
 Modern Programming Languages (CS508) VU

Modern Programming Languages
CS508

Virtual University of Pakistan
 Knowledge beyond the boundaries

TABLE of CONTENTS

Course Objectives .. 3
Introduction and Historical Background (Lecture 1-8) ... 5

1
© Copyright Virtual University of Pakistan

 Modern Programming Languages (CS508) VU

Language Evaluation Criterion .. 6
Language Evaluation Criterion .. 15
Ada Programming Language: An Introduction (Lecture 13-17) ... 47
LISP Programming Language: An Introduction (Lecture 18-21) ... 67
PROLOG - PROgramming in LOGic(Lecture 22-26) ... 82

 Java Programming Language(Lecture 27-30) ... 98
C# Programming Language (Lecture 31-34) .. 118
PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37) 137
Modern Programming Languages-JavaScript ... 149
Lecture 38 .. 149
Location of Code ... 149
Arrays .. 151
Operators ... 152
Type Conversion .. 152
Control Statements .. 153
Labels and Flow Control .. 153
Modern Programming Languages-JavaScript ... 155
Lecture 39 .. 155
Objects ... 155
Two Object Models ... 155
Modern Programming Languages ... 168
Lecture # 40 ... 168
Names ... 168
Special Words .. 168
Possible binding times ... 168
Static and Dynamic Binding ... 169
Type Bindings .. 169
Dynamic Type Binding ... 169
Storage Bindings .. 169
Categories of variables by lifetimes .. 169
Explicit Heap Dynamic Variables .. 170
Implicit Heap Dynamic Variables .. 170
Modern Programming Languages Lecture 41 .. 171
Type Checking ... 171
Strongly Typed Languages? ... 171
Type Compatibility ... 171
Data Types ... 172
Primitive Data Types .. 172
Character String Types ... 172
Ordinal Types (user defined) .. 173
Four Categories of Arrays (based on subscript binding and binding to storage) 175
Modern Programming Languages Lecture 42 .. 176
Records-(like structs in C/C++) .. 176
Pointers .. 177
Unions .. 178
Arithmetic Expressions ... 180
Modern Programming Languages Lecture 43 .. 181
Modern Programming Languages Lecture 44 .. 185
 ... 188
1. FORTRAN 77 and 90 .. 189
 ... 189
2. ALGOL 60 ... 190
3. Pascal ... 190

2
© Copyright Virtual University of Pakistan

 Modern Programming Languages (CS508) VU

4. Ada ... 191
5. C ... 191
6. C++ ... 191
7. Java .. 192
Logically-Controlled Loops .. 192
Examples .. 192
Unconditional Branching .. 193
Conclusion ... 193
Modern Programming Languages Lecture 45 .. 195
Parameters and Parameter Passing ... 195
 1. Pass-by-value (in mode) ... 195
2. Pass-by-result (out mode) ... 195
Implementing Parameter Passing .. 196
Design Considerations for Parameter Passing .. 196
Concluding Remarks ... 196

Course Objectives

Thousands of different programming languages have been designed by different people
over the last 60 years. The questions that come to mind are:

• Why are there so many different programming languages?

3
© Copyright Virtual University of Pakistan

 Modern Programming Languages (CS508) VU

• How and why they are developed?
• What is the intended purpose of a language?
• In what ways are they similar?
• What are the differences among them?
• Why wouldn’t we simply continue to use what we have today?
• What kinds of programming languages may be developed in future?

We will try to answer some of these questions in this course.

In addition, we will discuss the design issues of various languages, design choices and
alternatives available, historical context and specific needs, and specific implementation
issues.

Text Book
The main text book for this course is:
Concepts of Programming Languages, 6th Ed. by Robert Sebesta.

4
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Introduction and Historical Background (Lecture 1-8)

Reasons to study concepts of Programming Languages

The first question is: why should we study programming languages. There are many
reasons for that and some of them are enumerated in the following paragraphs.

1. Increased capacity to express programming concepts

Study of programming languages helps in increasing the capacity to express
programming concepts.

Dijkstra has put it as follows:
The tools we use have a profound (and devious!) influence on our thinking habits,
and, therefore, on our thinking abilities.

That is, one is limited in his/her thinking by the tools used to express his/her ideas.

Depth at which we can think is influenced by the expressive power of the language. It
includes the kind of algorithms you can develop. The range of software development
thought process can be increased by learning new languages as those constructs can be
simulated.

2. Improved background for choosing appropriate languages

Study of programming languages also helps one in choosing the right language for the
given task. Abraham Maslow says, "To the man who only has a hammer in the toolkit,
every problem looks like a nail."

That is, if the only tool you have is a hammer, then you will treat every problem like a
nail. Sometimes, some programming languages are more suitable for a specific task.
There are many special purpose languages. In this course we will study one such
language by the name of Snobol.

3. Increased ability to learn new languages

Study of different programming languages also helps one in learning new languages by
learning the syntax and semantics of different languages and understanding different
design methodologies.

4. Understanding the significance of implementation

In some cases, an understanding of implementation issues leads to an understanding of
why languages are designed the way they are. This ultimately leads to efficient use of the
language. One such example is Row vs. column major. If a programmer knows that two-
dimensional arrays are stored column-wise (column major) in FORTRAN (where in most
other languages it is row major) then he will be careful to process it column-wise, hence
making it more efficient.

5
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Same is the case with recursion. If the programmer knows how recursion is implemented
and the associated cost of recursive programs, he can use this knowledge to come-up with
more efficient programs if needed.

Also, certain bugs can only be found and fixed if the programmer knows some related
implementation details.

5. Increased ability to design new languages

By learning a number of programming languages, one gets to know the pros and cons of
different language features and issues related to these features. This knowledge will
therefore help if one has to design a new language for any purpose.

Language Evaluation Criterion

In order to evaluate and compare different languages, we need some mechanism for their
evaluation. The first criterion that comes to mind is: how long it takes to develop a
program in a given programming language.

Capers Jones has developed the following Programming Languages Table which relates
languages with the productivity.

 Language Level Relationship to Productivity

LANGUAGE LEVEL PRODUCTIVITY AVERAGE PER STAFF MONTH
-------------------------- --
1 - 3 5 to 10 Function Points
4 - 8 10 to 20 Function Points
9 - 15 16 to 23 Function Points
16 - 23 15 to 30 Function Points
24 - 55 30 to 50 Function Points
Above 55 40 to 100 Function Points

As can be seen, a higher-level language will yield more productivity as compared to a
lower level language. Some of the common languages with their levels are listed below.

Assembly(1), C(2.5), Pascal(3.5), LISP(5), BASIC(5), C++(6)

As can be seen, C++ has the highest level in this list.

Let us now try to use this criterion to evaluate different languages.

When a programmer starts to learn a new language, a typical first exercise is to program
the computer to display the message "Hello World". A compilation of “Hello World
programs” designed by various categories of “developer” follows.

Hello World Programs – adapted from: Infiltec Humor Page
www.infiltec.com

6
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

A compilation of *Hello World programs* designed by
 various categories of *developer* follows.

 High School/Jr.High - BASIC Language
 ====================================

 10 PRINT "HELLO WORLD"
 20 END

 First year in College - Pascal
 ==============================
 program Hello(input, output)
 begin

writeln('Hello World')
 end.

 Senior year in College - LISP
 =============================
 (defun hello
 (print

(cons 'Hello (list 'World))))

 New professional - C
 ====================
 #include
 void main(void)
 {
 char *message[] = {"Hello ", "World"};
 int i;

 for(i = 0; i < 2; ++i)
printf("%s", message[i]);

 printf("\n");
 }

Seasoned professional – C++
 ===========================
 #include
 #include

 class string
 {
 private:
 int size;
 char *ptr;

 public:

7
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

 string() : size(0), ptr(new char('\0')) {}

 string(const string &s) : size(s.size)
 {

ptr = new char[size + 1];
strcpy(ptr, s.ptr);

 }

 ~string()
 {

delete [] ptr;
 }

 friend ostream &operator <<(ostream &, const string &);
 string &operator=(const char *);
 };

 ostream &operator<<(ostream &stream, const string &s)
 {
 return(stream << s.ptr);
 }

 string &string::operator=(const char *chrs)
 {
 if (this != &chrs)
 {

delete [] ptr;
 size = strlen(chrs);

ptr = new char[size + 1];
strcpy(ptr, chrs);

 }
 return(*this);
 }

 int main()
 {
 string str;

 str = "Hello World";
 cout << str << endl;

 return(0);
 }

 Master Programmer - CORBA
 =========================
 [
 uuid(2573F8F4-CFEE-101A-9A9F-00AA00342820)
]
 library LHello

8
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

 {
// bring in the master library
importlib("actimp.tlb");
importlib("actexp.tlb");

// bring in my interfaces
#include "pshlo.idl"

[
uuid(2573F8F5-CFEE-101A-9A9F-00AA00342820)
]
cotype THello

 {
 interface IHello;
 interface IPersistFile;
 };
 };

 [
 exe,
 uuid(2573F890-CFEE-101A-9A9F-00AA00342820)
]
 module CHelloLib
 {

// some code related header files
importheader();
importheader();
importheader();
importheader("pshlo.h");
importheader("shlo.hxx");
importheader("mycls.hxx");

// needed typelibs
importlib("actimp.tlb");
importlib("actexp.tlb");
importlib("thlo.tlb");

[
uuid(2573F891-CFEE-101A-9A9F-00AA00342820),
aggregatable
]
coclass CHello

 {
 cotype THello;
 };
 };

 #include "ipfix.hxx"

9
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

 extern HANDLE hEvent;

 class CHello : public CHelloBase
 {
 public:

IPFIX(CLSID_CHello);

CHello(IUnknown *pUnk);
~CHello();

HRESULT __stdcall PrintSz(LPWSTR pwszString);

 private:
static int cObjRef;

 };

 #include
 #include
 #include
 #include
 #include "thlo.h"
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "mycls.hxx"

 int CHello::cObjRef = 0;

 CHello::CHello(IUnknown *pUnk) : CHelloBase(pUnk)
 {

cObjRef++;
return;

 }

 HRESULT __stdcall CHello::PrintSz(LPWSTR pwszString)
 {

printf("%ws\n", pwszString);
return(ResultFromScode(S_OK));

 }

 CHello::~CHello(void)
 {

 // when the object count goes to zero, stop the server
 cObjRef--;
 if(cObjRef == 0)

PulseEvent(hEvent);

 return;
 }

10
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

 #include
 #include
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "mycls.hxx"

 HANDLE hEvent;

 int _cdecl main(
 int argc,
 char * argv[]
) {
 ULONG ulRef;
 DWORD dwRegistration;
 CHelloCF *pCF = new CHelloCF();

 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

 // Initialize the OLE libraries
 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 CoRegisterClassObject(CLSID_CHello, pCF, CLSCTX_LOCAL_SERVER,
REGCLS_MULTIPLEUSE, &dwRegistration);

 // wait on an event to stop
 WaitForSingleObject(hEvent, INFINITE);

 // revoke and release the class object
 CoRevokeClassObject(dwRegistration);
 ulRef = pCF->Release();

 // Tell OLE we are going away.
 CoUninitialize();

 return(0); }

 extern CLSID CLSID_CHello;
 extern UUID LIBID_CHelloLib;

 CLSID CLSID_CHello = { /* 2573F891-CFEE-101A-9A9F-00AA00342820 */
0x2573F891,
0xCFEE,
0x101A,
{ 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }

 };

 UUID LIBID_CHelloLib = { /* 2573F890-CFEE-101A-9A9F-00AA00342820 */
0x2573F890,
0xCFEE,
0x101A,

11
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

{ 0x9A, 0x9F, 0x00, 0xAA, 0x00, 0x34, 0x28, 0x20 }
 };

 #include
 #include
 #include
 #include
 #include
 #include "pshlo.h"
 #include "shlo.hxx"
 #include "clsid.h"

 int _cdecl main(
 int argc,
 char * argv[]
) {
 HRESULT hRslt;
 IHello *pHello;
 ULONG ulCnt;
 IMoniker * pmk;
 WCHAR wcsT[_MAX_PATH];
 WCHAR wcsPath[2 * _MAX_PATH];

 // get object path
 wcsPath[0] = '\0';
 wcsT[0] = '\0';
 if(argc 1) {

mbstowcs(wcsPath, argv[1], strlen(argv[1]) + 1);
wcsupr(wcsPath);
}

 else {
fprintf(stderr, "Object path must be specified\n");
return(1);
}

 // get print string
 if(argc 2)

mbstowcs(wcsT, argv[2], strlen(argv[2]) + 1);
 else

wcscpy(wcsT, L"Hello World");

 printf("Linking to object %ws\n", wcsPath);
 printf("Text String %ws\n", wcsT);

 // Initialize the OLE libraries
 hRslt = CoInitializeEx(NULL, COINIT_MULTITHREADED);

 if(SUCCEEDED(hRslt)) {

hRslt = CreateFileMoniker(wcsPath, &pmk);

12
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

if(SUCCEEDED(hRslt))
 hRslt = BindMoniker(pmk, 0, IID_IHello, (void **)&pHello);

if(SUCCEEDED(hRslt)) {

 // print a string out
 pHello->PrintSz(wcsT);

 Sleep(2000);
 ulCnt = pHello->Release();
 }

else
 printf("Failure to connect, status: %lx", hRslt);

// Tell OLE we are going away.
CoUninitialize();
}

 return(0);
 }

 Apprentice Hacker
 ===================

 #!/usr/local/bin/perl
 $msg="Hello, world.\n";
 if ($#ARGV >= 0) {
 while(defined($arg=shift(@ARGV))) {

$outfilename = $arg;
open(FILE, ">" . $outfilename) || die "Can't write $arg: $!\n";
print (FILE $msg);
close(FILE) || die "Can't close $arg: $!\n";

 }
 } else {
 print ($msg);
 }
 1;

 Experienced Hacker
 ===================

 #include
 #define S "Hello, World\n"
 main(){exit(printf(S) == strlen(S) ? 0 : 1);}

13
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

 Seasoned Hacker
 ===================

 % cc -o a.out ~/src/misc/hw/hw.c
 % a.out

 Guru Hacker
 ===================

 % cat
 Hello, world.
 ^D

 New Manager – Back to BASIC
 ===========================

 10 PRINT "HELLO WORLD"
 20 END

 Middle Manager
 ===================

 mail -s "Hello, world." bob@b12
 Bob, could you please write me a program that prints "Hello, world."?
 I need it by tomorrow.
 ^D

 Senior Manager
 ===================

 % zmail jim
 I need a "Hello, world." program by this afternoon.

 Chief Executive
 ===================

 % letter
 letter: Command not found.
 % mail
 To: ^X ^F ^C
 % help mail
 help: Command not found.

 % damn!
 !: Event unrecognized
 % logout

14
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Language Evaluation Criterion

Jokes aside, this set of programs gives the readers some initial ideas about the different
types of languages. Anyway, the question is: what happened to the programming
language levels? Why is there so much variation for a simple program like “Hello
World”. The answer to this question lies in the question itself – “Hello World” is not the
program that should be analyzed to compare different languages. It is so simple that the
important features of different programming languages are not highlighted and wrong
conclusions can be drawn.

A fair comparison needs much deeper analysis than this type of programs. Bjarne
Stroustrup – the designer of C++ language – makes the following observation in this
regards:

I have reaffirmed a long-standing and strongly held view: Language comparisons
are rarely meaningful and even less often fair. A good comparison of major
programming languages requires more effort than most people are willing to
spend, experience in a wide range of application areas, a rigid maintenance of a
detached and impartial point of view, and a sense of fairness.

The question remains then how to compare and examine languages?

For this purpose we will use Readability, Writability, and Reliability as the base criteria.

Readability

Readability is directly related to the cost of maintenance. The different factors that impact
readability are:

– Simplicity
– Control Statements
– Data types and data structures
– Syntax Considerations
– Orthogonality

Simplicity

A simple language will be easy to learn and hence understand. There are a number of
factors that account for simplicity. These are:

• Number of basic components
Learning curve is directly proportional to the number of basic components. If a
language has more basic components, it will be difficult to learn and vice-versa. It is
important to note that one can learn a subset of a programming language for writing
but for reading you must know everything.

15
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

• Feature multiplicity
If a language has more than one way to accomplish the same task, then it can
cause confusion and complexity. For example, a number can be incremented in C
in any of the following manners.

 i = i + 1;
 i++;
++i;
 i += 1;

If a programmer has used all these different constructs to increment a variable at
different locations, the reader may get confused. It is simpler to adopt one
structure and use it consistently.

• Operator overloading

Operator overloading can be problematic if its use is inconsistent or
unconventional.

• How much simple should it be?

Simplicity has another dimension as well. If a language is very simple then its
level may also be decreased as it may loose abstraction. In that case, it will be
difficult to write and read algorithms in that language.

Control Statements

Control statements also play an important role in readability. We are all aware of the
hazards of goto statement. If a language relies on goto statements for control flow, the
logic becomes difficult to follows and hence understands and maintain. Restricted use of
goto in extreme was needed and useful as well but with the emergence of new language
constructs to handle those situations, it probably not an issue any more.

Data types and data structures

Data types and data structures also play an important role in improving the abstraction
level of a programming language, hence making it more readable. For example, a
simple omission of Boolean type in C resulted in many problems as integers were
instead of Boolean which made the program difficult to follow and debug in many
cases.

Similarly, in FORTRAN there was no record (or struct) type. So related data had to be
put in different data structures, making it very difficult to read the logic and maintain.

Syntax

Syntax of a language plays a very important role in programming languages. There are
many different considerations that we will discuss throughout this course. Here we give a
brief overview of some of these considerations.

16
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

• Variable names
The first consideration is the restriction of variable names. In the beginning it was
a huge issue as some languages restricted the length of a variable name up to 6 or
8 characters making it difficult to choose meaningful names for the variable.
Other considerations include the type of special characters allowed in the variable
names to improve readability.

• Special keywords for signaling the start and end of key words.

Some languages allow special keywords for signaling the start and end of a
construct, making it more readable and less prone to errors. This can be elaborated
with the help of following examples:

Let us first consider the following C if statement.

if (some condition)
//
It may be noted that the second part “// now do this” is not part of the body of the
if statement and it will be executed regardless of the truth value of the condition.
This may cause problems as it is easy for the reader to miss this point because of
indentation.

