorting. It is very vast topic and cannot be covered

in this course thoroughly.

Sorting
Sorting means to put the data in a certain order or sequence. We have discussed

sorting before in different scattered through topics in this course but it has not been

discussed so far as a separate topic. You must be remembering that when we traverse

the binary search tree in in-order way, the obtained data happens to be sorted.

Similarly, we saw other data structures, where we used to keep data in sorted order. In

case of min-heap if we keep on removing elements one by one, we get data in sorted

order.

Sorting is so useful that in 80-90% of computer applications, sorting is there in one

form or the other. Normally, sorting and searching go together. Lot of research has

been done on sorting; you can get lot of stuff on it from different sources. Very

efficient algorithms have already been developed for it. Moreover, a vast

Mathematical analysis has been performed of these algorithms. If you want to expose

yourself, how these analyses are performed and what Mathematical tools and

procedures are employed for performing analysis then sorting is very useful topic for

you.

Sorting Integers
 How to sort integers in this array?

20 8 5 10 7

5 7 8 10 20

Fig 43.1

We want to sort the numbers given in the above array. Apparently, this operation may

seem very simple. But think about it, if you are given a very large volume of data

(may be million of numbers) then you may realize that there has to be an efficient

mechanism to perform this operation. Firstly, let’s put the problem in words:

We have a very large array of numbers. We want to sort the numbers inside the array

in ascending order such that the minimum number of the array will be the first

element of it and the largest element will be the last element at the end of the array.

Let’s go to the algorithms of sorting. Point to be noted here that we are going to study

algorithms of sorting; we are not talking about data structures. Until now, you might

CS301 – Data Structures Lecture No. 43

Page 473 of 505

have realized that algorithms go along data structures. We use a data structure to

contain data and we use algorithms to perform certain operations or actions on that

data.

Elementary Sorting Algorithms
 Selection Sort

 Insertion Sort

 Bubble Sort

These algorithms have been put as elementary because these are very simple. They
will act as our baseline and we will compare them with other algorithms in order to

find a better algorithm.

Selection Sort
 Main idea:

o find the smallest element

o put it in the first position

o find the next smallest element

o put it in the second position
…

 And so on, until you get to the end of the list

This technique is so simple that you might have found it yourself already. You search
the whole array and find the smallest number. The smallest number is put on the first

position of the array while the previous element in this position is moved somewhere

else. Find the second smallest number and then put that number in the second position

in the array, again the previous number in that position is shifted somewhere else. We

keep on performing this activity again and again and eventually we get the array

sorted. This technique is called selection sort because we select elements for their

sorted positions.

In the next lecture, we will see how we can optimize this sorting operation. You read
about sorting in your textbooks and from the Internet.

CS301 – Data Structures Lecture No. 44

Page 474 of 505

Data Structures

Lecture No. 44

Reading Material

Data Structures and Algorithm Analysis in C++ Chapter. 7

Summary

7.1, 7.2

 Selection Sort

o Selection Sort analysis

o Insertion Sort Analysis

o Bubble Sort analysis

 Summary

 N log2 (N) Algorithms

This is the sequel of the previous lecture in which we talked about the sort algorithms.

There are three elementary sorting methods being discussed in this hand out. These

are- selection sort, insertion sort and bubble sort. To begin with, we will talk about the

selection sort algorithm.

Selection Sort
Suppose we have an array with different numbers. For sorting it in an ascending

order, selection sorting will be applied on it in the following manner. We find the

smallest number in the array and bring it to the position 1. We do the same process

with the remaining part of the array and bring the smallest number among the

remaining array to the next position. This process continues till the time all the

positions of the array are filled with the elements. Thus the main idea of selection sort

is that

• find the smallest element

• put it in the first position

• find the next smallest element in the remaining elements

• put it in the second position

• …

• And so on, until we get to the end of the array

Let’s understand this algorithm by considering an example with the help of figures.

Consider an array that has four numbers i.e. 19, 5, 7 and 12 respectively. Now we

want to sort this array in ascending order. To sort the array, selection algorithm will

be applied on it.

Bubble Sort

 Insertion Sort

CS301 – Data Structures Lecture No. 44

Page 475 of 505

5 7 12 19

5 7 12 19

2

Figure 44.1: Selection Sort

The above pictorial representation explains the selection sort. It describes that at the

start, we begin the search for the smallest number from the first position of the array

i.e. from the index zero. We find that 5 is the smallest number and bring it to the first

position i.e. index 0. Later, number 19 is put at the position that was occupied by

number 5. Thus in a sense, we swap these numbers. Now 5, the smallest number in

the array, has come at its final position i.e. index 0.

As index 0 has the proper number, so we start our search from position 2 i.e. index 1.

Now we look at the remaining elements 19, 7, 12 and find the smallest number among

them. Here 7 is the smallest so we change its position with 19 to bring 7 at its

position. Thus 5 and 7 have come at their final positions. Now there are two elements

are left behind i.e. 12 and 19. We search the smallest among these and find that 12 is

the smallest. So we swap it with 19 to bring it at index 2 i.e. its final position. Now

there is last element remaining and obviously it is at its position as there is no element

to compare with it. The array is now in the sorted form with ascending numbers.

The point to remember in the selection search is that at the beginning, we start search

for the smallest number from index 0 (i.e. first position). After it we start search from

the index 1 (i.e. position 2). After each search one number gets its final position so we

start the next search from the next position to it. Thus we do the multiple passes of the

array to sort it. First, we pass through the n elements of the array and search the n-1

elements and then n-2. Thus at last, we come to the single and last element of the

array.

Now let’s see the code of this algorithm in C++.

void selectionSort(int *arr, int N)

a 19 5 7 12

 0 1 2 3

a 5 19 7 12

 0 1 2 3

a 5 7 19 12

 0 1 2 3

a

 0 1 2 3

 a

 0 1 3

CS301 – Data Structures Lecture No. 44

Page 476 of 505

{

int posmin, count, tmp ;

for (count=0;count<N;count++)

{

N) ;

}

}

posmin = findIndexMin(arr, count,

tmp=arr[posmin] ;

arr[posmin]=arr[count] ;

arr[count]=tmp ;

int findIndexMin (int *arr, int start, int N)

{

int posmin=start ;

int index ;

for(index=start; index < N; index++)

if (arr[index]<arr[posmin])

posmin=index ;

return posmin ;

}

In the above code, we write the function selectionSort. This function takes an array of

integers as *arr and the size of array as N. There are local variables declared in

function as posmin, count and tmp. Then there is a ‘for loop’ that starts from zero and

goes to N-1. This is due to the fact that the index of array of N elements is from zero

to N-1. The condition count < N indicates that loop will execute as long as count is

less than N and will exit when count gets N. Now in the loop, we calculate the posmin

with a function i.e. findIndexMin. This findIndexMin method is written below in the

code. This routine or method works in the way that we pass to it the whole array i.e.

arr, the value of count (what it is in that execution of loop) and size of the array i.e. N.

This routine starts the search from the index equal to value of count and goes to Nth

position, returning the position of the minimum (smallest) element. Now in the first

routine, we get this position value in the variable posmin. Thus the code line:

posmin = findIndexMin(arr, count, N) ;

gets the position of the smallest number returned by the method findIndexMin in the

variable posmin. After finding this position, we do the swapping of this posmin with
the count position. Thus we put the value of position posmin in the count position.

The findIndexMin routine is such that it takes arr, start and N as arguments. It starts

searching from the start position in the for loop, finds the position of the minimum

value and returns that position.

This sorting algorithm is also known as the in-place sorting algorithm as there is no

need of additional storage to carry out this sorting. The pictorial representation of the

swap action of this algorithm will be as under:

We want to sort the following array that has five elements. We start the search from

CS301 – Data Structures Lecture No. 44

Page 477 of 505

the first element and find that the smallest element is 5. As we have started our search

from index 0 (that is the count in our above code) so we swap 5 with the value at

index 0 i.e. 20. After this swap, 5comes at the position of 20 while 20 goes to the

position of 5. Afterwards, we start the search from index 1. We find that 7 is the

smallest number among the remaining elements. It swaps its position with 8. After

this, in the remaining three elements, 8 is the smallest. This number 8 swaps its

position with 20. At the end, 10 is the smallest number among 10 and 20. So there is

no need of swapping as 10 has already got its position.

20 8 5 10 7

5 8 20 10 7

5 7 20 10 8

5 7 8 10 20

5 7 8 10 20

Figure 44.2: Swap Action (selection sorting)

Selection Sort Analysis
We have seen in the code for the algorithm that there are two loops. The loop in the

selectionSort method passes the array to search the smallest element and the second

loop that is in the findIndexMin method finds the position (index) of the smallest

value. To find the first smallest element, we have to go through the N elements of the

array. For the purpose of finding the second smallest element, we have to search the

N-1 elements. During this search process, we have to find two elements for the second

last smallest element. And obviously in the end, there is one element that is at its

proper position, necessitating no search. We have to do all these searches. These are

N, N-1, N-2 ……2, 1 for the first, second, third ……second last and last element

respectively. Now if we want to find the total searches, the addition of all these

searches together will help us get a sum total as given in the following equation.

Total searches = 1 + 2 + 3 + …….+ (N-2) + (N-1) + N

= N (N+1) / 2

= (N2 + N) / 2

CS301 – Data Structures Lecture No. 44

Page 478 of 505

Suppose if N is 10, then according to this formula, the total searches will be (100 +

10) / 2 i.e. 55. If N is 100, the total searches will be (10000 + 100) / 2 i.e. 5050.

Similarly if N is 1 million, N2 is going to be very large as compared to N. Thus there

we can ignore N and can say that the time (total searches) is proportional to N2.

This means that larger the N, greater will be the performance of selection with

respect to N2.

Insertion Sort
The main idea of insertion sort is

• Start by considering the first two elements of the array data. If found

out of order, swap them

• Consider the third element; insert it into the proper position among the

first three elements.

• Consider the fourth element; insert it into the proper position among

the first four elements.

• … …

This algorithm is not something uncommon to the persons who know card playing. In

the game of cards, a player gets 13 cards. He keeps them in the sorted order in his

hand for his ease. A player looks at the first two cards, sorts them and keeps the

smaller card first and then the second. Suppose that two cards were 9 and 8, the player

swap them and keep 8 before 9. Now he takes the third card. Suppose, it is 10, then it

is in its position. If this card is of number 2, the player will pick it up and put it on the

start of the cards. Then he looks at the fourth card and inserts it in the first three cards

(that he has sorted) at a proper place. He repeats the same process with all the cards

and finally gets the cards in a sorted order. Thus in this algorithm, we keep the left

part of the array sorted and take element from the right and insert it in the left part at

its proper place. Due to this process of insertion, it is called insertion sorting.

Let’s consider the array that we have used in the selection sort and sort it now with

the insertion sorting. The following figure shows the insertion sort of the array

pictorially.

CS301 – Data Structures Lecture No. 44

Page 479 of 505

a 19 12 5 7

 0 1 2 3

a 12 19 5 7

 0 1 2 3

a 5 12 19 7

 0 1 2 3

a 5 7 12 19

 0 1 2 3

Figure 44.3: Insertion Sort

The array consists of the elements 19, 12, 5 and 7. We take the first two numbers i.e.

19 and 12. As we see 12 is less than 19, so we swap their positions. Thus 12 comes at

index 0 and 19 goes to index 1. Now we pick the third number i.e. 5. We have to find

the position of this number by comparing it with the two already sorted numbers.

These numbers are 12 and 19. We see that 5 is smaller than these two. So it should

come before these two numbers. Thus the proper position of 5 is index 0. To insert it

at index 0, we shift the numbers 12 and 19 before inserting 5 at index 0. Thus 5 has

come at its position. Now we pick the number 7 and find its position between 5 and

12. To insert 7 after 5 and before 12, we have to shift the numbers 12 and 19 to the

right. After this shifting, we put number 7 at its position. Now the whole array has

been sorted so the process stops here.

Following is the code of the insertion sort in C++.

void insertionSort(int *arr, int N)

{
int pos, count, val;

for(count=1; count < N; count++)

{

pos--)

val = arr[count];

for(pos=count-1; pos >= 0;

if (arr[pos] > val)

arr[pos+1]=arr[pos];

else break;

arr[pos+1] = val;

}

}

CS301 – Data Structures Lecture No. 44

Page 480 of 505

In this sorting function, we start the process from index 0 and 1 and swap them.

Afterwards, we go to the third position and put it into its proper position. While

inserting a number in the sorted portion of the array, we have to shift the elements.

This shifting is an additional overhead of this sorting algorithm. Due to this shifting,

the sorting requires more time. This algorithm is also an in place algorithm as we

don’t need any additional storage. At the most, we need some variables of local

nature, normally used in programs.

From the above code, we see that the name of this sorting routine is insertionSort. It

takes an array and its size as arguments. There are local variables pos, count and val

declared in this function. After this there is a for loop that starts from the count having

value equal to 1. Now we put the value of count index (i.e. arr[count]) in variable val.

This value has to find its place in the left sorted portion of the array. To find that

position we have to execute one more for loop. This loop starts from count-1 and goes

to down to zero. In the body of the loop we compare the value of val with the value at

current position in the array i.e. arr[pos]. If val is less than the arr[pos] i.e. value at

current index. It means that the val has to go to the left position of arr[pos].So we

shift the arr[pos] to right to create place for the new value i.e. val. When the loop

exits, we put this value val at arr[pos + 1]. Thus we have inserted the number in the

array at its proper position.