Ada programming language solves this problem by using the keywords “then” and
“end if” in the if statement. The resulting code is shown below:

if (some condition) then
-- do this

end if
-- now do this

Now it can be easily seen that a reader of this program will not be confused by the
indentation.
 do this

// now do this

Another similar example is when the if has an else part also. Let us first consider
the following C code.

if (cond1)
if (cond2)
 // do 1

 else if (cond3)
 // do 2

17
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

else
 // do 3

Is the last else part of third if or the first one? Once again the indentation has caused this
confusion and the reader can easily miss this point. Ada has solved this problem by
introducing an elsif keyword. The Ada code is shown below and it can be seen very easily
that the confusion has been removed.

if (cond1) then
if (cond2) then
 -- do 1
elsif (cond3) then
 -- do 2
end if;

else
 -- do 3
end if;

Writability

Writability is a measure of support for abstraction provided by a language. It is the ability
to define and use complicated structures without bothering about the details. It may be
noted that the degree of abstraction is directly related to the expressiveness. For example,
if you are asked to implement a tree, it will be a lot difficult in FORTRAN as compared
to C++. It also is a measure of expressivity: constructs that make it convenient to write
programs. For example, there is a set data type in Pascal which makes it easier to handle
set operations as compared to a language such as C++ where this support is not available.

Orthogonality

Orthogonality is a very important concept. It addresses how relatively small number of
components that can be combined in a relatively small number of ways to get the desired
results. It is closely associated with simplicity: the more orthogonal the designs the fewer
exceptions and it make it easier to learn, read, and write programs in a programming
language. The meaning of an orthogonal feature is independent of the context. The key
parameters are symmetry and consistency. For example pointers are an orthogonal
concept.

Here is one example from IBM Mainframe and VAX that highlights this concept. In IBM
main frame has two different instructions for adding the contents of a register to a
memory cell or another register. These statements are shown below:

A Reg1, memory_cell
AR Reg1, Reg2

18
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

In the first case, contents of Reg1 are added to the contents of a memory cell and the
result is stored in Reg1; in the second case contents of Reg1 are added to the contents of
another register (Reg2) and the result is stored in Reg1.

In contrast to the above set of statement, VAX has only one statement for addition as
shown below:

ADDL operand1, operand2

In this case the two operands, operand1 and operand2, can be registers, memory cells, or
a combination of both and the instruction simply adds the contents of operand1 to the
contents of operand2 and store the result in operand1.

It can be easily seen that the VAX’s instruction for addition is more orthogonal than the
instructions provided by IBM and hence it is easier for the programmer to remember and
use it as compared to the one provided by IBM.

Let us now study the design of C language from the perspective of orthogonality. We can
easily see that C language is not very consistent in its treatment of different concepts and
language structure and hence makes it difficult for the user to learn and use the language.
Here are a few examples of exceptions:

• You can return structures but not arrays from a function
• An array can be returned if it is inside a structure
• A member of a structure can be any data type except void or the structure of the

same type
• An array element can be any data type except void
• Everything is passed by value except arrays
• void can be used as type in a structure but you cannot declare a variable of this

type in a function.

Orthogonality The Other side

Too much orthogonality is also troublesome. Let us again have a look at C language and
try to understand this concept:

• In C
–

This can cause side effects and cryptic code.

Since languages need large number of components, too much orthogonality can cause
problems. From a language designer’s point of view, the most difficult task is to strike
a balance which obviously is not trivial.

Reliability

19
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Reliability is yet another very important factor. A programming language should enable
the programmers to write reliable code. The important attributes that play an important
role in this respect are listed below:

• Type Checking

Type checking is related with checking the type of the variables used as operands
in different. The question that needs to be addressed is whether this type checking
is done at compile time or at run-time. This also includes checking types of
parameters and array bounds. Traditionally, these two have been the major
sources of errors in programs which are extremely difficult to debug. A language
that does type checking at compile time generates more reliable code than the one
that does it at run-time.

• Exception handling

Exception handling enables a programmer to intercept run-time errors and take
corrective measure if possible and hence making it possible to write more reliable
code.

Cost

Cost is also a very important criterion for comparing and evaluating programming
language. In order to understand the cost involved, one has to consider the following:

• Training cost – how much does it cost to train a new programmer in this language.
• What is the cost of writing programs in the language – this is a measure of

productivity
• What is the cost of the development environment and tools?
• What is the compilation cost? That is, how long does it take to compile a

program? This is related to productivity as the more time it takes to compile a
program, the more time a programmer will be sitting idle and hence there will be a
reduction in productivity.

• Execution cost is also an important factor. If the program written in a language
takes more execution time then the overall cost will be more.

• A related is whether to have a more optimized code or to increase the compilation
speed

• Cost of language implementation deals with the level of difficulty in terms of
writing a compiler and development environment for the language.

• If the program written in a particular language is less reliable than the cost of
failure of the system may be significant.

• The most important of all of these factors is the maintenance cost. It is a function
of readability.

Portability

20
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Portability deals with how easy it is to port a system written in a given programming
language to a different environment which may include the hardware and the operating
system. In today’s heterogeneous environment, portability is a huge issue. Portability has
to do a lot with the standardization of a language. One of the reasons the programs written
in COBOL were less portable than C was because C was standardized very early whereas
there was not universal standard available for COBOL.

Generality

Generality is also an important factor and deals with the applicability of the language to a
range of different domains. For example, C is more general purpose than LISP or
FORTRAN and hence can be used in more domains than these two languages.

Issues and trade-offs

Like all design problems, in the case of programming language design, one has to deal
with competing criterion such as execution versus safety, readability versus writability,
and execution versus compilation. It would be nice if one could assign weights to
different criteria and then compare the different options. Unfortunately, this kind of help
is not available and hence the balancing act, as usual, is a very difficult job.

Influence of computer architecture on language design

Over the years, development in the computer architecture has had a major impact on
programming language design. With the decreasing cost and increasing speed of
hardware we simply can afford the programming languages which are more complex and
tolerate the programming language to be less efficient. We shall now study the impact of
the hardware architecture on the evolution of the programming languages.

Babbage’s Analytical Engine

Charles Babbage is considered to be the inventor of the first computer. This machine,
known as the Analytical Engine (or Difference Engine), was invented in 1820’s. In the
beginning, it could only be made to execute tasks by changing the gears which executed
the calculations. Thus, the earliest form of a computer language was physical motion.
The key features of this machine included Memory (called store), jump, loop, and the
concept of subroutines. It was motivated by the success of power looms. It had limited
capability and because of the technological limitations this design could not be fully
implemented.

ENIAC (Electronic Numerical Integrator and Calculator)

Physical motion was eventually replaced by electrical signals when the US Government
built the ENIAC (Electronic Numerical Integrator and Calculator) in 1942. It followed
many of the same principles of Babbage's engine and hence, could only be "programmed"
by presetting switches and rewiring the entire system for each new "program" or
calculation. This process proved to be very tedious.

21
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Von Neumann Architecture - 1945

In 1945, John Von Neumann was working at the Institute for Advanced Study. He
developed two important concepts that directly affected the path of computer
programming languages. The first was known as "shared-program technique". This
technique stated that the actual computer hardware should be simple and not need to be
hand-wired for each program. Instead, complex instructions should be used to control the
simple hardware, allowing it to be reprogrammed much faster.

The second concept was also extremely important to the development of programming
languages. Von Neumann called it "conditional control transfer". This idea gave rise to
the notion of subroutines, or small blocks of code that could be jumped to in any order,
instead of a single set of chronologically ordered steps for the computer to take. The
second part of the idea stated that computer code should be able to branch based on
logical statements such as IF (expression) THEN, and looped such as with a FOR
statement. "Conditional control transfer" gave rise to the idea of "libraries," which are
blocks of code that can be reused over and over.

In March 1949, Popular Mechanics made the following prediction:

"Where a calculator on the ENIAC is equipped with 18 000 vacuum tubes and weighs 30
tons, computers of the future may have only 1 000 vacuum tubes and perhaps weigh 1½
tons."

 In 1949, a few years after Von Neumann's work, the language Short Code appeared. It
was the first computer language for electronic devices and it required the programmer to
change its statements into 0's and 1's by hand. Still, it was the first step towards the
complex languages of today. In 1951, Grace Hopper wrote the first compiler, A-0. A
compiler is a program that turns the language's statements into 0's and 1's for the
computer to understand. This lead to faster programming, as the programmer no longer
had to do the work by hand.

A most important class of programming languages, known as the imperative languages, is
based upon the von Neumann Architecture. This includes languages like FORTAN,
COBOL, Pascal, Ada, C, and many more.

Other major influences on programming language design have been mentioned as below:

Programming Methodologies

• 1950s and early 1960s:
• Simple applications; worry about machine efficiency

• Late 1960s:
• People efficiency became important
• readability, better control structures

• Late 1970s:
• Data abstraction

• Middle 1980s:
• Domain and data complexity - Object-oriented programming

22
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

• Today
• Web and networked environment; distributed computing

Language Categories

• Imperative
– variables, assignment, iteration

• Functional (applicative)
– set of functions

• Logic (Declarative)
– rule based
– Order of execution in not defined

• Object Oriented
– close relatives of imperative

Application Domains

1. Scientific applications
• simple data structures, large FP operations - FORTRAN

2. Business applications
• reports, decimal arithmetic, character operations - COBOL

3. Artificial intelligence
• Symbol processing, logic programming – Lisp, Prolog

4. Embedded systems
• Concurrent programming - Ada

5. Systems programming
• execution efficiency, low-level features – PL/1, BLISS, C

6. Scripting languages
• list of commands – batch files, ksh, Perl

7. Special purpose languages
• Hundreds of languages

Programming Languages - A Brief History

23
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

1965

1966

1967
1968

1969

1970

1971

1972

1973

1974

1975

1976
1977

1978

1979

1980

1981

1982

1983

1984

1985

1986
1987

1988

1989

1990

1991

1992

1993

1994

1995

1996
1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

1957
1958

1959

1960

1961

1962

1963

1964

FORTRAN I

F
O

R
T

R
A

N
 IV

F
O

R
T

R
A

N
 7

7
F

O
R

T
R

A
N

 9
0

COBOL

A
N

S
I

C
O

B
O

L
 7

4

COBOL 61

A
N

S
I C

O
B

O
L

 8
5

O
O

 C
O

B
O

L

FORTRAN II

LISP

C
O

M
M

O
N

 L
IS

P

ANSI
COMMON

LISP

FORTRAN 2003

ALGOL

ALGOL 60

A
L

G
O

L
68

PL/1 S
IM

U
L

A

Pascal

BCPL

B

C

Smalltalk

S
c

h
em

e

S
m

a
llt

a
lk

 8
0

C++

ANSI C

Ada

Ada 95

Ada 2006 Draft

Haskell

Java

Java 2

C++
ANSI/ISO

Internet C ++
C#

B
A

S
IC

Q
u

ic
kB

A
S

IC

V
is

u
al

 B
A

S
IC

VB .Net

C# 2.0

SNOBOL

SNOBOL IV

sh

ksh

cshA
W

K
N

A
W

K
Perl

P
er

l
5

P
H

P

V
B

 S
c

ri
p

t

Ja
va

S
cr

ip
t

J
av

aS
cr

ip
t

1
.5

P
H

P
 4

.1
.0

V
B

 S
c

ri
p

t
2.

0

Perl 5.8.2

Genealogy
Imperative

Logic

Declarative

Object Oriented

Scripting

Multi-paradigm

Programming Paradigms

S
ch

e
m

e
 8

4
S

ch
e

m
e

 IE
E

E

P
R

O
L

O
G

PROLOG
ISO

The First Programmer was a Lady

24
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Charles Babbage and Ada Lovelace, lived in London of Dickens and Prince Albert (and
knew them both). A hundred years before some of the best minds in the world used the
resources of a nation to build a digital computer, these two eccentric inventor-
mathematicians dreamed of building their “Analytical Engine”. He constructed a practical
prototype and she used it, with notorious lack of success, in a scheme to win a fortune at
the horse races. Despite their apparent failures, Babbage was the first true computer
designer, and Ada was history’s first programmer.

Zuse’s Plankalkül – 1945

The language was designed by the German scientist in isolation during the Second World
War and was discovered and Published in 1972.

It was never implemented but included the following interesting features:
• The data type included floating point, arrays, records, nesting in records
• It had the notion of advanced data types and structures
• There was no explicit goto
• The concept of iteration was there
• It had selection without else part
• It also had the notion of invariants and assertions

Zuse used this language to solve many problems. The list of programs include sorting,
graph connectivity, integer and floating point arithmetic, expressions with operator
precedence, and chess playing. It may be noted that many of these problems remained a
challenge for quite some time.

The language had a terse notation and hence was difficult to use. However, a number of
programming language designer think that had this language be known at an earlier stage,
we may never have seen languages like FORTRAN and COBOL.

Assemblers, Assembly Language, and Speed Coding

Initially, programs used to be written in machine code. It suffered from poor readability
and poor modifiability – addition and deletion of instructions. Coding of expression was
tedious. On top of that, machines did not support floating point and indexing and these
things had to be coded by hand.

In 1954, John Backus developed what is known as Speedcoding for IBM 701. It had
Pseudo operations for arithmetic and math functions, conditional and unconditional
branching, and auto-increment registers for array access. It was slow as it was interpreted
and after loading the interpreter, only 700 words left for user program. However, it made
the job of programmer much easier as compared to the earlier situation.

The First Compiler - Laning and Zierler System - 1953

25
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

The first compiler was implemented on the MIT Whirlwind computer. It was the first
"algebraic" compiler system which supported subscripted variables, function calls, and
expression translation. It was never ported to any other machine.

FORTAN
The First High Level Language - FORTRAN I – John Backus 1957

FORTRAN stands FORmula TRANslating system. It was the first implemented version
of FORTRAN as FORTRAN 0 (1954) was never implemented. It was the first compiled
high-level language designed for the new IBM 704, which had index registers and
floating point hardware. At that time computers were small and unreliable, applications
were scientific, and no programming methodology or tools were available. Machine
efficiency was most important and no need was felt for dynamic storage. So the language
needed good array handling and counting loops. No string handling or decimal arithmetic
was supported. Names could have up to six characters. It had support for formatted I/O
and user-defined subprograms. There was no data typing statements and no separate
compilation. The compiler was released in April 1957, after 18 man/years of effort.
Unfortunately, programs larger than 400 lines rarely compiled correctly, mainly due to
poor reliability of the 704 but code was very fast. Within one year, 50% of the code
written for 704 was being developed in FORTRAN.

All statements of FORTRAN I were based on 704’s instruction set. It included 3 way
branch and computed if in the form of If (EXPRESSION) L1, L2, L3. It also had posttest
counting loop as shown below:

DO L1 I = N, M

Fortran II (1958) and IV (1960)

Fortran II came after one year in 1958. It added independent compilation and had some
bug fixes.

Fortran IV was released in 1960 and became the most popular language of its time. It had
support for explicit type declarations and logical IF statement. Subprograms could also be
passed as parameters. ANSI standard of FORTRAN IV was release in 1966 and remained
mostly unchanged for the next 10 years.

FORTRAN 77 and 90

FORTRAN 77, released in 1977, was the next major release of FORTRAN after
FORTRAN IV. It added support for structured Programming, character string handling,
logical loop control statement, and IF-THEN-ELSE statement.

FORTRAN 90, released in 1990, added modules, dynamic arrays, pointers, recursion –
stack frames, case statement, and parameter type checking. However, because of the
backward compatibility constraints, it could never gain the same popularity as its
predecessors.

Functional Programming – LISP – McCarthy 1959

26
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

LISP stands for LISt Processing language. It was designed by John McCarthy in 1959 as
part of AI research at MIT to deal with problems of linguistic, psychology, and
mathematics. They needed a language to process data in dynamically growing lists (rather
than arrays) and handle symbolic computation (rather than numeric). LISP has only two
data types: atoms and lists and syntax is based on lambda calculus. It pioneered functional
programming where there is no need for assignment and control flow is achieved via
recursion and conditional expressions. It is still the dominant language for AI. COMMON
LISP and Scheme are contemporary dialects of LISP and ML, Miranda, and Haskell are
related languages.

ALGOL

ALGOL 58 – 1958 – Search for a “Universal Language”

ALGOL stands for ALGOrithmic Language. It was designed in 1958. At that time
FORTRAN had (barely) arrived for IBM 70x and was owned by IBM. Many other
languages were being developed, all for specific machines. There was no portable
language as all were machine-dependent. Also, there was no universal language for
communicating algorithms.

ALGOL was thus designed to be a language that was close to mathematical notation,
good for describing algorithms, and was machine independent. That is, it was an
algorithmic language for use on all kinds of computers.

Salient features of the language are:
• Concept of type was formalized
• Names could have any length
• Arrays could have any number of subscripts
• Lower bound of an array could be defined
• Parameters were separated by mode (in & out)
• Subscripts were placed in brackets
• Compound statements were introduced (begin ... end)
• Semicolon as a statement separator was used
• Assignment operator was :=
• if had an else-if clause

It was actually not meant to be implemented, but variations of it were (MAD, JOVIAL)
implemented. Although IBM was initially enthusiastic but vested interest in FORTRAN
resulted in taking back all support by mid-1959.

Algol 60 - 1960

ALGOL 60 was a modified version of ALGOL 58. It added new features to the language.
These included block structure (local scope), two parameter passing methods – value and
name, subprogram recursion, and stack-dynamic arrays – run time size definition and
space allocation. It did not have built-in I/O facility.

27
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

It was quite successful as it was the standard way to publish algorithms for over 20 years.
All subsequent imperative languages are based on it. It was the first machine-independent
language and the first language whose syntax was formally defined in BNF. It also
impacted the hardware design.

It was never widely used, especially in U.S because there was no i/o support and the
character set made programs non-portable. Also, it was too flexible and hence was hard to
understand and implement. On top of that, IBM never supported it on their machines
because of their interest in FORTRAN. In addition, BNF was considered strange and
complicated!

Algol 68 - 1968

ALGOL 68 was from the continued development of ALGOL 60, but it is not a superset of
that language. Its design is based on the concept of orthogonality. Major contributions of
this language include user-defined data structures, reference types, and dynamic arrays
(called flex arrays).