Following is the step by step explanation for the insertion sort of the above example

with same previous array.

First of all we take the first two elements 19 and 12. As 12 is less than 19, we do right

shift on 19. And put 12 at its position i.e. index 0. Afterwards, we go to index 2. There

is 5 at this position. As we see that 5 is less than the other elements on the left side of

array, it has to come at the first position. To bring 5 to first position, the number 12

and 19 has to be shifted to right. After this shifting, the position of index 0 becomes

empty and we put 5 there. Finally, there is number 7. The position of 7 will be

between 5 and 12. For this, we have to shift 12 and 19 towards right so that the place

for 7 could be created. We put 7 at that place. Thus the array is sorted now.

Insertion Sort Analysis
Let’s analyze that when the value of N increases. How much time for insertion sort

increases? In the code of insertion sort, we have seen that there are outer and inner

loops. Due to these two loops, we can understand that it is also like N 2 algorithm. In

the sort process, there may be a situation that every iteration inserts an element at the

start of the array by shifting all sorted elements along. Now if we have to bring the

second element to its position, there will be need of shifting the first element. This

means that we have to shift one element. Similarly, for placing the third element at the

start position (we are discussing the worst case scenario in which at every iteration the

element has to go to the first position), we have to shift two elements. Thus we sum

up all the shiftings, the total becomes 2 + 3 + 4 +……. + N-1 + N.

The summation can be written as follows.

Total = (2 + N) (N -1) / 2

= O (N2)

From this expression, we see that when the value of N increases, the value of N2 will

dominate. It will increase significantly with respect to N. Thus we see that insertion

CS301 – Data Structures Lecture No. 44

Page 481 of 505

sort is also an N2 algorithm like selection sort.

Bubble Sort
The third sorting algorithm is bubble sort. The basic idea of this algorithm is that we

bring the smaller elements upward in the array step by step and as a result, the larger

elements go downward. If we think about array as a vertical one, we do bubble sort.

The smaller elements come upward and the larger elements go downward in the array.

Thus it seems a bubbling phenomenon. Due to this bubbling nature, this is called the

bubble sort. Thus the basic idea is that the lighter bubbles (smaller numbers) rise to

the top. This is for the sorting in ascending order. We can do this in the reverse order

for the descending order.

The steps in the bubble sort can be described as below

• Exchange neighboring items until the largest item reaches the end of

the array

• Repeat the above step for the rest of the array

In this sort algorithm, we do not search the array for the smallest number like in the

other two algorithms. Also we do not insert the element by shifting the other

elements. In this algorithm, we do pair-wise swapping. We will take first the elements

and swap the smaller with the larger number. Then we do the swap between the next

pair. By repeating this process, the larger number will be going to the end of the array

and smaller elements come to the start of the array.

Let’s try to understand this phenomenon with the help of figures how bubble sort

works. Consider the same previous array that has elements 19, 12, 5 and 7.

a: a:

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

a:

0 1 2 3

First of all, we compare the first pair i.e. 19 and 5. As 5 is less than 19, we swap these

19 5 12 7

5 12 7 19

5 19 12 7

5 7 12 19

5 7 12 19

5 12 19 7

5 7 12 19

5 12 7 19

5 7 12 19

5 12 7 19

CS301 – Data Structures Lecture No. 44

Page 482 of 505

elements. Now 5 is at its place and we take the next pair. This pair is 19, 12 and not

12, 7. In this pair 12 is less than 19, we swap 12 and 19. After this, the next pair is 19,

7. Here 7 is less than 19 so we swap it. Now 7 is at its place as compared to 19 but it

is not at its final position. The element 19 is at its final position. Now we repeat the

pair wise swapping on the array from index 0 to 2 as the value at index 3 is at its

position. So we compare 5 and 12. As 5 is less than 12 so it is at its place (that is

before 12) and we need not to swap them. Now we take the next pair that is 12 and 7.

In this pair, 7 is less than 12 so we swap these elements. Now 7 is at its position with

respect to the pair 12 and 7. Thus we have sorted the array up to index 2 as 12 is now

at its final position. The element 19 is already at its final position. Note that here in

the bubble sort, we are not using additional storage (array). Rather, we are replacing

the elements in the same array. Thus bubble sort is also an in place algorithm. Now as

index 2 and 3 have their final values, we do the swap process up to the index 1. Here,

the first pair is 5 and 7 and in this pair, we need no swapping as 5 is less than 7 and is

at its position (i.e. before 7). Thus 7 is also at its final position and the array is sorted.

Following is the code of bubble sort algorithm in C++.

void bubbleSort(int *arr, int N)

{
int i, temp, bound = N-1;

int swapped = 1;

while (swapped > 0)

{

swapped = 0;

for(i=0; i < bound; i++)

if (arr[i] > arr[i+1])

{

temp = arr[i];

arr[i] = arr[i+1];

arr[i+1] = temp;

swapped = i;
}

bound = swapped;

}

}

In line with the previous two sort methods, the bubbleSort method also takes an array

and size of the array as arguments. There is i, temp, bound and swapped variables

declared in the function. We initialize the variable bound with N–1. This N-1 is our

upper limit for the swapping process. The outer loop that is the while loop executes as

long as swapping is being done. In the loop, we initialize the swapped variable with

zero. When it is not changed in the for loop, it means that the array is now in sorted

form and we exit the loop. The inner for loop executes from zero to bound-1. In this

loop, the if statement compares the value at index i and i+1. If I (element on left side

in the array) is greater than the element at i+1 (element on right side in the array) then

we swap these elements. We assign the value of i to the swapped variable that being

greater than zero indicates that swapping has been done. Then after the for loop, we

put the value of swapped variable in the bound to know that up to this index,

swapping has taken place. After the for loop, if the value of swapped is not zero, the

CS301 – Data Structures Lecture No. 44

Page 483 of 505

while loop will continue execution. Thus the while loop will continue till the time, the

swapping is taking place.

Now let’s see the time complexity of bubble sort algorithm.

Bubble Sort Analysis

In this algorithm, we see that there is an outer loop and an inner loop in the code. The

outer loop executes N times, as it has to pass through the whole array. Then the inner

loop executes for N times at first, then for N-1 and for N-2 times. Thus its range

decreases with each of the iteration of the outer loop. In the first iteration, we do the

swapping up to N elements. And as a result the largest elements come at the last

position. The next iteration passes through the N-1 elements. Thus the part of the

array in which swapping is being done decreases after iteration. At the end, there

remains only one element where no swapping is required. Now if we sum up these

iterations i.e. 1 + 2 + 3 + ……… + N-1 + N. Then this summation becomes N (1 + N)

/ 2 = O (N2). Thus in this equation, the term N2 dominates as the value of N increases.

It becomes ignorable as compared to N2. Thus when the value of N increases, the time

complexity of this algorithm increases proportional to N2.

Summary
Now considering the above three algorithms, we see that these algorithms are easy to

understand. Coding for these algorithms is also easy. These three algorithms are in

place algorithms. There is no need of extra storage for sorting an array by these

algorithms. With respect to the time complexity, these algorithms are proportional to

N2. Here N is the number of elements. So we can see that as the value of N increases,

the performance time of these algorithms increases considerably as it is proportional

to N2. Thus these algorithms are expensive with respect to time performance. There

are algorithms that have the time complexity proportional to N log2 (N). The

following table shows the respective values of N2 and N log2(N) for some values of N.

N N2
N Log2 (N)

10 100 33.21

100 10000 664.38

1000 1000000 9965.78

10000 100000000 132877.12

100000 10000000000 1660964.04

1000000 1E+12 19931568.57

From this table we can see that for a particular value of N, the value of N2 is very

large as compared to the value of N log2 (N). Thus we see that the algorithms whose

time complexity is proportional to N2 are much time consuming as compared to the

algorithms the time complexity of which is proportional to N log2 (N). Thus we see

that the N log2 (N) algorithms are better than the N2 algorithms.

N log2 (N) Algorithms
Now let’s see the algorithms that are N log2 (N) algorithms. These include the

following algorithms.

CS301 – Data Structures Lecture No. 44

Page 484 of 505

These three algorithms fall under ‘divide and conquer category’. The divide and

conquer strategy is well known in wars. The philosophy of this strategy is ,’ divide

your enemy into parts and then conquer these parts’. To conquer these parts is easy, as

these parts cannot resist or react like a big united enemy. The same philosophy is

applied in the above algorithms. To understand the divide and conquer strategy in

sorting algorithm, let’s consider an example. Suppose we have an unsorted array of

numbers is given below.

10 12 8 4 2 11 7 5

Now we split this array into two parts shown in the following figure.

10 12 8 4 2 11 7 5

Now we have two parts of the array. We sort these parts separately. Suppose we sort

these parts with an elementary sort algorithm. These parts may be sorted in the

following manner.

4 8 10 12 2 5 7 11

After this we merge these two parts and get the sorted array as shown below.

2 4 5 7 8 10 11 12

 Heap Sort

 Quick Sort

 Merge Sort

CS301 – Data Structures Lecture No. 45

Page 485 of 505

Data Structures

Lecture No. 45

Reading Material
Data Structures and Algorithm Analysis in C++ Chapter. 7

7.6,

7.7

Summary

Divide and Conquer
In the previous lecture, we had started discussing three new sorting algorithms; merge
sort, quick sort and heap sort. All of these three algorithms take time proportional to

nlog2n. Our elementary three sorting algorithms were taking n2 time; therefore, these

new algorithms with nlog2n time are faster. In search operation, we were trying to

reduce the time from n to log2n.

Let’s discuss these sorting algorithms; merge sort, quick sort and heap sort in detail.

We had started our discussion from divide and conquer rule where we also saw an

example. Instead of sorting a whole array, we will divide it in two parts, each part is

sorted separately and then they are merged into a single array.

S p lit th e lis t in to tw o p a rts

10 12 8 4 2 11 7 5

S o r t th e tw o p a r ts

4 8 10 12 2 5 7 11

M e rg e the tw o pa r ts to g et her

4 8 10 12 2 5 7 11

Fig 4 5 .1

Quicksort

Mergesort Analysis

Mergesort and Linked Lists

mergeArrays

Mergesort

Divide and Conquer

 Course Overview

CS301 – Data Structures Lecture No. 45

Page 486 of 505

Let’ see few analysis to confirm the usefulness of the divide and conquer technique.

 To sort the halves approximate time is (n/2)2+(n/2)2

 To merge the two halves approximate time is n

 So, for n=100, divide and conquer takes approximately:

= (100/2)2 + (100/2)2 + 100

= 2500 + 2500 + 100

= 5100

We know that elementary three sorting algorithms were taking approximately n2 time.

Suppose we are using insertion sort of those elementary algorithms. We divide the list

into two halves then the time will be approximately (n/2)2+(n/2)2. The time required

for merging operation is approximately n. This operation contains a simple loop that
goes to n.

Suppose that n is 100. Considering if we apply insertion sort algorithm on it then the

time taken will be approximately (100)2 = 10000. Now, if we apply divide and

conquer technique on it. Then for first half approximate time will be (100/2)2.

Similarly for second half it will be (100/2)2. The merging approximate time will be

100. So the whole operation of sorting using this divide and conquer technique in

insertion sort will take around (100/2)2 + (100/2)2+100 = 5100. Clearly the time

spent (5100) after applying divide and conquer mechanism is significantly lesser than

the previous time (10000). It is reduced approximately to half of the previous time.

This example shows the usefulness of divide and conquer technique.

By looking at the benefit after dividing the list into two halves, some further questions

arise:

 Why not divide the halves in half?

 The quarters in half?

 And so on . . .

 When should we stop?

At n = 1

So we stop subdividing the list when we reach to the single element level. This divide

and conquer strategy is not a thing, we have already prepared binary search tree on the

same lines. One side of the tree contains the greater elements than the root and other

part contains the smaller elements. Especially, when performing binary search in an

array, we had started our search from mid of it. Subdivided the array and kept on

comparing and dividing the array until we got success or failure. The subdivision

process may prolong to individual element of the array.

CS301 – Data Structures Lecture No. 45

Page 487 of 505

Recall Binary Search

Fig 45.2

Hence, we used to perform binary search on the same lines of divide and conquer

strategy. Remember, we applied binary search on sorted array. From this one can

realize that sorting facilitates in searching operations.

Sort

Sort Sort

Sort Sort Sort

Fig 45.3

Sort

In figure 45.3, in order to sort the list, we have divided the list in the two parts and

each part is subdivided into further subparts. At end each part is consisting of either

single element or maximum two elements. If we have two numbers to sort, we can

compare them (or sort them) with single if statement. After sorting individual

subparts, we start merging them in the upward direction as shown in the figure Fig

45.4.

Fig 45.4

In Fig 45.4, we have four sorted smaller parts. We combine them to become two

sorted parts and two sorted parts are further combined or merged to become one

Search

Search

Search

Combine

Combine Combine

CS301 – Data Structures Lecture No. 45

Page 488 of 505

sorted list.

Mergesort

Let’s see the mergsort algorithm, how does that work.