From a practical point of view it had even less usage than ALGOL 60 but had strong
influence on subsequent languages, especially Pascal, C, and Ada.

COBOL - 1960

COBOL was designed in 1960 to support business-oriented computation which requires
fixed point arithmetic. It was designed to look like simple English to broaden the base of
computer users. It was thus required to be easy to use, even if that means it will be less
powerful. Another design consideration was that it must not be biased by current
compiler.

It encountered problems because the design committee members were all from computer
manufacturers and DoD branches and there were fights among manufacturers.

It was the first language to add macro facility in a high-level language. It also introduced
hierarchical data structures (records) and nested selection statements. The language
supported long variable names (up to 30 characters) with hyphens, data division, and
fixed-point arithmetic.

It was the first language required by DoD and would probably have failed without support
from DoD. It is still a very widely used business applications language and is very
popular in business and government, much less at universities.

Basic - 1964

BASIC was designed by Kemeny & Kurtz at Dartmouth College with the following goals
in mind: Easy to learn and use for non-science students; Must be “pleasant and friendly”;
Fast turnaround for homework; Free and private access; User time is more important than
computer time.

Current popular dialects include QuickBASIC and Visual BASIC.

28
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

PL/1 – 1965 – Everything for Everybody

From IBM’s point of view there were two computing groups: scientific computing and
business computing. The scientific computing was supported by IBM 1620 and 7090
computers and FORTRAN. Business computing was done on IBM 1401, 7080 computers
and COBOL programming language.

By 1963 scientific users began to need more elaborate i/o, like COBOL had and business
users began to need fl. pt. and arrays (MIS). It looked like many shops would begin to
need two kinds of computers, languages, and support staff. This proposition was
obviously too costly and the obvious solution was to build a new computer to do both
kinds of applications and design a new language to do both kinds of applications. Hence
PL/1 came into being.

PL/I was the first language to introduce unit-level concurrency, exception handling,
pointer data type, and array cross sections.

The language was not a huge success because many new features were poorly designed
and it was too large and too complex.

Early Dynamic Languages -Characterized by dynamic typing and dynamic storage
allocation

APL (A Programming Language) 1962

It was designed as a hardware description language (at IBM by Ken Iverson). It was
highly expressive (many operators, for both scalars and arrays of various dimensions) but
programs are very difficult to read - commonly known as “write-only” language.

SNOBOL (1964)

It was designed as a string manipulation language (at Bell Labs by Farber, Griswold, and
Polensky). It had powerful operators for string pattern matching but suffered from poot
readability and maintainability.

Simula 67 – 1967 –The first Object-oriented langauge

It was designed in Norway by Nygaard and Dahl, primarily for system simulation. It was
based on ALGOL 60 and SIMULA I. Its primary contributions include the concept of a
class which was the basis for data abstraction. Classes are structures that include both
local data and functionality.

Pascal – 1971 – Simplicity by Design

Pascal was designed by Niklaus Wirth, who quit the ALGOL 68 committee because he
didn't like the direction of that work. It was designed for teaching structured

29
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

programming. It was small and simple with nothing really new. Because of its simplicity
and size it was, for almost two decades, the most widely used language for teaching
programming in colleges.

C – 1972 – High-level system programming language

C was designed for systems programming at Bell Labs by Dennis Richie. It evolved
primarily from B, but was also influenced by ALGOL 68. It had powerful set of
operators, but poor type checking. It initially spread through UNIX but became very
popular in the academic circles because of its easy portability. Many modern
programming languages including C++, Java, and C# are direct descendents of C.

Prolog – 1972 – Logic Programming

It was developed at the University of Aix-Marseille, by Comerauer and Roussel, with
some help from Kowalski at the University of Edinburgh. It is based on formal logic. It is
a non-procedural declarative programming language with built-in backtracking
mechanism. It has support for associative memory and pattern directed procedure
invocation. After LISP, it is the second most widely used language in AI community,
especially in Europe.

Ada – 1983 – History’s largest design effort

It involved a huge design effort, involving hundreds of people, much money, and about
eight years. It introduced Packages - support for data abstraction, elaborate exception
handling, generic program units, and concurrency through the tasking model.

It was the outcome of a competitive design effort. It included all that was then known
about software engineering and language design. Because of its size and complexity, first
compilers were very difficult and the first really usable compiler came nearly five years
after the language design was completed

Smalltalk - 1972-1980 – The Purest Object-Oriented Langauge

It was developed at Xerox PARC, initially by Alan Kay and then later by Adele
Goldberg. It is the first full implementation of an object-oriented language (data
abstraction, inheritance, and dynamic type binding) and the purest object-oriented
language yet! It pioneered the graphical user interface everyone now uses.

C++ - 1985

It was developed at Bell Labs by Stroustrup. It evolved from C and SIMULA 67.
Facilities for object-oriented programming, taken partially from SIMULA 67, were
added to C. It also has exception handling. It is a large and complex language, in part
because it supports both procedural and OO programming. Rapidly grew in popularity,
along with OOP and ANSI standard was approved in November, 1997.

30
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

Java - 1995

Java was developed at Sun in the early 1990s and is based on C++. It is significantly
simplified as compared to C++ and supports only OOP. It eliminated multiple
inheritance, pointers, structs, enum types, operator overloading, and goto statement and
added support for applets and a form of concurrency.

C# - 2002

It is part of the .NET framework by Microsoft. It is based upon C++ and Java and support
component-based software development. It has taken some ideas from Visual Basic. It
brought back pointers, structs, enum types, operator overloading, and goto statement. It
has safer enum types, more useful struct types, and modified switch statement.

Scripting Languages for Web

These languages were designed to address the need for computations associated with
HTML documents. JavaScript and PHP are two representative languages in this domain.

JavaScript – client side scripting

Primary objective of JavaScript is to create dynamic HTML documents and check
validity of input forms. It is usually embedded in an HTML document. It is not really
related to Java

PHP (Personal Home Page) – server-side scripting
It is interpreted on the Web Server when the HTML document in which embedded is
requested by the browser. It often produces HTML code as an output and is very similar
to JavaScript. It allows simple access to HTML form data and makes form processing
easy. It also provides support for many different database management systems and hence
provides Web access to databases.

Programming Language Evolution

Over the last five decades, programming languages have evolved after going through
several phases. These phases are briefly described below:

• 1950’s – Discovery and description of programming language concepts

Programming language design in this period took an empirical approach.
Programming languages were regarded solely as tools for facilitating the specification
of programs rather than as interesting objects of study in their own right. In this era
we saw development of symbolic assembly langauge, macro-assembly, FORTRAN,
Algol 60, COBOL, and LISP. Many of the basic implementation techniques were
discovered which include symbol table construction and look-up, stack algorithms for
evaluating arithmetic expressions, activation record stack, and marking algorithms for
garbage collection.

31
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8) VU

• 1960’s – Analysis and elaboration

This was the era when programming language design took a mathematical approach.
Here we saw theoretical research as an end in itself and a lot of analysis was carried
out for the purpose of constructing models and theories of programming languages.
Representative languages of this era include PL/1, Simula, Algol 68, and Snobol.
These languages elaborated the earlier languages and attempted to achieve greater
richness by synthesis of existing features and generalization. This resulted in greater
complexity. This was the time when formal languages and automata theory with
application to parsing and compiler theory as well as theory of operational and
mathematical semantics were defined. There was a lot of emphasis on program
correctness and verification.

• 1970’s – Effective software technology

Decreasing hardware cost and increasing software cost resulted in more complex
software requiring support for software engineering in the programming languages. It
also required development of tools and methodologies for controlling the
complexities, cost and reliability of large programs Therefore, languages designed in
this period had software engineering support in the form of structured design in the
form of structured programming, modular design, and verification. It saw a transition
from pure research to practical management of the environment. Verifiable languages
such as Pascal and Modula were developed as a result of this effort.

• 1980’s – Support for SE continued
• 1990’s and 2000’s

– Support for OOP and Internet
• 2010’s – Aspect-Oriented Programming

Language Design Perspectives

Programming Language design is not a simple task. A designer has to consider the need
for many different stake holders and balance their requirements. For example, software
developers ask for more features and theoreticians ask for features with clean semantics.
On the other hand developers of mission-critical software want features that are easier to
verify formally. Compiler writers want features that are orthogonal, so that their
implementation is modular. These goals are often in conflict and hence it is difficult to
satisfy all of them.

From a language definition perspective, once again different users have different needs.
Programmers need tutorials, reference manuals, and programming guides (idioms).
Implementers demand precise operational semantics and verifiers require rigorous
axiomatic or natural semantics. Language designers and language advocates want all of
the above. This means that a language needs to be defined at different levels of detail and
precision but none of them can be sloppy!

32
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

An Introduction to SNOBOL(Lecture 9-12)

Introduction

SNOBOL stands for StriNg Oriented SymBOlic Language. It is a Special purpose
language for string manipulation and handling. It was developed in 1962 at the Bell Labs
by Farber, Griswold, and Polensky.

It was created out of the frustrations of working with the languages of that time because
they required the developers to write large programs to do a single operation. It was used
to do most of the work in designing new software and interpreting different language
grammars. Toward the end of the eighties, newer languages were created which
could also be used for string manipulation.
They include the PERL and AWK. Unlike SNOBOL, Perl and Awk use regular
expressions to perform the string operations. Today, roughly forty years after its release,
the language is rarely used!

SIMPLE DATA TYPES

Initial versions of SNOBOL only supported Integers and Strings as the basic data types.
Real numbers were originally not allowed but were added to the language later on.

Integers

Both positive and negative integers were supported. Following are some examples of
integers in SNOBOL.

14 -234 0 0012 +12832 -9395 +0

It was illegal to use a decimal point or comma in a number. Similarly, numbers greater
than 32767 (that is, 215 – 1) could not be used as well. For the negative numbers, the
minus sign has to be used without any spaces between the sign and the number.
Following are therefore some examples of illegal numbers:

13.4 49723 - 3,076

As mentioned earlier, real numbers were allowed in the later versions of the language and
hence 13.4 is a legal number in SNOBOL4.

Strings

The second basic data type supported by the language is a string. A string is represented
by a sequence of characters surrounded by quotes (single of double). The maximum
length allowed for a string is 5,000 characters. Examples of strings are: “This is a string”,
‘this is also a string’,
“it’s an example of a string that contains a single quote”

33
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

SIMPLE OPERATORS

SNOBOL supports the usual arithmetic operators. This includes +, -, *, and /. In addition
it also supports the exponentiation operator which is ** or !. The unary – and + are also
supported. = operator is used for assignment. The precedence of the operators is as
follows: the unary operations are performed first, then exponentiation, then
multiplication, followed by division, and finally addition and subtraction. All arithmetic
operations are left associative except the exponentiation which is right associative.
Therefore, 2 ** 3 ** 2 is evaluated as 2 ** (3 ** 2) which is 512 and not (2 ** 3)
** 2 which would be 64. Like most languages, parentheses can be used to change the
order of evaluation of an expression.

Just like C, if both the operands of an operator are integers then the result is also an
integer. Therefore, 5 / 2 will be evaluated to be 2 and not 2.5.

VARIABLE NAMES

A variable name must begin with an upper or lower case letter. Unlike C, SNOBOL is
case insensitive. That is, the literals Wager and WAGER represent the same variable. If
the variable name is more than one character long, the remaining characters may be any
combination of letters, numbers, or the characters period ‘.’ and underscore ‘_’. The name
may not be longer than the maximum line length (120 characters). Following are some of
the examples of variable names:

WAGER P23 VerbClause SUM.OF.SQUARES Verb_Clause

SNOBOL4 STATEMENT Structure

A SNOBOL statement has three components. The structure of a statement is as follows:

Label Statement body :GOTOField

Label
The must begin in the first character position of a statement and must start with a letter or
number.

The GOTO Field

The goto field is used to alter the flow of control of a SNOBOL program. A goto filed has
the following forms:

:(label)
:S(label)
:F(label)
:S(label1) F(label2)

The first one is an command for unconditional jump to the label specified within
parentheses. The second is a command for jump to the specified label if the statement in

34
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

the body of the statement was executed successfully or resulted in true Boolean value.
The third one is opposite to the second and the control jumps to the label if the statement
is not executed successfully or resulted in false. The fourth is a combination of the second
and the third and states that goto label1 in case of success and label2 in case of failure.

Statement Body

The body can be of any of the following types:

Assignment statement
Pattern matching statement
Replacement statement
End statement

Assignment Statement

Assignment statement has the following form.

variable = value

Following are some examples of assignment statement which involve arithmetic
expressions.

v = 5
w.1 = v
w = 14 + 3 * -2
v = ‘Dog’

It is important to note that the binary operators must have at least one space on both sides.
For example 3+2 is not allowed.

It may also be noted that, unlike C, variable are not declared in SNOBOL. The
assignment statement creates a variable if it is not already created and assigns a type to it
which is the type of the expression in the right hand side of the assignment operator (r-
value). So the type of v and w is integer and w.1 is of type real. If a new value is assigned
to a variable, it type changes accordingly. For example the type of the variable v is integer
and it is now assigned a value of ‘Dogs’ then its type will change to string. This is known
as dynamic typing. That is, the type is determined at run time and changes during
execution.

If there is nothing on the right hand side of the assignment statement, then a value of
NULL string is assigned to the variable. This is demonstrated in the following example.

This.is.null.string =

Another very interesting aspect of SNOBOL is mixing numeric and string values in an
expression. If a string can be interpreted as a number then its numeric value will be used
in the expression as follows:

35
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

z = ‘10’
x = 5 * -z + ‘10.6’

Now a value of -39.4 will be assigned to x.

Strings Concatenation

SNOBOL was designed mainly for manipulating and handling strings. It has therefore
rich string manipulation mechanism. The first one is string concatenation. A Space is
used as an operator for concatenation as shown below:

TYPE = ‘Semi’
OBJECT = TYPE ‘Group’

The above set of statements will assign ‘SemiGroup’ to the variable OBJECT.
Numbers can also be concatenated with strings, producing interesting results. For
example, consider the following code segment:

ROW = ‘K’
NO. = 22
SEAT = ROW NO.

In this case NO. is concatenated with ROW and a value of ‘K22’ is assigned to SEAT.

The Space operator has a lower precedence than the arithmetic operators and hence we
can have arithmetic expressions in string concatenation. For example,

SEAT = ROW NO. + 6 / 2

will assign the value ‘K25’ to SEAT if ROW and No. have the values ‘K’ and 22
respectively.

Pattern Matching
Pattern matching and manipulation is another very important feature of SNOBOL.
The first statement in this regards is the Pattern Matching Statement. Once again Space is
used as the pattern matching operator and the statement has the following form:

subject pattern

Note that there is no assignment operator in this case. Both the subject and the pattern are
strings and this statement tries to match the pattern in the subject. It will be successful if
the match is found and will result in failure otherwise. This is demonstrated with the help
of the following example:

TRADE = ‘PROGRAMMER’
PART = ‘GRAM’
TRADE PART

Now ‘GRAM’ will be searched in ‘PROGRAMMER’. Since it is present in it
PROGRAM (‘MER’), it will result in success.

36
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

We can use Space for string concatenation as well as for pattern matching in the same
statement. In this case, the first space is used as pattern matching and the second one is
used as concatenation with concatenation taking precedence over pattern matching. This
is shown with the help of the following example:

ROW = ‘K’
NO. = 2
‘LUCK22’ ROW NO.

In this case, NO. is first concatenated with ROW resulting in ‘K2’ which will then be
matched in ‘LUCK22’. Once again the match will be successful.

Replacement

Replacement statement is used in conjunction with the pattern matching statement in the
following manner.

subject pattern = object

In this case the pattern is searched in the subject and if found it is replaced by the object
as demonstrated by the following example:

SENTENCE = ‘THIS IS YOUR PEN’
SENTENCE ‘YOUR’ = ‘MY’

Since ‘YOUR’ is present in the subject, it will be replaced by ‘MY’, resulting in changing
the value of SENTENCE to ‘THIS IS MY PEN’.

If we now have the following statement

SENTENCE ‘MY’ =

then SENTENCE will be further modified to ‘THIS IS PEN’ as we are now replacing
‘MY’ with a NULL string, effectively deleting ‘MY’ from the subject.

Pattern

There are two type of statements for pattern building. These are Alternation and
Concatenation.

Alternation

Vertical bar is used to specify pattern alternation as shown in the example below.

P1 | P2

This is example of a pattern that will match either P1 or P2.

37
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

Here are some more examples:

KEYWORD = ‘INT’ | ‘CHAR’

This statement assigns the pattern ‘INT’ | ‘CHAR’ to the variable KEYWORD.

KEYWORD = KEYWORD | ‘FLOAT’

KEYWORD will now get a new value which is ‘INT’ | ‘CHAR’ | ‘FLOAT’. So we can
create new pattern by using the assignment statement.

Let us now use the KEYWORD pattern in pattern matching and replacement.

 TEXT = ‘THIS IS AN INTEGER’
TEXT KEYWORD =

Since KEYWORD had the value ‘INT’ | ‘CHAR’ | ‘FLOAT’, that means any one of these
strings, that is ‘INT’, ‘CHAR’, or ‘FLOAT’, will match. This matches with INT in ‘THIS
IS AN INTEGER’ and will be replaced by the NULL string. So the new value of TEXT is
‘THIS IS AN EGER’.

Concatenation
Two or more patterns can be concatenated to create new patterns. For example we define
P1 and P2 as follows:

P1 = ‘A’ | ‘B’
P2 = ‘C’ | ‘D’

Now if we concatenate these and assign the result to P3 as shown below:

P3 = P1 P2

This will result in assigning ‘AC’ | ‘AD’ | ‘BC’ | ‘BD’ to P3 which is concatenation of
different alternatives of P1 and P2.

Therefore

“ABCDEFGH” P3

will match at “ABCDEFGH”

Conditional Assignment

At times we want to ensure that assignment occurs ONLY if the entire pattern match is
successful. This is achieved by using the ‘.’ (dot) operator as shown below.

pattern . variable

38
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

In this case upon successful completion of pattern matching, the substring matched by the
pattern is assigned to the variable as the value.

Following is a more elaborative example of this concept.

KEYWORD = (‘INT’ | ‘CHAR’) . K
TEXT = “INT INT CHAR CHAR INT”
TEXT KEYWORD =

In this case, the variable K which was associated with the pattern will get the value INT.