 The mergesort algorithm involves three steps:

o If the number of items to sort is 0 or 1, return

o Recursively sort the first and second halves separately
o Merge the two sorted halves into a sorted groupIf the data is consisting

of 0 or 1 element then there is nothing required to be done further. If the number of
elements is greater than 1 then apply divide and conquer strategy in order to sort

them. Divide the list into two halves and sort them separately using recursion. After
the halves (subparts) have been sorted, merge them together to get a list of sorted

elements.

We will discuss recursive sorting in a moment, before that let’s see the merging

operation using pictures. We have two sorted array and another empty array whose

size is equal to the sum of sizes of two sorted arrays.

2

Fig 45.5

You can see from Fig 45.5, array 1 on the top left is containing 4 elements, top right is

also containing 4 elements and both of them are sorted internally. Third array is

containing 4+4 = 8 elements.

Initially, very first elements (present at the starting index 0 of array) of both the arrays

are compared and the smaller of them is placed in the initial position of the third

array. You can see from Fig 45.5 that elements 4 and 2 are compared pointed to by

the indexes (actually arrays current indexes). The smaller of them is 2, therefore, it is

placed in the initial position in the third array. A pointer (the current index of array) is

also shown for third array that will move forward as the array is filled in. The smaller

number was from right array, therefore, its pointer is moved forward one position as

shown in Fig 45.6.

 Mergesort can be implemented recursively

 Then merges the two sorted halves together

 Mergesorts the two halves

 It splits the list in half

4 8 10 12

2 5 7 11

 Mergesort is a divide and conquer algorithm that does exactly that.

CS301 – Data Structures Lecture No. 45

Page 489 of 505

2 4

Fig 45.6

This time the numbers at current positions in both the arrays are compared. As 4 is

smaller of the two numbers, therefore, it is put in the third array and third array’s

pointer is moved one position forward. Also because this time, the number has been

chosen from left array, therefore, its pointer is also moved forward. The updated

figure is shown in Fig 45.7.

2 4 5

Fig 45.7

Next, numbers 8 and 5 are compared. As 5 is smaller of the two, it is put in the third

array. The changed positions of pointers and the next comparison are shown in Fig

45.8.

2 4 5 7

Fig 45.8

Fig 45.9 has showed the situation after next comparison done in the similar manner.

2 5 7 11

4 8 10 12

4 8 10 12

2 5 7 11

4 8 10 12

2 5 7 11

CS301 – Data Structures Lecture No. 45

Page 490 of 505

2 4 5 7

Fig 45.9

By now, you must have understood how the merging operation works. Remember, we

do merging when we have two parts sorted already.

Consider this operation in terms of time and complexity. It is performed using a

simple loop that manipulates three arrays. An index is used for first array, which starts

from the initial position to the size of the array. Similar an index is used for second

array, which starts from the initial position and ends at the end of the array. A third

index is used for third array that sizes to the sum of the maximum values of both

previous indexes. This is simple single loop operation, which is not complex.

Now, let’s see sorting using recursion now pictorially.

Split the list in half. Mergesort the left half.

10 4 8 12 11 2 7 5

Split the list in half. Mergesort the left half.

10 4 8 12

Split the list in half. Mergesort the left half.

Mergesort the right.

Fig 45.10

At the top of Fig 45.10 is an array, which is not sorted. In order to sort it using

recursive mechanism, we divide the array into two parts logically. Only logical

partitions of the array are required bases on size and index of the arrays. The left half

of the array containing 10,4,8 and 12 is processed further for sorting. So actually,

while calling the mergesort algorithm recursively, only that particular half of the array

2 5 7 11

4 8 10 12

4 10

10 4

CS301 – Data Structures Lecture No. 45

Page 491 of 505

is a passed as an argument. This is spitted further into two parts; 10, 4 and 8, 12. 10, 4

half is processed further by calling the mergesort recursively and we get both

numbers 10 and 4 as separate halves. Now these halves are numbers and they cannot

be subdivided therefore recursive call to mergesort will stop here. These numbers

(new halves) 10 and 4 are sorted individually, so they are merged. When they are

merged, they become as 4,10 as shown in Fig 45.11.

10 4 8 12 11 2 7 5

10 4 8 12

Mergesort the right half. Merge the two halves.

Merge the two halves.

Fig 45.11

The recursive call to mergesort has done its work for left half that consisted of 10 and

4. Now, we apply the same technique (the recursive calls to mergesort) to the right

half that was consisting of 8 and 12. 8 and 12 are spitted into separate numbers as

indicated in Fig 45.11. Further division of them is not possible, therefore, they are

merged as shown in Fig 45.12.

10 4 8 12 11 2 7 5

Merge the two halves.

4 8 10 12

Mergesort the right half. Merge the two halves.

Fig 45.12

12 8

10 4 12 8

10 4 12 8

CS301 – Data Structures Lecture No. 45

Page 492 of 505

At this point in time, we have two parts one is containing elements as 4, 10 and other

as 8, 12. These two parts are merged. The merged half is shown in Fig 45.12. Note

that it is completely sorted as 4,8,10 and 12. This completes the operation on the left

half of the array. We do similar process with the right half now, which is consisting of

11, 2, 7 and 5.

Mergesort the right half.

10 4 8 12 11 2 7 5

Fig 45.13

Similarly, left half of it 11,2 is processed recursively. It is divided into two halves and

we have two parts as two individual numbers. The recursive call for this part stops

here and the merging process starts. When the parts 11 and 2 are merged, they

become one sorted part as shown in Fig 45.14.

Mergesort the right half.

10 4 8 12 11 2 7 5

Fig 45.14

4 8 10 12

11 2 7 5

4 8 10 12

11 2 7 5

2 11

11 2

11 2

CS301 – Data Structures Lecture No. 45

Page 493 of 505

Now the same procedure is applied on right half consisting of 7 and 5. By applying

recursive mechanism, it is further subdivided into two individual number parts.

Mergesort the right half.

10 4 8 12 11 2 7 5

Fig 45.15

The merging operation starts, the resultant is shown in the Fig 45.16. After merging,

the new part has become 5,7.

Mergesort the right half.

10 4 8 12 11 2 7 5

Fig 45.16

When 5,7 merged part is further merged with already merged part 2,11. The new half

4 8 10 12

11 2 7 5

4 8 10 12

11 2 7 5

11 2 5 7

7 5

11 2 7 5

CS301 – Data Structures Lecture No. 45

Page 494 of 505

becomes as 2,5,7,and 11 as shown in Fig 45.17.

Mergesort the right half.

10 4 8 12 11 2 7 5

Fig 45.17

Now, we can merge the two biggest halves to get the array in sorted order. After

merging, the resulted sorted array is shown in Fig 45.18.

Merge the two halves.