Here is another example.

Let us define the following pattern where BRVAL has been associated to this pattern by
the dot operator.

BR = (‘B’ | ‘R’) (‘E’ | ‘EA’) (‘D’ | ‘DS’) . BRVAL

Associates variable BRVAL with the pattern BR

It may be noted that the pattern BR is created by concatenating three different alternations
as shown below.

BR = (‘B’ | ‘R’) (‘E’ | ‘EA’) (‘D’ | ‘DS’)

Note that it is equivalent to

BR = ‘BED’ | ‘BEDS’ | ‘BEAD’ | ‘BEADS’ | ‘RED’ | ‘REDS’ | ‘READ’ |
+ ‘READS’

This ‘+’ in the first column of a line states that this is continuation of the last line and not
a new statement. Anyway, let us come back to our example.

On successful completion of matching, the entire substring matched will be assigned as
value of the BRVAL

So
‘BREADS’ BR

will assign ‘READS’ to BRVAL.

Let us now define the BR pattern as shown below and also associate FIRST, SECOND,
and THIRD to the respective constituent sub-patterns of this larger pattern.

 BR = ((‘B’ | ‘R’) . FIRST (‘E’ | ‘EA’) . SECOND
+ (‘D’ | ‘DS’) . THIRD) . BRVAL

39
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

On successful completion of matching, the entire substring matched will be assigned as
value of the BRVAL. In addition B or R will become the value of FIRST, E or EA will be
assigned to SECOND, and THIRD will get either D or DS.

So

‘BREADS’ BR

will result in the following assignments.

FIRST – ‘R’ , SECOND – ‘EA’, THIRD – ‘DS’
BRVAL – ‘READS’

Immediate Value Assignment

The ‘.’ (dot) operator is used for conditional assignment only when the entire pattern is
matched.

The $ is used for immediate value assignment even if the entire pattern does not match. It
is used as follows:

Pattern $ Variable

In this case whenever pattern matches a substring, the substring immediately becomes the
new value of the Variable. This is demonstrated with the help of the following example.

 BR = ((‘B’ | ‘R’) $ FIRST (‘E’ | ‘EA’) $ SECOND
+ (‘D’ | ‘DS’) $ THIRD) . BRVAL

Value assignment is done for those parts of the pattern that match, even if the overall
match failed.

So the following statement

‘BREAD’ BR

will result in the following matches.

FIRST – B, FIRST – R, SECOND – E, SECOND – EA, THIRD – D,
BRVAL - READ

Note that FIRST and SECOND get a value as soon as a match is made and hence are
assigned values more than once. Of course only the last value will be the value of these
variables at the end of entire match.

Let us now try make the following match.

‘BEATS’ BR

40
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

In this case the statement fails as the whole pattern is not matched but parts of it are
matched and hence get the values as shown below.

FIRST – ‘B’ , SECOND – ‘E’, SECOND – ‘EA’

Input and Output

The I/O is accomplished through INPUT and OUTPUT statements. We will look at
examples of I/O in the next sections.

Control Flow

Control flow is achieved through the ‘go to field’ in the statement body as shown in the
following examples.

The first example simply keeps on reading the entire line from the INPUT and stops when
there is end of input.

LOOP PUNCH = INPUT :S(LOOP)
END

The next example reads a line and prints it on the output and then goes back to read the
next lines again.

LOOP PUNCH = INPUT :F(END)
OUTPUT = PUNCH :(LOOP)

END

Here is a more interesting example that uses control flow. In this example it continues to
delete a matched pattern in the subject and stops when no match is found.

TEXT = “REDPURPLEYELLOWBLUE”

COLOR = ‘RED’ | ‘BLUE’ | ‘GREEN’
BASICTEXT COLOR = :S(BASIC) F(OTHER)
OTHER

In the following example all the numbers for 1 to 50 are added and the result is stored in
SUM and is printed on the output.

 SUM = 0
N = 0

ADD N = LT(N, 50) N + 1 :F(DONE)
SUM = SUM + N :(ADD)

DONE OUTPUT = SUM

Indirect Reference

41
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

Indirect reference is also an interesting feature of SNOBOL. It is similar to a pointer in
concept but there are certain differences as well. These differences will be highlighted in
the following code segments. Let us first look at the syntax:

The unary operator ‘$’ is used for indirect reference. Note that ‘$’ has been overloaded in
this case. This says that now instead of using the operand as the variable, use its value as
the variable. The rest will remain the same. Here is an example that elaborates this
concept:

MONTH = ‘APRIL’
$MONTH = ‘FOOL’

MONTH is given the value ‘APRIL’ 1. In statement 2, indirect reference is used. Here,
instead of MONTH, its value will be used as the variable. So it is equivalent to saying

APRIL = ‘FOOL’

Here is another example that uses indirect reference in a more interesting manner:

RUN = 10
WORD = ‘RUN’
$(WORD) = $(WORD) + 1

Because of indirect reference, it increments the value of RUN and not WORD.

The following example of indirect reference uses it in the go to field.

N = 3
N = N + 1 :$(‘LABEL’ N)

This results in making the control jump to LABEL4

Functions
SNOBOL 4 supports two types of functions: (a) built-in function which are known as
primitive functions and (b) user defined functions.

Primitive Functions

There are a number of primitive functions but we shall look at only a few. These include
SIZE and REPLACE functions. The SIZE function returns the size of a string and the
REPLACE function is used to replace one character with another in the entire string. Here
are some examples of these functions:

SIZE(TEXT)

PART1 = “NUT”
OUTPUT = SIZE(PART1)

Since the string stored in PART1 is ‘NUT’, it has three characters and hence the result is
3.

42
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

PART2 = “BOLT”
N = 64
OUTPUT = SIZE(‘PART’ N + 36)

In this case, PART will be concatenated with 100 and will generate the string PART100.
The output will thus display 7.

REPLACE function has the following syntax:

REPLACE(STRING, ST1, ST2)

In this case all occurrences of ST1 in STRING will be replaced by ST2. ST1 and ST2
must have the same number of characters. The corresponding characters of ST1 will be
replaced by characters corresponding to them in ST2. This is shown in the following
example.

TEXT = “A(I,J) = A(I,J) + 3”
OUTPUT = REPLACE(TEXT , ’()’ , ‘<>’)

The output will thus display:

A<I,J> = A<I,J> + 3

Arrays
SNOBOL4 has array data type just like other languages. However, unlike most
languages, data stored in an array is not necessarily of the same type. That is, each
element can be of different data type.

The following statement creates and assigns to V a one-dimensional array of 10 elements,
each assigned to the real value of 1.0.

V = ARRAY(10, 1.0)

The next statement creates a one-dimensional array X of 8 elements with the lower
index being 2 and the upper index being 9. As there is no initial value given, each cell is
initialized to NULL string.

X = ARRAY(‘2:9’)

The following statement creates a two dimensional array of 3 x 5 and each cell is
initialized to NULL string.

N = ARRAY(‘3,5’)

The size of the array can be determined at run time by using input from the system of
using a variable. Following example shows this concept:

A = ARRAY(INPUT)

43
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

In this case size and initial value of the array is determined by the input.

Following example creates an array whose size is determined at run time. It then stores
values in it from the INPUT. It is important to note here that when the array index ‘I’ gets
a value, as the result of increment in the second last statement, greater than the value of
the last index of the array, the statement with Label MORE fails and the control goes to
the Label GO.
Arrays

&TRIM = 1
I = 1
ST = ARRAY(INPUT)

MORE ST<I> = INPUT :F(GO)
I = I + 1:(MORE)

GO

The following example uses arrays in an interesting manner:

&TRIM = 1
WORDPAT = BREAK(&LCASE &UCASE) SPAN(&LCASE &UCASE "'-") . WORD

COUNT = ARRAY('3:9',0)
READ LINE = INPUT :F(DONE)
NEXTW LINE WORDPAT = :F(READ)

COUNT<SIZE(WORD)> = COUNT<SIZE(WORD)>+ 1 :(NEXTW)
DONE OUTPUT = "WORD LENGTH NUMBER OF OCCURRENCES"

 I = 2
PRINT I = I + 1

OUTPUT = LPAD(I,5) LPAD(COUNT<I>,20) :S(PRINT)
END

The first statement simply deletes leading spaces from the input.

In the second statement, a pattern WORDPAT is defined. It uses tow primitive functions
BREAK and SPAN. BREAK takes the cursor to the first lowercase or uppercase
character in the subject. The SPAN provides a mechanism to keep moving as long as we
get uppercase, lowercase, or a hyphen in the subject string. So this pattern scans the
subject string for complete words. Since we have associated variable WORD with this
pattern, the matched value will be stored in it.

In the third statement an array COUNT is created whose first index is 3 and last index is
9. All elements are initialized to 0.

Fourth statement reads a line from the input. At the end of the input, the control the
statement fails and the control goes to DONE.

In the fifth statement WORDPAT is matched in the LINE and match is replaced by the
NULL string. The matched value is also stored in WORD. When there is no match found,
the statement fails and the control goes to READ to read the next line from the input.

In the sixth statement, the size of the word is used as the array index and the value is
incremented at that index. If it is less than 3 or greater than 9 then nothing happen. In fact

44
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

the statement fails in this case but since there is unconditional jump, it goes back to read
the next word from the input.

The rest of the statements are used to display the values at each array index. That is, this
program simply counts the occurrences of words of lengths between 3 and 9 in the input
and displays that number.

Tables
A table data structure maps pairs of associated data objects. Tables have varying lengths
and are dynamically extended if necessary.

T = TABLE()

creates a table of unspecified length.

T = TABLE(N)

creates a table that initially has room for N elements

Once created, table can be used in a manner similar to arrays. The only difference is that
they are indexed by the key value and not the index number. For example:

T<‘A’> = 1

Associates key ‘A’ with value 1.

SNOBOL Features

• Dynamic typing
• Mixing arithmetic and string operations
• String operations including concatenation
• GOTO control structure
• Overloaded operators
• Space as an operator
• Run-time compilation
• code can be embedded in data, allowing easy run-time extension of programs
• Variable length string
• Array tables and record type objects
• Absence of declaration
• Operator overloading.

Issues

45
© Copyright Virtual University of Pakistan

Introduction and Historical Background (Lecture 1-8)
VU

Developers of SNOBOL had no or limited experience in software development.
Griswold did not have any prior computing experience. Polonsky had also limited
software development skills. This led to a number of issues:

• Crucial aspects of development process, such as documentation, were overlooked.
• The lack of formal documentation led the initial version of SNOBOL to minimal

use.
• Another design problem was that developers treated language semantics casually.

Such a poor practice hindered other programmers from understanding the meaning
of the program.

• Choice of operators
• Poor readability and writability.
• Dynamic typing
• Mixing arithmetic and string operations
• String operations including concatenation
• GOTO control structure
• Overloaded operators. For example, the use of a blank as a concatenation operator

caused confusions in coding and maintenance. Users had to be bewared of the
proper use of the blank space operator, and not to confuse it with other operators.

To top it all the compiler was not sophisticated. Any string of characters was a legal
SNOBOL program, and the compiler would accept everything as long as it was a string.
The legend says that Griswold accidentally gave a non-SNOBOL program to the
SNOBOL compiler, and the program was successfully compiled!

46
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Ada Programming Language: An Introduction (Lecture 13-17)

Design Goals

Ada is a computer programming language originally designed to support the construction
of long-lived, highly reliable software systems. Its design emphasizes readability, avoids
error-prone notation, encourages reuse and team coordination, and it is designed to be
efficiently implementable.
A significant advantage of Ada is its reduction of debugging time. Ada tries to catch as
many errors as reasonably possible, as early as possible. Many errors are caught at
compile-time by Ada that aren't caught or are caught much later by other computer
languages.

Ada programs also catch many errors at run-time if they can't be caught at compile-time
(this checking can be turned off to improve performance if desired).

In addition, Ada includes a problem (exception) handling mechanism so that these
problems can be dealt with at run-time.

The main design goals of Ada were:
• Program reliability and maintenance
• Military software systems are expected to have a minimum lifetime of 30 years.
• Programming as a human activity
• Efficiency

Hence emphasis was placed on program readability over ease of writing.

Ada History

The need for a single standard language was felt in 1975 and the draft requirements
were given the code name strawman. Strawman was refined to Woodman and
then Tinman in 1976. It was further refined to ironman. At that time proposals
were invited for the design of a new language. Out of the 17 proposals received,
four were selected and given the code names of green, red, blue, and yellow.
Initial designs were submitted in 1978 and red and green short listed on the basis
of these designs. Standard requirements were then refined to steelman. The
designs were refined further and finally Green was selected in 1979. DoD
announced that the language will be called Ada. The 1995 revision of Ada (Ada
95) was developed by a small team led by Tucker Taft. In both cases, the design
underwent a public comment period where the designers responded to public
comments.

47
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Ada Features
The salient features of Ada language are as follows:

• Packages (modules) of related types, objects, and operations can be defined.
• Packages and types can be made generic (parameterized through a template) to

help create reusable components.
• It is strongly typed
• Errors can be signaled as exceptions and handled explicitly. Many serious errors

(such as computational overflow and invalid array indexes) are automatically
caught and handled through this exception mechanism, improving program
reliability.

• Tasks (multiple parallel threads of control) can be created and communicate. This
is a major capability not supported in a standard way by many other languages.

• Data representation can be precisely controlled to support systems programming.
• A predefined library is included; it provides input/output (I/O), string

manipulation, numeric functions, a command line interface, and a random number
generator (the last two were available in Ada 83, but are standardized in Ada 95).

• Object-oriented programming is supported (this is a new feature of Ada 95). In
fact, Ada 95 is the first internationally standardized object-oriented programming
language.

• Interfaces to other languages (such as C, Fortran, and COBOL) are included in the
language.

The first Example – Ada “Hello World”

with Ada.Text_Io; -- intent to use
use Ada.Text_Io; -- direct visibility

-- the first two statements are kind of include in C

procedure Hello is -- procedure without parameters is the
-- starting point

begin
Put_Line("Hello World!");

-- this statement prints “Hello World” on the output
end Hello;

It may be noted that Ada is not case sensitive.

48
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Ada Operators

Ada has a rich set of operators. The following table gives a list of these operators and also
shown corresponding C++ operators for reference.

Operator C/C++ Ada
Assignment = :=
Equality == =
Non Equality != /=
Greater Than > >
Less Than < <
Greater Than Or Equal >= >=
Less Than Or Equal <= <=
PlusEquals +=
SubtractEquals -=
MultiplyEquals *=
DivisionEquals /=
OrEquals |=
AndEquals &=
Modulus % Mod
Remainder Rem
AbsoluteValue Abs
Exponentiation **
Range ..
Membership In
Logical And && And
Logical Or || Or
Logical Not ! Not
Bitwise And & And
Bitwise Or | Or
Bitwise Exclusive Or ^ Xor
Bitwise Not ~ Not
String Concatenation &

It is important to note that Ada has not included operators like PlusEquals as such
operators reduce readability.

49
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Operator Overloading

Ada allows a limited overloading of operators. The exception in Ada is that the
assignment operator (:=) cannot be overridden. It can be overridden in case of
inheritance from a special kind of “abstract class”. When you override the equality
operator (=) you also implicitly override the inequality operator (/=).

Ada Types
Ada provides a large number of kinds of data types. Ada does not have a predefined
inheritance hierarchy like many object oriented programming languages. Ada allows you
to define your own data types, including numeric data types. Defining your own type in
Ada creates a new type.

Elementary Types

The elementary Ada type are:

• Scalar Types
• Discrete Types
• Real Types
• Fixed Point Types
• Access Types

Discrete Types

Discrete types include Integer types, Modular types, Character types, enumeration types,
and Boolean type.

Integer Types

We first look at Signed Integer types. Ada, like other languages, supports signed integers.
However, in this languages we can also define our own integer type with a limited set of
values as shown in the following example:

type Marks is range 0..100;

This defines a type Marks with the property that a variable of this type can only have
values between 0 and 100.

We can now create variable with this type as shown below:

finalScore : Marks;

You may also note that the syntax of Ada for variable declaration is different from C. In
this case, the type comes after the variable name and is separated by a : from the variable
names.

50
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Unsigned (Modular) Types

Modular types support modular arithmetic and have wrap around property. This concept
is elaborated with the help of the following example:

type M is mod 7; -- values are 0,1,2,3,4,5,6

q : m := 6; -- initialization
…
q := q + 2; -- result is 1

It is most commonly used as conventional unsigned numbers where overflows and
underflows are wrapped around.

type Uns_32 is mod 2 ** 32;

Remember that twos complement arithmetic is equivalent to mod 2**wordsize.

Character Types

There are two built in character types in Ada
• Simple 8-bit ASCII Characters
• Wide_Character that support 16-bit Unicode/ISO standard 10646.

These are good enough for most purposes, but you can define your own types just like the
integer types:

type LetterGrades is (‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’, ‘W’);

This can now be used to declare variables of this type.

Enumeration Types

Just like C, an enumeration type in Ada is a sequence of ordered enumeration literals:

type Colors is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
type State is (Off, Powering_Up, On);

It is however different from C in many respects:
1. There is no arithmetic defined for these types. For example:

S1, S2 : State;
S1 := S1 + S2; -- Illegal

2. One can however add/subtract one (sort of increment and decrement) using the Pred
and Succ as shown below:

State’Pred (S1)
State’Succ (S2)

51
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

3. Unlike C, the same symbolic literal can be used in two enumeration types. For
example:

type RainbowColors is (Red, Orange, Yellow, Green, Blue, Indigo, Violet);
type BasicColors is (Red, Green, Blue);

The Ada compiler will use the type of the variable in question and there will be no
ambiguity.

Enumeration types are used as attributes or properties of different objects.

Boolean Types

Boolean is a predefined enumeration type and has the following definition.

type Boolean is (False, True);

Expressions of type Boolean are used in logical statements and are used as conditions in
the if statements, while loops, exit statements, etc.

Floating Point Types

Like most other languages, Ada also supports floating point types. In this case, we can
also explicitly declare the desired precision of the number. For example:

type Double is digits 15;

defines a floating point type with 15 decimal digits of precision.

type Sin_Values is digits 10 range -1.0..1.0;

defines a type with 10 decimal digits of precision and a valid range of values from -1.0
through 1.0.