2 4 5 7 8 10 11 12

Fig 45.18

Let’s see the C++ code for this sorting algorithm. We are not going to write a class of

it but at the moment, we are only writing it as a procedure. We can use it standalone

or later on, we can also change it to make it a class member.

void mergeSort(float array[], int size)

{

int * tmpArrayPtr = new int[size];

if (tmpArrayPtr != NULL)

mergeSortRec(array, size, tmpArrayPtr);

else

{

}

cout << “Not enough memory to sort list.\n”);

return;

delete [] tmpArrayPtr;

}

void mergeSortRec(int array[], int size, int tmp[])

{

int i;

int mid = size/2;

if (size > 1)

{

4 8 10 12

2 5 7 11

CS301 – Data Structures Lecture No. 45

Page 495 of 505

mergeSortRec(array, mid, tmp);

mergeSortRec(array+mid, size-mid, tmp);

mergeArrays(array, mid, array+mid, size-mid, tmp);

for (i = 0; i < size; i++)

array[i] = tmp[i];

}

}

The name of the procedure is mergeSort, it is accepting first argument as an array of

floats and as second argument as an int. The second parameter is containing the size

of the array. Inside the function, we have created a temporary array tmpArrayPtr

dynamically of the same size as the size passed in the second argument. This array

will be used for merging operation. In the next if statement if (tmpArrayPtr !=

NULL), allocation for dynamic array is being checked, if it is allocated then another

function mergeSortRec is called. Its first argument is float’s array array , second

argument is int size, and third argument is tmpArrayPtr.

In mergeSortRec, we divided the size of the array by 2 to get the mid of the array. If

the size of the array is greater than 1 then inside the if-statement, mergeSortRec is

being called recursively two times. In first recursive call, mergeSortRec(array, mid,

tmp); we provided the array from index 0 to mid. For second recursive call,

mergeSortRec(array+mid, size-mid, tmp);we provided the array starting from one

position ahead of mid position to the end of the array, however, the size of the passed

array is size-mid. The first recursive call will keep on executing by further subdividing

the left part of the half every time until the size of the array reduces to 1. Similarly,

the second recursive call keeps on working on the right half of the array until the size

of the array reduces to 1. After both of these recursive calls will be completed then the

merging operation is performed by calling mergeArrays. At end, inside the for loop,

the sorted data is copied from tmp array to the actual array array.

mergeArrays
Let’s see the merging of two array while using their indexes as i and j.

a: b:

aSize: 5 bSize: 6

tmp:

Fig 45.19

We are doing the same operation of merging of arrays but with little more detail here.

One the left is an array a consisting of 2,5,15,28 and 30 and on the right is another

array b consisting of 6,10,14,22,43 and 50. The size of array a is 6 while b’s size is 6.

We create a temporary array named tmp, whose size is 11. We have used indexes i, j

and k for arrays a, b and tmp respectively and each one of them has been initialized

with 0.

3 5 15 28 30

6 10 14 22 43 50

CS301 – Data Structures Lecture No. 45

Page 496 of 505

a:

i = 0

b:

j = 0

tmp:

k = 0

Fig 45.20

We compare the initial elements 3 and 6 of the arrays a and b. As 3 is smaller than 6,

therefore, it is put in the temporary array tmp’s starting location where k=0.

a:

i = 0

b:

j = 0

tmp:

k = 0

Fig 45.21

i is incremented and now elements 5 and 6 are compared. 5 being smaller of these

take the place in the tmp array as shown in Fig 45.22.

a:

i = 1

b:

j = 0

tmp:

k = 1

Fig 45.22

i is incremented again and it reaches the element 15. Now, elements 15 and 6 are

compared. Obviously 6 is smaller than 15, therefore, 6 will take the place in the tmp

array as shown in Fig 45.23.

3 5 15 28 30

6 10 14 22 43 50

3 5 15 28 30

6 10 14 22 43 50

3

3 5 15 28 30

6 10 14 22 43 50

3 5

CS301 – Data Structures Lecture No. 45

Page 497 of 505

a:

i = 2

b:

j = 0

tmp:

k = 2

Fig 45.23

Because this time the element was taken from right array with index j, therefore, this

time index j will be incremented. Keep an eye on the index k that is increasing after

every iteration. So this time, the comparison is made between 15 and 10. 10 being

smaller will take the place in tmp array as shown in Fig 45.24.

a: b:

i = 2 j = 1

tmp:

k = 3

Fig 45.24

Again, j will be incremented because last element was chosen from this array.

Elements 15 and 14 are compared. Because 14 smaller, so it is moved to tmp array in

the next position.

a:

i = 2

b:

j = 2

tmp:

k = 4

Fig 45.25

With these movements, the value of k is increasing after each iteration. Next, 22 is

compared with 15, 15 being smaller of two is put into the tmp array as shown in Fig

45.26.

3 5 15 28 30

6 10 14 22 43 50

3 5 6

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14

CS301 – Data Structures Lecture No. 45

Page 498 of 505

a:

i = 2

b:

j = 3

tmp:

k = 5

Fig 45.26

By now , you must have understood how this is working, let’s see the next iterations

pictures below:

a:

i = 3

b:

j = 3

tmp:

k = 6

Fig 45.27

a:

i = 3

b:

j = 4

tmp:

k = 7

Fig 45.28

a:

i = 4

b:

j = 4

tmp:

k = 8

Fig 45.29

Note that array a is all used up now, so the comparison operation will end here. All

the remaining elements of array b are incorporated in tmp array straightaway as

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14 15

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14 15 22

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14 15 22 28

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14 15 22 28 30

CS301 – Data Structures Lecture No. 45

Page 499 of 505

shown in Fig 45.30. Hence, we have the resultant merged array tmp as shown in the

figure.

a:

i = 5

b:

j = 4

tmp:

k = 9

Fig 45.30

Mergesort and Linked Lists
Merge sort works with arrays as well as linked lists. Now we see, how a linked list is

sorted. Suppose we have a singly linked list as shown in figure Fig 45.31. We can

divide the list into two halves as we are aware of the size of the linked list. Each half

is processed recursively for sorting. Both of the sorted resultant halves are merged

together.

Fig 45.31

Mergesort Analysis
As you have seen, we used an additional temporary array while performing the

merging operation. At the end of the merging operation, elements are copied from

temporary array to the original array. The merge sort algorithm is not an inplace

sorting algorithm because it requires an additional temporary array of the same size as

the size of the array under process for sorting. This algorithm is still a good sorting

algorithm, we see this fact from its analysis.

Sort Sort

Merge

Done.

3 5 15 28 30

6 10 14 22 43 50

3 5 6 10 14 15 22 28 30 43 50

CS301 – Data Structures Lecture No. 45

Page 500 of 505

Merging the two lists of size n /2:

O(n)

Merging the four lists of size n/4:

O(n)

.

.
Merging the n lists of size 1:

.

O(n)

O(log2n)

times

Fig 45.32

 Mergesort is O(n log2 n)

 Space?

 The other sorts we have looked at (insertion, selection) are in-place (only require

a constant amount of extra space)

 Mergesort requires O(n) extra space for merging

As shown in Fig 45.32, the array has been divided into two halves. We know that

merging operation time is proportional to n, as it is done in a single loop regardless of

the number of equal parts of the original array. We also know that this dividing the

array into halves is similar mechanism as we do in a binary tree and a complete or

perfect balance tree has log2n number of levels. Because of these two factors, the

merge sort algorithm is called nlog2n algorithm. Now, let’s discuss about quick sort

algorithm, which is not only an nlog2n algorithm but also an inplace algorithm. As

you might have guessed, we don’t need an additional array while using this algorithm.

CS301 – Data Structures Lecture No. 45

Page 501 of 505

Quicksort
 Quicksort is another divide and conquer algorithm.

 Quicksort is based on the idea of partitioning (splitting) the list around a pivot or

split value.

Quicksort is also a divide and conquer algorithm. We see pictorially, how the quick

sort algorithm works. Suppose we have an array as shown in the figure Fig 45.33.

4 12 10 8 5 2 11 7 3

pivot value

Fig 45.33

We select an element from the array and call it the pivot. In this array, the pivot is the

middle element 5 of the array. Now, we swap this with the last element 3 of the array.
The updated figure of the array is shown in Fig 45.34.

4 12 10 8 3 2 11 7 5

low high

pivot value

Fig 45.34

As shown in Fig 45.34, we used two indexes low and high. The index low is started

from 0 th position of the array and goes towards right until n-1th position. Inside this

loop, an element that is bigger than the pivot is searched. The low index is

incremented further as 4 is less than 5.

4 12 10 8 3 2 11 7 5

low high

pivot value

Fig 45.35

low is pointing to element 12 and it is stopped here as 12 is greater than 5. Now, we

start from the other end, the high index is moved towards left from n-1th position to 0.

5

5

5

CS301 – Data Structures Lecture No. 45

Page 502 of 505

While coming from right to left, we search such an element that is smaller than 5.

Elements 7 and 11 towards left are greater than 5, therefore, the high pointer is

advanced further towards left. high index is stopped at the next position as next

element 2 is smaller than 5. Following figure Fig 45.36 depicts the latest situation.

4 12 10 8 3 2 11 7 5

low high

pivot value

Fig 45.36

Both of the indexes have been stopped, low is stopped at a number 12 that is greater

than the pivot and high is stopped at number 2 that is smaller than the pivot. In the

next step, we swap both of these elements as shown in Fig 45.37.

4 2 10 8 3 12 11 7 5

low high

pivot value

Fig 45.37

Note that our pivot element 5 is still there at its original position. We again go to

index low and start moving towards right, trying to find a number that is greater than

the pivot element 5. It immediately finds the next number 10 greater than 5. Similarly,

the high is moved towards left in search to find an element smaller than the pivot

element 5. The very next element 3 is smaller than 5, therefore, the high index stops

here. These elements 10 and 3 are swapped, the latest situation is shown in Fig 45.38.

4 2 3 8 10 12 11 7 5

low high

pivot value

Fig 45.38

Now, in the next iteration both low and high indexes cross each other. When the high

pointer crosses the low pointer, we stop it moving further as shown in Fig 45.39 and

5

5

5

CS301 – Data Structures Lecture No. 45

Page 503 of 505

4 6 6 5

swap the element at the crossing position (which is 8) with the pivot number as shown

in Fig 45.40.

4 2 3 8 10 12 11 7 5

high low

pivot value

Fig 45.39

4 2 3 5 10 12 11 7 8

high low

Fig 45.40

This array is not sorted yet but element 5 has found its destination. The numbers on

the left of 5 should be smaller than 5 and on right should be greater than it and we can
see in Fig 45.40 that this actually is the case here. Notice that smaller numbers are on

left and greater numbers are on right of 5 but they are not sorted internally.

Next, we recursively quick sort the left and right parts to get the whole array sorted.

4 2 3 5 10 12 11 7 8

Quicksort the left part Quicksort the right part

Fig 45.41

Now, we see the C++ code of quick sort.

void quickSort(int array[], int size)

{

int index;

if (size > 1)

{

index = partition(array, size);

quickSort(array, index);

quickSort(array+index+1, size - index-1);

}

}

int partition(int array[], int size)

{

5

CS301 – Data Structures Lecture No. 45

Page 504 of 505

int k;

int mid = size/2;

int index = 0;

swap(array, array+mid);

for (k = 1; k < size; k++){

if (array[k] < array[0]){

index++;

swap(array+k, array+index);

}

}

swap(array, array+index);

return index;

}

An array and its size are passed as arguments to the quickSort function. The function

declared a local variable index and the size of the array is checked in the next

statement. If the size of the array is more than 1 then the function does the recursive

calling mechanism to sort the array. It divides the array into two parts by choosing the

pivot element. In the subsequent calls, firstly the left side is sorted and then the right

side using the recursive mechanism. Quicksort algorithm is very elegant and it can

sort an array of any size efficiently. It is considered one of the best general purpose

algorithms for sorting. This normally is preferred sorting method being nlog2n and

inplace algorithm. You are advised to read more about this algorithm from your text

books and try to do it as an exercise.

Today’s lecture being the last lecture of the course, let’s have a short review of it.

Course Overview
We had started this course while keeping the objectives of data structures in mind that
appropriate data structures are applied in different applications in order to make them

work efficiently. Secondly, the applications use data structures that are not memory

hungry. In the initial stages, we discussed array data structure. After we found one

significant drawback of arrays; their fixed size, we switched our focus to linked list

and different other data structures. However, in the meantime, we started realizing the

significance of algorithms; without them data structures are not really useful rather I

should say complete.

We also studied stack and queue data structures. We implemented them with array

and linked list data structures. With their help, we wrote such applications which

seemed difficult apparently. I hope, by now, you must have understood the role of

stack in computer’s runtime environment. Also Queue data structure was found very

helpful in Simulations.

Later on, we also came across the situations when we started thinking that linear data

structures had to be tailored in order to achieve our goals with our work, we started

studying trees then. Binary tree was found specifically very useful. It also had a

degenerate example, when we constructed AVL trees in order to balance the binary

search tree. We also formed threaded binary trees. We studied union/find data

structure, which was an up tree. At that time, we had already started putting special

importance on algorithms. We found one important fact that it is not necessary that

for every application we should use a new data structure. We formed new Abstract

Data Types (ADT) using the existing data structures. For dictionary or table data

CS301 – Data Structures Lecture No. 45

Page 505 of 505

structure, we majorly worked with ADTs when we implemented them in six different

ways. We also studied Skip List within the topic of Table ADT, which is a very recent

data structure. After that we discussed about Hashing. Hashing was a purely

algorithmic procedure and there was nothing much as a data structure.