Ordinary Fixed Point Types

Ada also supports fixed point real numbers that are used for more precise decimal
arithmetic such as financial applications. In the Ordinary fixed point type, the distance
between values is implemented as a power of 2. For example:

type Batting_Averages is delta 0.001 range 0.0..1.0;

The type Batting_Averages is a fixed point type whose values are evenly spaced real
numbers in the range from 0 through 1. The distance between the values is no more than
1/1000. The actual distance between values may be 1/1024, which is 2-10.

52
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Decimal Fixed Point Types
In the case of decimal fixed point types, the distance between values is implemented as a
power of 10.

type Balances is delta 0.01 digits 9 range 0.0 .. 9_999_999.99;

The important difference in the definition of a decimal fixed point type from an ordinary
fixed point type is the specification of the number of digits of precision.

This example also shows how Ada allows you to specify numeric literals with
underscores separating groups of digits. The underscore is used to improve readability.

Arrays

Like most other languages, Ada also supports arrays. One major difference between the
arrays in Ada and C is that the indexes of arrays in Ada do not start from 0. In fact, the
range of indexes to be used can be defined by the programmer as shown below:

type Int_Buffer is array (1..10) of Integer;

type Normalized_Distribution is array(-100..100) of Natural;

An array type can also be defined without a specific size. In this case the size is defined at
the time of instantiation of a variable of that type. For example:

type String is array (Positive range <>) of Character;

Can now be used to create variable of specific size as shown below:

Last_Name : String(1..20);

Another very interesting feature of Ada is that the array indexes can be of any discrete
type. For example if we define Days as below:

type Days is (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

then we can create an array which uses Days (or any sub-range of Days) as the array
indexes as shown below.

type Daily_Sales is array(Days) of Float;

Now the type Daily_Sales is an array type of size 7 and indexes Monday through Sunday.
Also note that these literals will be used as indexes in the statements that reference array
elements.

Record Definitions

Record types are like structures in C. The following example shows a record type
Address with three fields.

53
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

type Address is record
Street : Unbounded_String;
City : Unbounded_String;
Postal_Code : String(1..10);

end record;

Once defined, it can be used to declare variables of that type as shown below:

My_Address : Address;

The dot operator, ‘.’, is used to access individual fields. This is demonstrated in the
example below:

My_Address.Postal_Code := “00000-0000”;

Discriminated Records

Discriminated records are like union types in C. There are however major differences
between C union types and Ada discriminated records. The union type in C is
fundamentally unsafe, and therefore unacceptable. For example, consider the following
definition:

union (int, float) puzzle;

Now puzzle has either an int or a float. But at runtime, the compiler and the environment
cannot tell which particular value has been stored currently. So we have to trust the
programmer. In Ada we are short on trust. The whole philosophy is that a programmer is
a human and all humans make mistakes. So to make it safer, Ada uses discriminants in a
record that tell what type of data is currently stored there. This is shown in the following
example:

type IF is (Int, Float);
type Int_Float (V : IF := Int) is record
 case V is
 when Int => Int_Val : Integer;
 when Float => Float_Val : Float;
 end case;
end record;

Now the value of the discriminant V shows what type is currently present. Variables of a
discriminated type are referenced as shown in the following example:

Puzzle : Int_Float;
…
Puzzle := (Float, 1.0);
F := Puzzle.Float_Val; -- OK
I := Puzzle.Int_Val; -- type mismatch - raise exception
…
Puzzle.V := SomeIntValue; -- not allowed!

54
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Discriminated records can be used for making subtypes

subtype PuzzleI is puzzle (Int); -- this type only holds int values
These can also be used to specify array dimensions:
Subtype Vlen is Integer range 1 .. 10;
type Vstr (Vlen : Integer := 0) is record
 Data : String (1 .. Vlen);
end record;
VV : Vstr := (5, “hello”);

Access Types

An access type roughly corresponds to a C++ pointer.

type Address_Ref is access Address;

A_Ref := new Address;
A_Ref.Postal_Code := "94960-1234";

Note that, unlike C, there is no notational difference for accessing a record field directly
or through an access value.

To refer to the entire record accessed by an access value use the following notation:

Print(A_Ref.all);

55
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Statement Forms

Assignment statement

Like all imperative languages, Ada also supports the assignment statement. However, in
Ada the assignment is not an expression like C. The syntax of the assignment statement is
as follows:

Variable := expression;

Note that, in Ada, ‘:=’ is used as the assignment operator whereas ‘=’ is used as
assignment operator in C.

If Statement

The Ada if statement is fully blocked. In fact, all Ada control structures are fully blocked.
That means, we do not have two separate forms if we need only one statement to be
executed if the condition for the if statement is true and if we want more than one
statements. The body of the if statements is always in side a a complete block that starts
with the then keyword and end with end if as shown below:

if condition then
-- statement(s)

end if;

If an if statement has multiple else parts with separate conditions, then Ada uses the
keyword elsif to indicate that. The else part is optional and comes at the end. Each if
statement must have a corresponding end if in it. The following examples demonstrate
this concept.

if condition1 then
-- statement(s)

elsif condition2 then
if condition3 then

-- statements
end if;
-- statement(s)

…
else

-- statement(s)
end if;

if condition1 then
-- statements

elsif condition2 then
if condition3 then

-- statements
end if;
-- statements

…

56
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

else if condition4 then
-- this is a new if statement and hence must have its own end if
-- statements

 end if;
-- statements

end if;

Case Statements

Case statement is like the switch statement in C, but as compared to C, it is safer and
more structured. Its syntax is as shown below:

case expression is
when choice list =>

sequence-of-statements
when choice list =>

sequence-of-statements
when others =>

sequence-of-statements
end case;

As opposed to C, the case statement is fully structured; there is no equivalent of the break
statement and the control does not fall through to the next choice after executing the set of
statements for the selected choice. The choice _list can have more than one values
specified in the form of a range specified with the .. operator like 1..10, discrete values
separated by | such as a | e | i | o | u, or a combination of both. The following example
elaborates this concept.

case TODAY is
when MON .. THU =>

WORK;
when FRI =>

WORK; PARTY;
when SAT | SUN =>

REST;
end case;

All values in when branches must be static and all possible values of expression must be
included exactly once. In Ada, the case expression must match one of the choices given
in the when clause as an exception will be raised as run time if there is no match. when
others => is like default in C and is used to cover all the rest of the choices not
mentioned in the above when clauses.

Looping

There are three types of loops in Ada:
1. Simple Loop – unconditional infinite loop
2. While loop
3. For Loop

57
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Simple Loop

A simple loop is used to signify a potentially infinite loop. These loops are typically used
in operating systems and embedded systems. Its syntax is as follows:

loop
-- Loop body goes here

end loop;

The exit statement can be used to come out of the loop as shown below.

loop
-- Loop body goes here
exit when condition;

end loop;

It is equivalent to the following code segment.

loop
-- Loop body goes here
if condition then

exit;
end if;

end loop;

The exit statement is like the break statement in C but there are certain differences and
will be discussed later.

58
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

While and For Loops

Ada has only the pre-test while loop and does not support the post-test loop like the do-
while statement in C. The while statement in Ada has the following structure.

while condition loop
-- Loop body goes here

end loop;

The semantics of the while statement are exactly the same as its counterpart in C.

The for statement in Ada is however quite different here. In C, the for statement is
virtually the same as the while statement as the condition in the C for statement is
checked in each iteration and the number of iterations therefore cannot be determined
upfront.

In Ada for statement, the number of iterations are fixed the first time the control hits the
for statement and is specified by a range just like the choice_list in the case statement as
shown below:

for variable in low_value .. high_value loop
-- Loop body goes here

end loop;

The value of the loop variable can be used but cannot be changed inside the loop body.
The loop counting can be done in the reverse order as well. This is shown below.

for variable in reverse high_value .. low_value loop

-- Loop body goes here
end loop;

Exit statement

The exit statement can be used with our without a when condition as mentioned in the
case of the loop statement.
exit;
exit when condition;

It can only be used in a loop. It can use labels and can be used to specify the specific loop
to exit as shown below.

Outer : loop
 Inner : loop

…
exit Inner when Done;

 end loop Inner;
end loop Outer;

59
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Block Statement

Block statement in Ada is very similar to a block in C. It can be used anywhere and has
the following structure:

declare -- declare section optional
 declarations
begin
 statements
exception -- exception section optional
 handlers
end;

Return statement

The return statement can only be used in subprograms and has the following form:

return; -- procedure
return expression; -- function

Function must have at least one return.

Raise statement

Raise statement is like throw statement in C++ and is used to raise exception as shown
below:

raise exception-name;

Declaring and Handling Exceptions

Ada was the first language to provide a structured exception handling mechanism. C++
exception handling is very similar to Ada. In Ada, the programmer can declare, raise, and
handle exception.

Declaring an exception
Exceptions are declared just like any other variable before they can be raised. This is
shown in the following example:

Error, Disaster : exception;

Raising an exception

Like throw in C++, an Ada programmer can explicitly raise an exception and it strips
stack frames till a handler is found.

raise Disaster;

60
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Handling an exception

Like C++, an exception handling code may be written at the end of a block.

Anywhere we have begin-end, we can also have an exception handling code. The
structure of exception handling part is shown in the following example.

begin
 statements
exception
 when exception1 => statements;

 when exception2 => statements;
end;

Subprograms

In Ada, there are two types of subprograms: procedures and functions. Unlike C, we can
also have nesting of subprograms. A subprogram defined inside another subprogram an
be used by its parent, children, or sibling subprograms only.

This is demonstrated in the following example:

Procedure My_procedure(x, y : IN OUT integer) is
 …
function aux_func(a : Integer) return integer is

Temp : float;
begin

…
return integer(temp) * a; -- retrun temp * a is not allowed

end aux_func;
…

begin -- begin of My_procedure
…
aux_func(x);
…

end My_procedure;

61
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Packages
The primary structure used for encapsulation in Ada is called a package. Packages are
used to group data and subprograms. Packages can be hierarchical, allowing a structured
and extensible relationship for data and code. All the standard Ada libraries are defined
within packages.

Package definitions usually consist of two parts: package specification and package body.
Package bodies can also declare and define data types, variables, constants, functions, and
procedures not declared in the package specification. In the following example, a STACK
package is defined. We first the have the package specification as follows:

package STACK is
procedure PUSH (x : INTEGER);
function POP return INTEGER;

end STACK;

The body of the package is shown below.

package body STACK is
MAX: constant := 100;
S : array (1..MAX) of INTEGER;
TOP : INTEGER range 0..MAX;

procedure PUSH (x : INTEGER) is
begin

TOP := TOP + 1;
S(TOP) := x;

end PUSH;

function POP return integer is
TOP := TOP - 1;
return S(TOP + 1);

end POP;
begin

TOP := 0;
end STACK;

Once defined, a package can be used in the client program as follows:

with STACK; use STACK;
procedure myStackExample is

I, O : integer;
begin

…
push(i);
…
O := pop;
…

end myStackExample;

62
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Object-Orientation – The Ada Way
Ada provides tools and constructs for extending types through inheritance. In many object
oriented languages the concept of a class is overloaded. It is both the unit of encapsulation
and a type definition. Ada separates these two concepts. Packages are used for
encapsulation and Tagged types are used to define extensible types.

Tagged Type

A tagged type is like a record which can be used to declare objects. Following is an
example of a tagged type:

type Person is tagged record
Name : String(1..20);
Age : Natural;

end record;

Such a type definition is performed in a package. Immediately following the type
definition must be the procedures and functions comprising the primitive operations
defined for this type. Primitive operations must have one of its parameters be of the
tagged type, or for functions the return value can be an instance of the tagged type. It
allows you to overload functions based upon their return type. It may be noted that C++
and Java do not allow you to overload based upon the return type of a function.

Extending Tagged Types
Just like classes in C++, the tagged type can be extended by making a new tagged record
based upon the original type as shown below:

type Employee is new Person with record
Employee_Id : Positive;
Salary : Float;

end record;

In this example, type Employee inherits all the fields and primitive operations of type
Person.

63
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Generics
Generics are like templates in C++ and allow parameterization of subprograms and
packages with parameters which can be types and subprograms as well as values and
objects. The following example elaborates the concept of generics.

generic
MAX : positive;
type item is private;

package STACK is
procedure PUSH (x : item);
function POP return item;

end STACK;

Note that the type of the item is left unspecified. The corresponding body of STACK
package is as follows:

package body STACK is

S : array (1..MAX) of item;
TOP : INTEGER range 0..MAX;

procedure PUSH (x : item) is
begin
…
end PUSH;

function POP return item is
…
end POP;

begin
TOP := 0;

end STACK;

Once we have the generic definition, we can instantiate our own STACK for the given
type which is integer in the following example.

declare
package myStack is new STACK(100, integer);
use myStack;

begin
…
push (i);
…
O := pop;
…

end;

64
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Concurrency

Ada Tasking allows the initiation of concurrent tasks which initiates several parallel
activities which cooperate as needed. Its syntax is similar to packages as shown below:

task thisTask is
…-- interfaces

end thisTask;

task body thisTask is
…

end thisTask;

task simpleTask; -- this task does not provide an interface to other tasks

Here is a very simple example that demonstrates the concept of parallel processing. In
this example we specify COOKING a procedure composed of three steps.

procedure COOKING is
begin

 cookMeat;
 cookRice;
 cookPudding;

end COOKING;

As these steps can be carried out in parallel, we define tasks for these tasks as shown
below:

procedure COOKING is
task cookMeat;
task body cookMeat is
begin

-- follow instructions for cooking meat
end cookMeat;

task cookRice;
task body cookRice is
begin

-- follow instructions for cooking rice
end cookRice;

begin
 cookPudding;

end COOKING;

65
© Copyright Virtual University of Pakistan

Ada Programming Language: An Introduction (Lecture 13-17) VU

Other Features
Ada is a HUGE language and we have looked at may be only 25-30% of this language. It
is to be remembered that the main objective of the Ada design was to incorporate the
contemporary software engineering knowledge in it. In general, software development
time is: 10% design, 10% coding, 60% debug and 20% test. Last 80% of the project is
spent trying to find and eliminate mistakes made in the first 20% of the project. Therefore
Ada promised to spend 20% time in design, 60% in coding, 10% in debug, and 10% in
testing. Therefore cutting the entire cycle time in half!

I would like to finish with a quote from Robert Dewar:
“

When Roman engineers built a bridge, they had to stand under it while the first
legion marched across. If programmers today worked under similar ground rules,
they might well find themselves getting much more interested in Ada. “

66
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

LISP Programming Language: An Introduction (Lecture 18-21)

Functional Programming Paradigm and LISP

Functional programming is a style of programming that emphasizes the evaluation of
expressions, rather than execution of commands. The expressions in these languages are
formed by using functions to combine basic values. A functional language is a language
that supports and encourages programming in a functional style.

LISP is a representative language of this style of programming.

Lisp stands for “LISt Process”. It was invented by John McCarthy in 1958 at MIT. It has
simple data structure (atoms and lists) and makes heavy use of recursion. It is an
interpretive language and has many variations. The two most popular versions are
Scheme and Common Lisp (de facto industrial standard). It is the most widely used AI
programming language.

Valid Objects

A LISP program has two types of elements: atoms and lists.

Atoms:

Atoms include numbers, symbols, and strings. It supports both real numbers and integers.

symbols: a symbol in LISP is a consecutive sequence of characters (no space). For
example a, x, and price-of-beef are symbols. There are two special symbols: T and NIL
for logical true and false.

strings: a string is a sequence of characters bounded by double quotes. For example "this
is red" is a string.

S-expression
An S-expression (S stands for symbolic) is a convention for representing data or an
expression in a LISP program in a text form. It is characterized by the extensive use of
prefix notation with explicit use of brackets (affectionately known as Cambridge Polish
notation).

S-expressions are used for both code and data in Lisp. S-expressions were originally
intended only as machine representations of human-readable representation of symbols,
but Lisp programmers soon started using S-expressions as the default notation.

S-expressions can either be single objects or atoms such as numbers, or lists.

67
© Copyright Virtual University of Pakistan

http://en.wikipedia.org/wiki/Polish_notation
http://en.wikipedia.org/wiki/Polish_notation

LISP Programming Language: An Introduction (Lecture 18-21) VU

Lists
List is the most important concept in LISP. A list is a group of atoms and/or lists,
bounded by (and). For example (a b c) and (a (b c)) are two lists. In these examples the
list (a b c) is a list of atoms a, b, and c, whereas (a (b c)) is a list of two elements, the first
one an atom a, and the second one a list (b c).

Top elements of a list

The first-level elements in LISP are called top-level elements. For example
top elements of list (a b c) are a, b, and c. Similarly, top elements of list (a (b c)) are a and
(b c).

An empty list is represented by nil. It is the same as ().

Function calls

In LISP, a function and a function call is also a list. It uses prefix notation as shown
below:

(function-name arg1 ... argn)

A function call returns function value for the given list of arguments. Functions are either
provided by LISP function library or defined by the user.

Following are some examples of function calls. Note that the first symbol is the name of
the function and the rest are its arguments.

 >(+ 1 3 5)
 9

Note that the arithmetic functions may take more than two arguments.

 >(/ 3 5)
 3/5

When we use two integers in division, the answer is converted into fraction.

 >(/ 3.0 5)
 0.59999999999999998

Note the difference between integer and real division.

 >(sqrt 4)
 2

68
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

Evaluation of S-expression

S-expressions are evaluated as follows:

1) Evaluate an atom.
• numerical and string atoms evaluate to themselves;
• symbols evaluate to their values if they are assigned values, return Error,

otherwise;
• the values of T and NIL are themselves.

2) Evaluate a list
• evaluate every top element of the list as follows, unless explicitly forbidden:
• the first element is always a function name; evaluating it means to call the
function body;
• each of the rest elements will then be evaluated, and their values returned as
the arguments for the function.

Examples:

1.
>(+ (/ 3 5) 4)
23/5

The first element is + so we make a call to + function with (/ 3 5) and 4 as arguments.
Now (/ 3 5) is evaluated and the answer is 3/5. After that 4 is evaluated to itself and thus
returns 4. So, 3/5 and 4 are added to return 23/5.

2.
>(+ (sqrt 4) 4.0)
6.0

This example is similar to the first example.

3.
>(sqrt x)
Error: The variable
 X is unbound.

This code generates an error as the symbol x is not associated with any value and thus
cannot be evaluated.

69
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

setq, set, and setf are used to assign a value to a symbol.

For example, the following code assigns a value 3 to symbol x.

>(setq x 3.0)
 3.0

setq is a special form of function (with two arguments). The first argument is a symbol
which will not be evaluated and the second argument is a S-expression, which will be
evaluated. The value of the second argument is assigned to be the value of the first
argument.

To forbid evaluation of a symbol a quote or ’ is used.

For example

>(quote x)
 x

Similarly if we have
>(setq x 3.0)
 3.0

and then we do

>(setq y x)
3.0

then y will also have a value 3.0

But if we use a quote as shown below

<(setq y ‘x)
x

then x will not be evaluated and y will get the value x instead of 3.0.

Functions

There are many built-in function is LISP. This includes math functions as well as
functions for manipulating lists. The math functions include:

– +, -, *, /, exp, expt, log, sqrt, sin, cos, tan, max, min

with the usual meanings.

List Constructors
Lists can be constructed (created and extended) with the help of three basic functions.
These are cons, list and append.

70
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

cons takes two arguments. The first argument is a symbol and the second one is a list. It
inserts the first argument in front of the list provided by the second argument. It is shown
in the following example:

>(cons 'x L) ; insert symbol x at the front of list L, which is
(X A B C) ; (A B C)

list takes arbitrary number of arguments and makes a list of these arguments as shown
below:

>(list 'a 'b 'c) ; making a list with the arguments as its elements
 (A B C) ; if a, b, c have values A, B, C, then (list a b c) returns list (A B C)

append takes two lists as arguments and appends one list in front of the other as shown
below:

>(append '(a b) '(c d))
(A B C D) ; appends one list in front of another

List Selectors

In order to select elements from a list, selectors functions are used. There are two basic
selector functions known as first (or car) and rest (or cdr). The rest can be build with the
help of these functions.

first (or car) takes a list as an argument and returns the first element of that list as shown
in the following examples:

>(first '(a s d f))
 a

>(first '((a s) d f))
 (a s)
>(setq L '(A B C))
(A B C)

>(car L)
A

rest (or cdr) takes a list as its argument and returns a new list after removing the first
element from the list. This is demonstrated in the following examples:

>(rest '(a s d f))
(s d f).

>(rest '((a s) d f))
 (d f)

>(rest '((a s) (d f))
 ((d f))

71
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

>(setq L '(A B C))
(A B C)

>(cdr L)
(B C)

Some of the other useful list manipulation functions are:

>(reverse L) ; reverses a list
 (C B A)

and

>(length L) ; returns the length of list L
 3

Predicates

A predicate is a special function which returns NIL if the predicate is false, T or anything
other than NIL, otherwise. Predicates are used to build Boolean expressions in the logical
statements.

The following comparative operators are used as functions for numerical values and
return a T or NIL. =, >, <, >=, <=;

For example:
 (= (+ 2 4) (* 2 3))
 T

 (> (- 5 2) (+ 3 1))
 NIL

For non numeric values you can only check for equality using equal or eq.

Some other useful predicates are listed below:
atom: test if x is an atom
listp: test if x is a list

Also number, symbolp, null can be used to test whether the operand is a number,
symbol, or a null value.

Set Operations

A list can be viewed as a set whose members are the top elements of the list. The list
membership function is a basic function used to check whether an element is a member of
a list or not. It is demonstrated with the help of the following code:

 >(setq L '(A B C))

72
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

 >(member 'b L) ; test if symbol b is a member (a top element) of L
 (B C) ; if yes, returns the sublist of L starting at the
 ; first occurrence of symbol b

 >(member ‘b (cons 'b L))
 (B A B C)

Note here that the mathematical definition of a set is different from the LISP definition. In
Mathematics, a symbol cannot be repeated in a set whereas in LIST there is no such
restriction.

If an element is not present in the list, it returns NIL as shown below.

 >(member x L)
 NIL ; if no, returns NIL

Some of the other set operations are defined as below:

 >(union L1 L2) ; returns the union of the two lists
 >(intersection L1 L2) ; returns the intersection of the two lists
 >(set-difference L1 L2) ; returns the difference of the two lists

73
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

Defining LISP functions

In LISP, defun is used to write a user-defined function. Note that different dialects of
LISP may use different keywords for defining a function. The syntax of defun is as
below:

(defun func-name (arg-1 ... Arg-n) func-body)

That is, a function has a name, list of arguments, and a body. A function returns the value
of last expression in its body. This concept is demonstrated with the help of the following
example:

>(defun y-plus (x) (+ x y)) ;definition of y-plus

This function adds x to y where x is the parameter passed to the function and y is a global
variable since it is not defined inside the function. It work in the following manner:

>(setq y 2)
>(y-plus 23)
25

With this we introduce the concept of local and global variables. Local variables are
defined in function body. Everything else is global.

Conditional control: if, when and cond

LISP has multiple conditional control statements. The set includes if, when, and cond. In
the following pages we study these statements one by one.

if statement

The if statement has the following syntax:

 (if <test> <then> <else>)

That is, an if statement has three parts: the test, the then part, and the else part. It works
almost exactly like the if statement in C++. If the test is TRUE then the then part will be
executed otherwise the else part will be executed. If there is no else part then if the test is
not true then the if statement will simply return NIL. Here is an example that shows the if
statement:

> (setq SCORE 78)
> 78
> (if (> score 85) ‘HIGH

 (if (and (< score 84) (> score 65)) ‘MEDIUM ‘LOW))
> MEDIUM

In the above if statement, the then part contains ‘HIGH and the else part is another if
statement. So, with the help of nested if statements we can develop code with multiple
branches.

74
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

cond statement

The cond statement in LISP is like the switch statement in C++. There is however a slight
different as in this case each clause in the cond requires a complete Boolean test. That is,
just like multiple else parts in the if statement where each needs a separate condition.
Syntax of cond is as shown below:

>(cond (<test-1> <action-1>)
 (<test-2> <action-2>)

...
 (<test-k> <action-k>))

Each (<test-i> <action-i>) is called a clause. If test-i (start with i=1) returns T (or
anything other than NIL), this function returns the value of action-i, else, it goes to the
next clause. Usually, the last test is T, which always holds, meaning otherwise. Just like
the if statement, cond can be nested (action-i may contain (cond ...))

This statement is explained with the help of the following example:

> (setf operation ‘area L 100 W 50)
> 50

> (cond ((eq operation ‘perimeter) (* 2 (+ L W)))
 (eq operation ‘area) (* L W))
 (t ‘i-do-not-understand-this)

)
)
> 5000

This program has three clauses. The first one checks whether the operation is the
calculation of the perimeter or not. In this case it uses the length and width to calculate
the perimeter. The control will come to the second clause if the first test is evaluated to be
false or NIL. The second clause checks if the operation is about area and if it is true then
it will calculate area. The third clause is the default case which will always be true. So if
the first two tests fail, it will print
‘i-do-not-understand-this

75
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

Recursion

Recursion is the main tool used for iteration. In fact, if you don’t know recursion, you
won’t be able to go too far with LISP. There is a limit to the depth of the recursion, and it
depends on the version of LISP. Following is an example of a recursive program in LISP.
We shall be looking at a number of recursive functions in the examples.

(defun power (x y)
 (if (= y 0) 1 (* x (power x (1- y)))))

This function computes the power of x to y. That is, it computes xy by recursively
multiplying x with itself y number of times.

So

>(power 3 4)
81

Let us look at another example. In this example, we compute the length of a list, that is,
we compute the number of elements in a list. The function is given as follows:

(defun length (x)
 (if (null x) 0
 (+ length (rest x) 1)

)
)

> (Length ‘(a b c d))
> 4

Here are some more examples: The first function determines whether a symbol is present
in a list or not and the second function computes the intersection of two lists. These
functions are given below:

(defun member (x L) ; determine whether x is in L or not
 (cond ((null L) nil) ; base case 1: L is empty
 ((equal x (car L)) L) ; base case 2: x=first(L)
 (t (member x (cdr L))) ; recursion: test if x is in rest(L)
))

 (defun intersection (L1 L2) ; compute intersection of two lists
 (cond ((null L1) nil)
 ((null L2) nil)
 ((member (car L1) L2)
 (cons (car L1) (intersection (cdr L1) L2)))

 (t (intersection (cdr L1) L2))
))

It may be noted that the intersection function is different from the mathematical definition
of set intersection. In this case the function looks at all the elements of the first list, one at

76
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

a time, and checks whether that element is present in the second list. You may recall from
our earlier discussion that our definition of set if different from the mathematical
definition of a set where duplications are not allowed. This concept is elaborated with the
help of the following examples where you pass same lists in different order and get
different results.

 > (intersection '(a b c) '(b a b c))
 > (a b c)

 > (intersection '(b a b c) '(a b c))
 > (b a b c)

Following is yet another example to compute the set difference of two sets.

(defun set-difference (L1 L2)
(cond ((null L1) nil)
 ((null L2) L1)
 ((not (member (car L1) L2))

 (cons (car L1) (set-difference (cdr L1) L2)))
 (t (set-difference (cdr L1) L2))
))

Iteration: dotimes and dolist

Apart from recursion, in LISP we can write code involving loops using iterative non-
recursive mechanism. There are two basic statements for that purpose: dotimes and
dolist. These are discussed in the following paragraphs.

dotimes

dotimes is like a counter-control for loop. Its syntax is given as below:

(dotimes (count n result) body)

It executes the body of the loop n times where count starts with 0, ends with n-1.

The result is optional and is to be used to hold the computing result. If result is given,
the function will return the value of result. Otherwise it returns NIL. The value of the
count can be used in the loop body.

dolist

The second looping structure is dolist. It is used to iterate over the list elements, one at a
time. Its syntax is given below:

(dolist (x L result) body)

77
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

It executes the body for each top level element x in L. x is not equal to an element of L in
each iteration, but rather x takes an element of L as its value. The value of x can be used
in the loop body. As we have seen in the case of dotimes, the result is optional and is to
be used to hold the computing result. If result is given, the function will return the value
of result. Otherwise it returns NIL.

To understand these concepts, let us look at the following examples:

> (setf cold 15 hot 35)
> 35

The following function use dolist to computes the number of pleasant days, that is,
between cold and hot.

> (defun count-pleasant (list-of-temperatures)
(let ((count-is 0)) ; initialize
 (dolist (element my-list count-is)

(when (and (< element hot)
 (> element cold))

 (setf count-is (+ count-is 1))))))

> (count-pleasant ‘(30 45 12 25 10 37 32))
> 3

Here is a very simple example which uses dotimes:

> (defun product-as-sum (n m)
(let ((result 0))
 (dotimes (count n result)

(setf result (+ result m)))))

> (product-as-sum 3 4)
> 12

Property Lists

Property lists are used to assign/access properties (attribute-value pairs) of a symbol. The
following functions are used to manipulate a property list.

 To assign a property: (setf (get object attribute) value)
 To obtain a property: (get object attribute)
 To see all the properties; (symbol-plist object)

Here is an example that elaborates this concept:

 >(setf (get 'a 'height) 8) ; cannot use "setq" here
 ; setting the height property of symbol a.
 8

78
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

 >(get 'a 'height) ; setting the height property of symbol a.
 8

 >(setf (get ‘a ‘weight) 20)
 ; setting the weight property of symbol a.
 20

Now we list all properties of a:

 >(symbol-plist ‘a)
 (WEIGHT 20 HEIGHT 8)

We can remove a property by using the remprop function as shown below:

> (remprop ‘a ‘WEIGHT)
T

 >(symbol-plist ‘a)
(HEIGHT 8)

> (remprop ‘a ‘HEIGHT)
T

 >(symbol-plist ‘a)
NIL

We can use the property list to build more meaningful functions. Here is one example:

Assume that if the name of a person’s father is known, the father’s name is given as the
value of the father property. We define a function GRANDFATHER that returns the
name of a person’s paternal grandfather, if known, or NIL otherwise. This function is
given below:

(defun grandfather (x)
(if (get x ‘father)

(get (get x ‘father) ‘father)
nil))

We now make a list of the paternal line:

(defun lineage (x)
(if x

(cons (x (lineage (get x ‘father))))))

The following would trace the family line from both father and mother’s side:

79
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

(defun ancestors (x)
(if x

(cons x (append (ancestors (get x ‘father))
 (ancestors (get x ‘mother))))))

Arrays

Although the primary data structure in LISP is a list, it also has arrays. These are data
type to store expressions in places identified by integer indexes. We create arrays by
using the linear-array function as shown below:

(setf linear-array (make-array ‘(4)))

This statement creates a single dimension array of size 4 by the name of linear-array
with indices from 0 to 3.

Here is an example of a two-dimensional array:

(setf chess-board (make-array ‘(8 8)))

Once created, we can store data at the desired index as follows:

(setf (aref chess-board 0 1) ‘WHITE-KNIGHT)
(setf (aref chess-board 7 4) ‘BLACK-KING)

Here, aref is the array reference. The above statements say that store symbol WHITE-
KNIGHT at chess-board position 0 1 and store BLACK-KING at position 7 4.

aref can be used to access any element in the array as shown below:

(aref chess-board 0 2)
WHITE-BISHOP

(aref chess-board 7 2)
BLACK-BISHOP

What made Lisp Different?

LISP was one of the earliest programming language. It was designed at MIT for artificial
intelligence and it has since been the defacto standard language for the AI community,
especially in the US.

LISP program composed of expression. They are in fact trees of expression, each of
which returns a value. It has Symbol types: symbols are effectively pointer to strings
stored in a hash table. One very important aspect of LISP is that the whole language is
there. That is, there is no real distinction between read-time, compile-time and runtime.
You can compile or run code while reading, read or run code while compiling, and read
or compile code at runtime. That is, programs are expressed directly in the parse trees that

80
© Copyright Virtual University of Pakistan

LISP Programming Language: An Introduction (Lecture 18-21) VU

get build behind the scenes when other languages are parsed, and these trees are make of
lists, which are Lisp date structures. This provides a very powerful feature allowing the
programmer to write programs that write programs.

From a programming language design point of view, LISP was the first to introduce the
following concepts:

• Conditionals: such as if-then-else construct.
• Function types: where functions are just like integers and strings
• Recursion: first language to support it.
• Dynamic typing: all variable are pointers.
• Garbage-Collection.
• Programs composed of expressions.
• A symbol type.
• The whole program is a mathematical function

81
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

PROLOG - PROgramming in LOGic(Lecture 22-26)
An Introduction

PROLOG stands for PROgramming in LOGic and was design in 1975 by Phillippe
Roussell. It is a declarative programming language and is based upon Predicate Calculus.
A program in PROLOG is written by defining predicates and rules and it has a built-in
inference mechanism. Unfortunately, there is no effective standardization available.

PROLOG Paradigm

As mentioned earlier, PROLOG draws inferences from facts and rules. It is a declarative
language in which a programmer only specifies facts and logical relationships. It is non-
procedural. That is we only state "what" is to be done and do not specify "how" to do it.
That is, we do not specify the algorithm. The language just executes the specification. In
other words, program execution is carried out as a theorem proving exercise. It is similar
to SQL used in databases with automated search and the ability to follow general rules.

One of the main features of this language is its ability to handle and process symbols.
Hence it is used heavily in AI related applications. It is an interactive (hybrid
compiled/interpreted) language and its applications include expert systems, artificial
intelligence, natural language understanding, logical puzzles and games.

PROLOG Programming

PROLOG programming follows the following steps:
• Declaring some facts about objects and their relationships
• Defining some rules about objects and their relationships
• Asking questions about objects and their relationships

The PROLOG Programmer loads facts and rules into the database and makes queries to
the database to see if a fact is in the database or can be implied from the facts and rules
therein.

This is depicted in the following diagram.

82
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Facts

Facts are used to represent unchanging information about objects and their relationships.
Only facts in the PROLOG database can be used for problem solving. A programmer
inserts facts into the database by typing the facts into a file and loading (consulting) the
file into a running PROLOG system.

Queries

Queries are used to retrieve information from the database. A query is a pattern that
PROLOG is asked to match against the database and has the syntax of a compound query.
It may contain variables. A query will cause PROLOG to look at the database, try to find
a match for the query pattern, execute the body of the matching head, and return an
answer.

Logic Programming

Logic programming is a form of declarative programming. In this form, a program is a
collection of axioms where each axiom is a Horn clause of the form:

H :- B1, B2, ..., Bn.
where H is the head term and Bi are the body terms, meaning H is true if all Bi are true.
A user of the program states a goal (a theorem) to be proven. The logic programming
system attempts to find axioms using inference steps that imply the goal (theorem) is true.

Resolution

To deduce a goal (theorem), the logic programming system searches axioms and
combines sub-goals. For this purpose we may apply forward (from fact to goal) or
backward (from goal to fact) chaining. For example, given the axioms:

C :- A, B.
D :- C.

Given that A and B are true, forward chaining (from fact to goal) deduces that C is true
because C :- A, B and then D is true because D :- C.

Backward chaining (from goal to fact) finds that D can be proven if sub-goal C is true
because D :- C. The system then deduces that the sub-goal is C is true because C :- A, B.
Since the system could prove C it has proven D.

Prolog Uses backward chaining because it is more efficient than forward chaining for
larger collections of axioms.

Examples

Let us look at some examples of facts, rules, and queries in Prolog.

83
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Facts

Following table shows some example of facts.

English PROLOG
“A dog is a mammal” isa(dog, mammal).
“A sparrow is a bird” isa(sparrow, bird).

Rules

Here are some examples of rules.

English PROLOG
“Something is an animal animal(X) :- isa(X, bird).
if it is a mammal or a bird” animal(X) :- isa(X,mammal).

Queries

An now some queries:

English PROLOG
“is a sparrow an animal?”
Answer: “yes”

?- animal(sparrow).
yes

“is a table an animal?”
Answer: “no”

?- animal(table).
no

“what is a dog?”
Answer: “a mammal”

?- isa(dog, X).
X = mammal

84
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

PROLOG syntax

Constants

There are two types of constants in Prolog: atoms and numbers.