In future, you will more realize the importance of algorithm. While solving your

problems, you will choose an algorithm to solve your problem and that algorithm will

bring along some data structure along. Actually, data structure becomes a companion

to an algorithm. For example, in order to build your symbol table while constructing

your own compiler, you will use hashing. For searches, trees will be employed.

One important fact here is that the data structures and algorithms covered in thi s

course are not complete in the sense that you don’t need any other data structure

except them. One example is Graph, which is not discussed much in this course.

Graph data structures are primarily important from algorithmic point of view.

Now, you should examine yourself, what have you learned in this course. As a

software engineer, you have learned data structures and algorithmic skills to increase

your domain knowledge of design choices. You can apply these design choices in

order to resolve different design problems of your applications that you will come

across in your student and professional life.

	Data Structures
	Table of Contents
	Goals of this Course
	List data structure

	Data Structures Lecture No. 02
	Data Structures Lecture No. 03
	Linked List Operations
	Linked List Using C++
	Example Program

	Data Structures Lecture No. 04
	Example of list usage
	Analysis of Link List

	Data Structures Lecture No. 05
	Abstract Data Type
	Stacks
	Stack Implementation using array

	Data Structures Lecture No. 06
	Stack Using Linked List
	Stack Implementation: Array or Linked List
	Use of Stack
	Precedence of Operators
	Examples of Infix to Postfix

	Data Structures Lecture No. 07
	An Example
	Infix to postfix Conversion

	Data Structures Lecture No. 08
	C++ Templates
	Implementation
	Function Call Stack

	Data Structures Lecture No. 09
	Stack Layout during a Function Call
	Queues
	Queue Operations
	Implementing Queue
	Queue using Array
	Use of Queues

	Data Structures Lecture No. 10
	Simulation Models
	Priority Queue
	Code of the Bank Simulation

	Data Structures Lecture No. 11
	Tree
	Binary Tree
	Terminologies of a binary tree
	Level
	Complete Binary Tree
	Level of a Complete Binary Tree
	Operations on Binary Tree
	Tips

	Data Structures Lecture No. 12
	Applications of Binary Tree
	Searching for Duplicates
	C++ Implementation of Binary Tree
	Trace of insert

	Data Structures Lecture No. 13
	Cost of Search
	Binary Search Tree
	Traversing a Binary Tree
	Example
	Exercise

	Data Structures Lecture No. 14
	Preorder Recursion
	Inorder Recursion
	Non Recursive Traversal
	Traversal Trace

	Data Structures Lecture No. 15
	Binary Search Tree (BST) with Strings
	Deleting a Node From BST

	Data Structures Lecture No. 16
	C++ code for remove
	Binary Search Tree Class (BST)
	Sample Program

	Data Structures Lecture No. 17
	Tips

	Data Structures Lecture No. 19
	Degenerate Binary Search Tree
	AVL Tree
	An AVL Tree
	Level

	Data Structures Lecture No. 20
	Insertion of Node in an AVL Tree
	Example (AVL Tree Building)

	Data Structures Lecture No. 21
	Cases of Rotation

	Data Structures Lecture No. 22
	Left-right double rotation to fix case 2
	Right-left double rotation to fix case 3

	tate right
	C++ Code for avlInsert method
	Single Left Rotation
	Double Right-Left Rotation
	Double Left-Right Rotation
	Data Structures Lecture No. 24
	Other Uses of Binary Trees

	Data Structures Lecture No. 25
	Huffman Encoding

	Data Structures Lecture No. 26
	Mathematical Properties of Binary Trees

	Data Structures Lecture No. 27
	Threaded Binary Trees
	Adding Threads During Insert
	Fig 27.3
	Fig 27.4
	Fig 27.5
	Fig 27.6
	Fig 27.7
	Fig 27.8
	Fig 27.9
	Where is Inorder Successor?
	14
	3 9 18
	5
	14 (1)
	3 9 18 (1)
	5 (1)
	14 (2)
	3 9 18 (2)
	5 (2)
	Inorder Traversal

	Data Structures Lecture No. 28
	Complete Binary Tree
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (1)

	Data Structures Lecture No. 29
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (1)
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (2)

	Data Structures Lecture No. 30
	Deleting from a Min-Heap (deleteMin)
	Building a Heap (buildHeap)

	Data Structures Lecture No. 31
	Other Heap Methods
	C++ Code

	Data Structures Lecture No. 32
	perculateDown Method
	getMin Method
	buildHeap Method
	buildHeap in Linear Time
	Theorem
	Data Structures Lecture No. 33
	The Selection Problem
	Heap Sort
	Disjoint Set ADT
	Equivalence Relations

	Data Structures Lecture No. 34
	Disjoint Sets
	Dynamic Equivalence Problem

	Data Structures Lecture No. 35
	Parent Array
	Example 2
	Running Time analysis
	Data Structures Lecture No. 36
	Union by Size

	5 6 7 8
	Fig 36.6
	Analysis of Union by Size
	Union by Height
	Sprucing up Find
	Timing with Optimization
	Image Segmentation
	Maze Example
	Pseudo Code of the Maze Generation
	Data Structures Lecture No. 38 Summary
	Operations on Table ADT
	Implementation of Table
	Sorted Sequential Array

	Data Structures Lecture No. 39
	Binary Search – Example 1
	Binary Search – Binary Tree
	Binary Search - Efficiency
	Implementation 3 (of Table ADT): Linked List
	Implementation 4 (of Table ADT): Skip List
	Skip List - Representation
	Skip List - Higher Level Chains
	Skip List - Formally

	Data Structures Lecture No. 40
	Skip List
	Skip List Search
	Deletion from Skip List
	Data Structures Lecture No. 41
	Quad Node
	Performance of Skip Lists
	AVL Tree
	Hashing
	Examples of Hashing

	
	
	Data Structures Lecture No. 42
	Summary
	Collision
	Linear Probing

	Data Structures Lecture No. 43
	Applications of Hashing
	When Hashing is Suitable?
	Sorting
	Sorting Integers
	Elementary Sorting Algorithms
	Selection Sort

	Data Structures Lecture No. 44
	Summary

	Selection Sort
	Selection Sort Analysis

	Insertion Sort
	Insertion Sort Analysis

	Bubble Sort
	Bubble Sort Analysis

	Summary
	N log2 (N) Algorithms
	Data Structures Lecture No. 45
	Sort
	Mergesort
	mergeArrays
	Mergesort and Linked Lists
	Mergesort Analysis
	Course Overview