Atoms:
• Alphanumeric atoms - alphabetic character sequence starting with a lower case

letter. Examples: apple a1 apple_cart
• Quoted atoms - sequence of characters surrounded by single quotes. Examples:

‘Apple’ ‘hello world’
• Symbolic atoms - sequence of symbolic characters. Examples: & < > * - + >>
• Special atoms. Examples: ! ; [] {}

Numbers
Numbers include integers and floating point numbers. Examples: 0 1 9821 -10 1.3
-1.3E102.

Variable Names
In Prolog, a variable is a sequence of alphanumeric characters beginning with an upper
case letter or an underscore. Examples: Anything _var X _

Compound Terms (structures)
A compound term is an atom followed by an argument list containing terms. The
arguments are enclosed within brackets and separated by commas.
Example: isa(dog, mammal)

Comments

In Prolog % is used to write a comment just like // in C++. That is after % everything till
the end of the line is a comment.

Important points to note

• The names of all relationships and objects must begin with a lower case letter. For
example studies, ali, programming

• The relationship is written first and the objects are enclosed within parentheses and
are written separated by commas. For example studies(ali, programming)

• The full stop character ‘.’ must come at the end of a fact.
• Order is arbitrary but it should be consistent.

85
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

An Example Prolog Program

This program has three facts and one rule. The facts are stated as follows:

rainy(columbo).
rainy(ayubia).
cold(ayubia).

The rule is:

snowy(X) :- rainy(X), cold(X).

Some queries and responses:

?- snowy(ayubia).
yes

?- snowy(columbo).
no

?- snowy(lahore).
No

?- snowy(C).
C = ayubia

Because rainy(ayubia) and cold(ayubia) are sub-goals that are both true facts in the
database, snowy(X) with X=columbo is a goal that fails, because cold(X) fails, triggering
backtracking.

This inference mechanism based upon back tracking is depicted in the following diagram:

86
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Logic Representation : Propositional Calculus

Propositional Logic is a set of Boolean statements. It involves logic connectives such as
¬ ∧ ∨ ⇔ ⇒.

Example – a family

If we had the following atomic statements:

p: Ahmed is father of Belal
q: Ahmed is brother of Aslam
r : Aslam is uncle of Belal

Then the following table shows the meanings in English for some logical statements in
propositional calculus:

Statement Logical meaning

¬p Ahmed is not father of Belal

 p ∨ q Ahmed is father of Belal or Ahmed is brother of Aslam

p ∧ q ⇒ r If Ahmed is father of Belal and brother of Aslam then Aslam is uncle of Belal

Statements in predicate calculus can be mapped almost directly into prolog as shown
below:

Sections of Prolog Program

Predicates

87
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Predicates are declarations of relations or rules. They are just like function prototypes
(declaration). A predicate may have zero or more arguments. Example of predicates are:

man(symbol)
family()
a_new_predicate (integer, char)

Clauses
Clauses are definition(s) of Predicate sentence or phrase. It has two types: rules and facts.
A rule is a function definition. It may have 0 or more conditions. A fact has all parameters
as constants and it cannot contain any condition.

Example – Fact:
brother(ahmed, chand).

Saying that ahmed and chand are brothers.

Example – Rule:

brother(X,Y):-
man(X),
man(Y),
father(Z,Y),
father(Z,X).

It says that two symbols, X and Y, are brothers if X is a man and Y is a man and their
father is same.

Goal

Goal is the objective of the program. There can be only and exactly one instance of the
goal in a program. It is the only tentative section of the program. It may be thought as the
main() function of prolog. The truth value of the goal is the output of the program.
Syntactically and semantically, it is just another clause. It may be empty, simple (one
goal), or compound (sub-goals).

Examples

1. brother(X,chand). % In this case the output will be the name of Chand’s brother.
2. brother(ahmed,chand).% The output will be true or false.
3. brother(X,chand), father(X, Y). % The output will be Chand’s and his children.

Prolog Variables

Prolog variable are actually constant placeholders and NOT really variables. That is, a
value to a variable can be bound only once and then it cannot be changed. These variables
are loosely typed. That is, type of the variable is not defined at compile time. As
mentioned earlier, a variable name starts with capital letter or underscore. Here are some
examples of variable names:

88
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

 brother(ahmed, Ahmed) % ahmed is a constant whereas Ahmed is a variable
 brother(ahmed, _x) % _x is a variable
 Brother(ahmed, X) % X is a variable

Anonymous variable:
The _ is a special variable. It is called the anonymous variable. It is used as a place holder
for a value that is not required. For example _ is used as a variable in the following
clause:

brother(ahmed, _)

Other Syntactic Elements

Prolog has a number of other syntactic elements. Some of these are listed below:

 Special predicates
• cut <or> !
• not(predicate)

 Predefined predicates
• write(arg1[,arg2[,arg3[,arg4[…..]]]]) % for output
• nl % new line
• readint(var) % read integer
• readchar(var) % read char
• readln(var) % read line into var
• … many more related to i/o, arithmetic, OS etc

 Operators
• Arithmetic

 + - * div / mod
• Relational

 < <= => > = <> ><

89
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

PROLOG Lists

In Prolog, a list is a sequence of terms of the form

[t1, t2, t3, t4, ..., tn]

where term ti is the ith element of the list

Examples:
[a,b,c] is a list of three elements a, b and c.

[[a,list,of,lists], and, numbers,[1,2,3]]
is a four element list, the first and last are themselves lists.

[] is the ‘empty list’. It is an atom not a list data type.

Working with Lists

Lists are used to build compound data types. A list can have elements of arbitrary type
and size. There is no size limits.

head – tail separator

The vertical bar ‘|’ is used to separate the head and tail of a list as shown below:
[<head>|<tail>]

In this case, head is an element whereas tail is list of the same sort.

The | has dual purpose in Prolog; it is used for list construction as well as list dismantling.

Here as some examples of lists:

[a, bc, def, gh, i] % a simple list of five elements
[] % an empty list
[1,2,3] % a simple list of three elements
[1, 2 | [3]] % same as above; a list of three elements with 1 and 2 as head and

% [3] as tail. When you join head and tail you get [1 2 3].
[1 | [2, 3]] % another way of writing the same thing again. This time the head

% is only 1 and the tail is [2 3]. Concatenation of these two gives
% [1 2 3].

[1, 2, 3 | []] % same thing again but with a different head and tail formation

Recursion is the basic tool for writing programs in Prolog. Let us now look at some
example programs in Prolog using lists.

90
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Example 1: Calculating the length of a list by counting the first level elements

Predicates
length (list, integer)

Clauses
length([],0). %length of an empty list is zero

length ([_|Tail], Len):-
Length (Tail, TailLen), %getting the tail length
Len = TailLen + 1. %the length of list is 1 plus the

% length of tail
Goal

X = [1,2,3],
length(X,Len).

Example 2: Finding the last and second last element in a list

lastElement(X,[X]). % if the list has only one element
% then it is the last element

lastElement(X,[_|L]) :- lastElement(X,L). % recursive step

last_but_one(X,[X,_]). % similar to the above example
last_but_one(X,[_,Y|Ys]) :- last_but_one(X,[Y|Ys]).

Example 3: Eliminate consecutive duplicates of list elements.

If a list contains repeated elements they should be replaced with a single copy of the
element. The order of the elements should not be changed.

Example:

?- compress([a,a,a,a,b,c,c,a,a,d,e,e,e,e],X).
X = [a,b,c,a,d,e]

Here is the code for this function:

compress([],[]). % there is nothing to be compressed in
compress([X],[X]). % an empty list or a list with only one

 % element

compress([X,X|Xs],Zs) :- % if the first element is repeated, copy
compress([X|Xs],Zs). % it once in the new list

compress([X,Y|Ys],[X|Zs]) :- % inspect the rest of the list and
X \= Y,compress([Y|Ys],Zs). % repeat the process recursively

91
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

Sorting

Remember, in Prolog, we only specify what we want and not how to do it. Here is a
classical example of this specification. In the following program segment, in order to sort
a list, we only specify what is meant by sorting and not how to do it.

sorted ([]). % an empty list or list with only one element
sorted ([X]). % is already sorted
sorted ([X, Y | list]) :- % recursive step

X <= Y, % a list is sorted if every element in the list
sorted ([Y | list]). % is smaller than the next element in the list.

List Membership

member(X, [X|T]). % X is a member of the list if it is the first
% element

member(X, [H|T]) :- member(X, T).
% otherwise recursively check it in the rest of
% the list

subset

subset([], Y). % The empty set is a subset of every set.
subset([A | X], Y) :- % recursive step

member(A, Y), subset(X, Y).

intersection

% Assumes lists contain no duplicate elements.
intersection([], X, []).
intersection([X | R], Y, [X | Z]) :-

member(X, Y), !, intersection(R, Y, Z).
intersection([X | R], Y, Z) :- intersection(R, Y, Z).

union

union([], X, X).
union([X | R], Y, Z) :- member(X, Y), !, union(R, Y, Z).
union([X | R], Y, [X | Z]) :- union(R, Y, Z).

Puzzles- Who owns the zebra

According to an e-mail source, this puzzle originated with the German Institute of Logical
Thinking, Berlin, 1981. [It's possible.]

1. There are five houses.
2. Each house has its own unique color.
3. All house owners are of different nationalities.
4. They all have different pets.

92
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

5. They all drink different drinks.
6. They all smoke different things.
7. The English man lives in the red house.
8. The Swede has a dog.
9. The Dane drinks tea.
10. The green house is on the left side of the white house.
11. In the green house, they drink coffee.
12. The man who smokes cigarette has birds.
13. In the yellow house, they smoke pipe.
14. In the middle house, they drink milk.
15. The Norwegian lives in the first house.
16. The man who smokes cigar lives in the house next to the house with cats.
17. In the house next to the house with the horse, they smoke pipe.
18. The man who smokes hukka drinks soda.
19. The German smokes bedi.
20. The Norwegian lives next to the blue house.
21. They drink water in the house that is next to the house where they smoke cigar.
22. Who owns the zebra?

Try solving this puzzle on your own. Now imagine writing a computer program to solve
it. Which was more difficult?

This is an example of a completely specified solution which doesn't appear to be specified
at all. The constraints are such that the answer is unique, but they are stated in such a way
that it is not at all obvious (to this human, at least) what the answer is.

In Prolog, we could express each of these specifications, then let Prolog's search strategy
(database search engine, automated theorem prover) search for a solution. We don't have
to worry about how to solve the problem -- we only have the specify what is to be solved.

93
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

% -*-prolog-*-
%
% The Zebra puzzle: Who owns the zebra?
%
% According to a recent e-mail source, this puzzle originated with
% the German Institute of Logical Thinking, Berlin, 1981. [It's possible.]
% The terms of the puzzle are included as comments in the code below.
%
% Solution by Jonathan Mohr (mohrj@augustana.ca)
% Augustana University College, Camrose, AB, Canada T4V 2R3

% Invoke this predicate if you just want to see the answer to the
% question posed at the end of the puzzle.
solve :-
 solve(_).

% Invoke this predicate (with a variable parameter) if you want to
% see a complete solution.
solve(S) :-

% There are five houses.
% Each house has its own unique color.
% All house owners are of different nationalities.
% They all have different pets.
% They all drink different drinks.
% They all smoke different cigarettes.

% (The constraints that all colors, etc., are different can only be
% applied after all or most of the variables have been instantiated.
% See below.)

% S = [[Color1, Nationality1, Pet1, Drink1, Smoke1] |_]
% The order of the sublists is the order of the houses, left to right.
 S = [[C1,N1,P1,D1,S1],
 [C2,N2,P2,D2,S2],
 [C3,N3,P3,D3,S3],
 [C4,N4,P4,D4,S4],
 [C5,N5,P5,D5,S5]],

% The English man lives in the red house.
 member([red, 'English man', _, _, _], S),
% The Swede has a dog.
 member([_, 'Swede', dog, _, _], S),
% The Dane drinks tea.
 member([_, 'Dane', _, tea, _], S),
% The green house is on the left side of the white house.
 left_of([green |_], [white |_], S),
% In the green house, they drink coffee.

94
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

 member([green, _, _, coffee, _], S),
% The man who smokes cigarette has birds.
 member([_, _, birds, _, cigarette], S),
% In the yellow house, they smoke pipe.
 member([yellow, _, _, _, pipe], S),
% In the middle house, they drink milk.
 D3 = milk,
% The Norwegian lives in the first house.
 N1 = 'Norwegian',
% The man who smokes cigar lives in the house next to the house with cats.
 next_to([_, _, _, _, cigar], [_, _, cats |_], S),
% In the house next to the house with the horse, they smoke pipe.
 next_to([_, _, _, _, pipe], [_, _, horse |_], S),
% The man who smokes hukka drinks soda.
 member([_, _, _, soda, hukka], S),
% The German smokes bedi.
 member([_, 'German', _, _, bedi], S),
% The Norwegian lives next to the blue house.
 next_to([_, 'Norwegian' |_], [blue |_], S),
% They drink water in the house that is next to the house
% where they smoke cigar.
 next_to([_, _, _, water,_], [_, _, _, _, cigar], S),

%
% The puzzle is so constrained that the following checks are not really
% required, but I include them for completeness (since one would not
% know in advance of solving the puzzle if it were fully constrained
% or not).
%
% Each house has its own unique color.
 C1 \== C2, C1 \== C3, C1 \== C4, C1 \== C5,
 C2 \== C3, C2 \== C4, C2 \== C5,
 C3 \== C4, C3 \== C5, C4 \== C5,
% All house owners are of different nationalities.
 N1 \== N2, N1 \== N3, N1 \== N4, N1 \== N5,
 N2 \== N3, N2 \== N4, N2 \== N5,
 N3 \== N4, N3 \== N5, N4 \== N5,
% They all have different pets.
 P1 \== P2, P1 \== P3, P1 \== P4, P1 \== P5,
 P2 \== P3, P2 \== P4, P2 \== P5,
 P3 \== P4, P3 \== P5, P4 \== P5,
% They all drink different drinks.
 D1 \== D2, D1 \== D3, D1 \== D4, D1 \== D5,
 D2 \== D3, D2 \== D4, D2 \== D5,
 D3 \== D4, D3 \== D5, D4 \== D5,
% They all smoke different cigarettes.
 S1 \== S2, S1 \== S3, S1 \== S4, S1 \== S5,
 S2 \== S3, S2 \== S4, S2 \== S5,
 S3 \== S4, S3 \== S5, S4 \== S5,

95
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

% Who owns the zebra?
 member([_, Who, zebra, _, _], S),
 write('The '), write(Who), write(' owns the zebra.\n').

% Or, replace the last line by:
% format("The ~w owns the zebra.", Who).

left_of(L1, L2, [L1, L2 |_]).
left_of(L1, L2, [_| Rest]) :- left_of(L1, L2, Rest).

next_to(L1, L2, S) :- left_of(L1, L2, S).
next_to(L1, L2, S) :- left_of(L2, L1, S).

Expert system

One of the main application domains for Prolog has been the development of expert
systems. Following is an example of a simple medical expert system:

% clauses for relieves(Drug, Symptom). That is facts about drugs and relevant symptoms

relieves(aspirin, headache).
relieves(aspirin, moderate_pain).
relieves(aspirin, moderate_arthritis).
relieves(aspirin_codine_combination, severe_pain).
relieves(cough_cure, cough).
relieves(pain_gone, severe_pain).
relieves(anti_diarrhea, diarrhea).
relieves(de_congest, cough).
relieves(de_congest, nasal_congestion).
relieves(penicilline, pneumonia).
relieves(bis_cure, diarrhea).
relieves(bis_cure, nausea).
relieves(new_med, headache).
relieves(new_med, moderate_pain).
relieves(cong_plus, nasal_congestion).

% now we have clauses for side effects in the form of aggravates(Drug, Condition).

aggravates(aspirin, asthma).
 aggravates(aspirin, peptic_ulcer).
aggravates(anti-diarrhea, fever).
aggravates(de_congest, high_blood_pressure).
aggravates(de_congest, heart_disease).
aggravates(de_congest, diabetes).
aggravates(de_congest, glaucoma).
aggravates(penicilline, asthma).
aggravates(de_congest, high_blood_pressure).
aggravates(bis_cure, diabetes).
aggravates(bis_cure, fever).

96
© Copyright Virtual University of Pakistan

PROLOG - PROgramming in LOGic(Lecture 22-26) VU

% now some rules for prescribing medicine using symptoms and side effects
should_take(Person, Drug) :-

complains_of(Person, Symptom),
relieves(Drug, Symptom),
not(unsuitable_for(Person, Drug)).

unsuitable_for(Person, Drug) :-
aggravates(Drug, Condition),
suffers_from(Person, Condition).

% we now have some specific facts about a patient named Ali
complains_of(ali, headache).
suffers_from(ali, peptic_ulcer).

% now the query about the proper medicine and the answer by the expert system
?- should_take(ali, Drug).
Drug = new_med;

As mentioned earlier, Prolog has been used to write expert systems and expert system
shells. Because of its inference mechanism and independence of rules and clauses it is
relatively easy to achieve such task as compared to any imperative language.

Conclusions

Prolog is a declarative programming language where we only specify what we need rather
than how to do it. It has a simple concise syntax with built-in tree formation and
backtracking which generates readable code which is easy to maintain. It is relatively case
and type insensitive and is suitable for problem solving / searching, expert systems /
knowledge representation, language processing / parsing and NLP, and game playing.
Efficiency is definitely is negative point. While writing programs one has to be aware of
the left recursion, failing to do that may result in infinite loops. It has a steep learning
curve and suffers from lack of standardization.

97
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

 Java Programming Language(Lecture 27-30)
An Introduction

Java was developed at Sun in the early 1990s and is based on C++. It looks very similar
to C++ but it is significantly simplified as compared to C++. That is why Professor
Feldman says that Java is C++--. It supports only OOP and has eliminated multiple
inheritance, pointers, structs, enum types, operator overloading, goto statement from C++.
It includes support for applets and a form of concurrency.

The First Program

Here is the famous Hello World program in Java.

class HelloWorld {
public static void main(String [] args)

 {
System.out.println("Hello world!");

 }
}

It may be noted that as Java supports only OOP, in Java, every variable, constant, and
function (including main) must be inside some class. Therefore, there are no global
variables or functions in Java. In addition, the following may be noted:

• Function main is member of the class.
• Every class may have a main function; there may be more than one main function

in a Java program.
• The main must be public static void.
• The main may have one argument: an array of String. This array contains the

command-line arguments.
• There is no final semi-colon at the end of the class definition.

Java Files

In Java the source code is written in the .java file. The following restrictions apply:
(1) Each source file can contain at most one public class.
(2) If there is a public class, then the class name and file name must match.

Furthermore, every function must be part of a class and every class is part of a package. A
public class can be used in any package and a non-public class can only be used in its
own package.

The Java Bytecode is created by the Java compiler and is stored in .class file. This file
contains ready to be exected Java bytecode which is executed by the Java Virtual
Machine. For each class in a source file (both public and non-public classes), the compiler

98
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

creates one ".class" file, where the file name is the same as the class name. When
compiling a program, you type the full file name, including the ".java" extension; When
running a program, you just type the name of the class whose main function you want to
run.
Java Types

Java has two "categories" of types: primitive types and reference types.

Primitive Types
All the primitive types have specified sizes that are machine independent for portability.
This includes:

boolean same as bool in C++
char holds one 16 bit unicode character
byte 8-bit signed integer
short 16-bit signed integer
int 32-bit signed integer
long 64-bit signed integer
float floating-point number
double double precision floating-point number

Reference Types
arrays classes

There are no struct, union, enum, unsigned, typedef, or pointers types in Java.

C++ Arrays vs Java Arrays

In C++, when you declare an array, storage for the array is allocated. In Java, when you
declare an array, you are really only declaring a pointer to an array; storage for the array
itself is not allocated until you use "new". This difference is elaborated as shown below:

C++
int A[10]; // A is an array of length 10
A[0] = 5; // set the 1st element of array A

JAVA
int [] A; // A is a reference to an array
A = new int [10]; // now A points to an array of length 10
A[0] = 5; // set the 1st element of the array pointed to by A

In both C++ and Java you can initialize an array using values in curly braces. Here's
example Java code:

int [] myArray = {13, 12, 11};
 // myArray points to an array of length 3
 // containing the values 13, 12, and 11

In Java, a default initial value is assigned to each element of a newly allocated array if no
initial value is specified. The default value depends on the type of the array element as
shown below:

99
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

Type Value
boolean false
char '\u0000'
byte, int, short, long, float, double 0
any reference null

In Java, array bounds are checked and an out-of-bounds array index always causes a
runtime error.

In Java, you can also determine the current length of an array (at runtime) using ".length"
operator as shown below:

int [] A = new int[10];
...
A.length ... // this expression evaluates to 10
A = new int[20];
...
A.length ... // now it evaluates to 20

In Java, you can copy an array using the arraycopy function. Like the output function
println, arraycopy is provided in java.lang.System, so you must use the name
System.arraycopy. The function has five parameters:

src: the source array (the array from which to copy)
srcPos: the starting position in the source array
dst: the destination array (the array into which to copy)
dstPos: the starting position in the destination array
count: how many values to copy

Here is an example:

int [] A, B;
A = new int[10];

// code to put values into A
B = new int[5];
System.arraycopy(A, 0, B, 0, 5) // copies first 5 values from A to B
System.arraycopy(A, 9, B, 4, 1) // copies last value from A into last

// element of B

Note that the destination array must already exist (i.e., new must already have been used
to allocate space for that array), and it must be large enough to hold all copied values
(otherwise you get a runtime error). Furthermore, the source array must have enough
values to copy (i.e., the length of the source array must be at least srcPos+count). Also,
for arrays of primitive types, the types of the source and destination arrays must be the
same. For arrays of non-primitive types, System.arraycopy(A, j, B, k, n) is OK if the
assignment B[0] = A[0] would be OK.

100
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

The arraycopy function also works when the source and destination arrays are the same
array; so for example, you can use it to "shift" the values in an array:

int [] A = {0, 1, 2, 3, 4};
System.arraycopy(A, 0, A, 1, 4);

After executing this code, A has the values: [0, 0, 1, 2, 3].

As in C++, Java arrays can be multidimensional. For example, a 2-dimensional array is an
array of arrays. However, a two-dimensional arrays need not be rectangular. Each row
can be a different length. Here's an example:

int [][] A; // A is a two-dimensional array
A = new int[5][]; // A now has 5 rows, but no columns yet
A[0] = new int [1]; // A's first row has 1 column
A[1] = new int [2]; // A's second row has 2 columns
A[2] = new int [3]; // A's third row has 3 columns
A[3] = new int [5]; // A's fourth row has 5 columns
A[4] = new int [5]; // A's fifth row also has 5 columns

C++ Classes vs Java Classes

In C++, when you declare a variable whose type is a class, storage is allocated for an
object of that class, and the class's constructor function is called to initialize that instance
of the class. In Java, you are really declaring a pointer to a class object; no storage is
allocated for the class object, and no constructor function is called until you use "new".

This is elaborated with the help of the following example:

Let us assume that we have the following class:

class MyClass {
...

}

Let us first look at C++

MyClass m; // m is an object of type MyClass;
 // the constructor function is called to initialize M.

MyClass *pm;
// pm is a pointer to an object of type MyClass
// no object exists yet, no constructor function
// has been called

pm = new MyClass;
// now storage for an object of MyClass has been
// allocated and the constructor function has been
// called

101
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

Now the same thing in Java

MyClass m; // pm is a pointer to an object of type MyClass
// no object exists yet, no constructor function
// has been called

m = new MyClass();
// now storage for an object of MyClass has been allocated
// and the constructor function has been called. Note
// that you must use parentheses even when you are not
// passing any arguments to the constructor function

// Also note that there is a simple ‘.’ (dot) operator used to
// access members or send message. Java does not use
// -> operator.

Whereas, as opposed to Java, in C++ use have the following:

MyClass m; // m is an object of type MyClass;
 // the constructor function is called to initialize M.

MyClass *pm; // pm is a pointer to an object of type MyClass
// no object exists yet, no constructor function has
// been called

pm = new MyClass; // now storage for an object of MyClass has been
// allocated and the constructor function has been
// called

Aliasing Problems in Java

The fact that arrays and classes are really pointers in Java can lead to some problems.
Here is a simple assignment that causes aliasing:

int [] A = new int [4];
Int [] B = new int [2];

This is depicted as below:

102
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

Now, when we say:
A[0] = 5;

We get the following:

Now when we say:
B = A;

B points to the same array as A and creates an alias. This is shown below:

Now if we make a simple assignment in B, we will also change A as shown below:

B[0] = 10;

This obviously creates problems. Therefore, as a programmer you have to be very careful
when writing programs in Java.

In Java, all parameters are passed by value, but for arrays and classes the actual parameter
is really a pointer, so changing an array element, or a class field inside the function does
change the actual parameter's element or field.

This is elaborated with the help of the following example:

void f(int [] A) {
A[0] = 10; // change an element of parameter A
A = null; // change A itself

}

void g() {
int [] B = new int [3];
B[0] = 5;
f(B);

103
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

// B is not null here, because B itself was passed by value
// however, B[0] is now 10, because function f changed the
// first element of the array

}

Note that, in C++, similar problems can arise when a class that has pointer data members
is passed by value. This problem is addressed by the use of copy constructors, which can
be defined to make copies of the values pointed to, rather than just making copies of the
pointers. In Java, the solution is to use the arraycopy operation, or to use a class's clone
operation. Cloning will be discussed later.

Type Conversion

Java is much stronger than C++ in the type conversions that are allowed.
Here we discuss conversions among primitive types. Conversions among class objects
will be discussed later.

Booleans cannot be converted to other types. For the other primitive types (char, byte,
short, int, long, float, and double), there are two kinds of conversion: implicit and explicit.

Implicit conversions:

An implicit conversion means that a value of one type is changed to a value of another
type without any special directive from the programmer. A char can be implicitly
converted to an int, a long, a float, or a double. For example, the following will compile
without error:

 char c = 'a';
int k = c;
long x = c;
float y = c;
double d = c;

For the other (numeric) primitive types, the basic rule is that implicit conversions can be
done from one type to another if the range of values of the first type is a subset of the
range of values of the second type. For example, a byte can be converted to a short, int,
long or float; a short can be converted to an int, long, float, or double, etc.

Explicit conversions:

Explicit conversions are done via casting: the name of the type to which you want a value
converted is given, in parentheses, in front of the value. For example, the following code
uses casts to convert a value of type double to a value of type int, and to convert a value
of type double to a value of type short:

double d = 5.6; int k = (int)d; short s = (short)(d * 2.0);

Casting can be used to convert among any of the primitive types except boolean. Note,
however, that casting can lose information; for example, floating-point values are

104
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

truncated when they are cast to integers (e.g., the value of k in the code fragment given
above is 5), and casting among integer types can produce wildly different values (because
upper bits, possibly including the sign bit, are lost).

JAVA CLASSES

Java classes contain fields and methods. A field is like a C++ data member, and a method
is like a C++ member function. Each field and method has an access level:

• private : accessible only in this class
• (package) : accessible only in this package
• protected : accessible only in this package and in all subclasses of this class
• public : accessible everywhere this class is available

Similarly, each class has one of two possible access levels:
• (package) : class objects can only be declared and manipulated by code in this

package
• public : class objects can be declared and manipulated by code in any package

Note: for both fields and classes, package access is the default, and is used when no
access is specified.

A Simple Example Class

In the following example, a List is defined to be an ordered collection of items of any
type:

class List {
// fields
private Object [] items; // store the items in an array

 private int numItems; // the current # of items in the list
// methods

// constructor function
public List()

 {
items = new Object[10];
numItems = 0;

}

// AddToEnd: add a given item to the end of the list
public void AddToEnd(Object ob)
{
...
}

}

105
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

In Java, all classes (built-in or user-defined) are (implicitly) subclasses of the class
Object. Using an array of Object in the List class allows any kind of Object (an instance
of any class) to be stored in the list. However, primitive types (int, char, etc) cannot be
stored in the list as they are not inherited from Object.

Constructor function:

As in C++, constructor functions in Java are used to initialize each instance of a class.
They have no return type (not even void) and can be overloaded; you can have multiple
constructor functions, each with different numbers and/or types of arguments. If you don't
write any constructor functions, a default (no-argument) constructor (that doesn't do
anything) will be supplied.

If you write a constructor that takes one or more arguments, no default constructor will be
supplied (so an attempt to create a new object without passing any arguments will cause a
compile-time error). It is often useful to have one constructor call another (for example, a
constructor with no arguments might call a constructor with one argument, passing a
default value). The call must be the first statement in the constructor. It is performed
using this as if it were the name of the method. For example:

this(10);

is a call to a constructor that expects one integer argument.

Initialization of fields:

If you don't initialize a field (i.e., either you don't write any constructor function, or your
constructor function just doesn't assign a value to that field), the field will be given a
default value, depending on its type. The values are the same as those used to initialize
newly created arrays (see the "Java vs C++" notes).

Access Control:

Note that the access control must be specified for every field and every method; there is
no grouping as in C++. For example, given these declarations:

public
int x;
int y;

only x is public; y gets the default, package access.

Static Fields and Methods

Fields and methods can be declared static. If a field is static, there is only one copy for the
entire class, rather than one copy for each instance of the class. (In fact, there is a copy of

106
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

the field even if there are no instances of the class.) A method should be made static when
it does not access any of the non-static fields of the class, and does not call any non-static
methods. (In fact, a static method cannot access non-static fields or call non-static
methods.) Methods that would be "free" functions in C++ (i.e., not members of any class)
should be static methods in Java. A public static field or method can be accessed from
outside the class.

Final Fields and Methods

Fields and methods can also be declared final. A final method cannot be overridden in a
subclass. A final field is like a constant: once it has been given a value, it cannot be
assigned to again.

Some Useful Built-in Classes

Following is a list of some useful classes in Java. These classes are not really part of the
language; they are provided in the package java.lang

1. String

String Creation:

String S1 = "hello", // initialize from a string literal
S2 = new String("bye"), // use new and the String constructor
S3 = new String(S1); // use new and a different constructor

String concatenation

String S1 = “hello ” + “world”;
String S2 = S1 + “!”;
String S3 = S1 + 10;

2. Object

Object is the Base class for all Java Classes.

3. Classes for primitive types

In Java, we have classes also for primitive types. These are: Boolean, Integer, Double,
etc. Note that variable of bool, int, etc types are not objects whereas variable of type
Boolean, Integer, etc are objects.

Packages

Every class in Java is part of some package. All classes in a file are part of the same
package. You can specify the package using a package declaration:

package name ;

107
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

as the first (non-comment) line in the file. Multiple files can specify the same package
name. If no package is specified, the classes in the file go into a special unnamed package
(the same unnamed package for all files). If package name is specified, the file must be in
a subdirectory called name (i.e., the directory name must match the package name).

You can access public classes in another (named) package using:

package-name.class-name

You can access the public fields and methods of such classes using:

package-name.class-name.field-or-method-name

You can avoid having to include the package-name using import package-name.* or
import package-name.class-name at the beginning of the file (after the package
declaration). The former imports all of the classes in the package, and the second imports
just the named class.

You must still use the class-name to access the classes in the packages, and
class-name.field-or-method-name to access the fields and methods of the class; the only
thing you can leave off is the package name.

Inheritance

Java directly supports single inheritance. To support concept of a interface class is used.
Inheritance is achieved as shown below:

class SuperClass {
…

}

class SubClass extends SuperClass {
…

}

When a class is inherited, all fields and methods are inherited. When the final reserved
word is specified on a class specification, it means that class cannot be the parent of any
class. Private fields are inherited, but cannot be accessed by the methods of the subclass.
fields can be defined to be protected, which means that subclass methods can access them

Each superclass method (except its constructors) can be inherited, overloaded, or
overridden. These are elaborated in the following paragraphs:

inherited: If no method with the same name is (re)defined in the subclass, then the
subclass has that method with the same implementation as in the superclass.

overloaded: If the subclass defines a method with the same name, but with a different
number of arguments or different argument types, then the subclass has two methods with
that name: the old one defined by the superclass, and the new one it defined.

108
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

overridden: If the subclass defines a method with the same name, and the same number
and types of arguments, then the subclass has only one method with that name: the new
one it defined. A method cannot be overridden if it is defined as final in the superclass

Dynamic Binding

In C++, a method must be defined to be virtual to allow dynamic binding. In Java all
method calls are dynamically bound unless the called method has been defined to be
final, in which case it cannot be overridden and all bindings are static.

Constructors

A subclass's constructors always call a super class constructor, either explicitly or
implicitly. If there is no explicit call (and no call to another of the subclass constructors),
then the no-argument version of the superclass constructor is called before executing any
statements.

Abstract Classes

An abstract method is a method that is declared in a class, but not defined. In order to be
instantiated, a subclass must provide the definition. An abstract class is any class that
includes an abstract method. It is similar to Pure virtual in C++.

If a class includes an abstract method, the class must be declared abstract, too. For
example:

abstract class AbstractClass {
abstract public void Print();

// no body, just the function header
}
class MyConcreteClass extends AbstractClass {

public void Print() { // actual code goes here } }

An abstract class cannot be instantiated. A subclass of an abstract class that does not
provide bodies for all abstract methods must also be declared abstract. A subclass of a
non-abstract class can override a (non-abstract) method of its superclass, and declare it
abstract. In that case, the subclass must be declared abstract.

Interface

As mentioned earlier, multiple inheritance is achieved through Interface in Java.
Inheritance implements the "is-a" relationship whereas an interface is similar to a class,
but can only contain public, static, final fields (i.e., constants) and public, abstract
methods (i.e., just method headers, no bodies).

An interface is declared as shown below:

public interface Employee {
void RaiseSalary(double d);

109
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

double GetSalary();
}

Note that both methods are implicitly public and abstract (those keywords can be
provided, but are not necessary).

A class can implement one or more interfaces (in addition to extending one class). It must
provide bodies for all of the methods declared in the interface, or else it must be abstract.
For example:

public class TA implements Employee {
 void RaiseSalary(double d) {

// actual code here
}
double GetSalary() {

// actual code here
}

}

Public interfaces (like public classes) must be in a file with the same name. Many classes
can implement the same interface thus achieving multiple inheritance. An interface can be
a "marker" with no fields or methods, is used only to "mark" a class as having a property,
and is testable via the instanceof operator.

Exception Handling in Java

Exception handling in Java is based on C++ but is designed to be more in line with OOP.
It includes a collection of predefined exceptions that are implicitly raised by the JVM. All
java exceptions are objects of classes that are descendents of Throwable class. There are
two predefined subclasses of Throwable: Error and Exception.

Error and its descendents are related to errors thrown by JVM. Examples include out of
heap memory. Such an exception is never thrown by the user programs and should not be
handled by the user.

User programs can define their own exception classes. Convention in Java is that such
classes are subclasses of Exception. There are two predefined descendents of Exception:
IOException and RuntimeException. IOException deals with errors in I/O operation.
In the case of RuntimeException there are some predefined exceptions which are, in
many cases, thrown by JVM for errors such as out of bounds, and Null pointer.

The following diagram shows the exception hierarchy in Java.

110
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

Checked and Unchecked Exceptions

Exceptions of class Error and RuntimeException are called unchecked exceptions. They
are never a concern of the compiler. A program can catch unchecked exceptions but it is
not required. All other are checked exceptions. Compiler ensures that all the checked
exceptions a method can throw are either listed in its throws clause or are handled in the
method.

Exception Handlers

Exception handler in Java is similar to C++ except that the parameter of every catch must
be present and its class must be descendent of Thrwoable. The syntax of try is exactly
same as C++ except that there is finally clause as well. For example:

class MyException extends Exception {
public MyException() { }
public MyException(String message) {

super (message);
}

}

This exception can be thrown with

throw new MyException();

Or
MyException myExceptionObject = new MyException();
…
throw myExceptionObject;

Binding of exception is also similar to C++. If an exception is thrown in the compound
statement of try construct, it is bound to the first handler (catch function) immediately

111
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

following the try clause whose parameter is the same class as the thrown object or an
ancestor of it. Exceptions can be handled and then re-thrown by including a throw
statement without an operand at the end of the handler. To ensure that exceptions that can
be thrown in a try clause are always handled in a method, a special handler can be written
that matches all exceptions. For example:

catch (Exception anyException) {
…

}

Other Design Choices

The exception handler parameter in C++ has a limited purpose. During program
execution, the Java runtime system stores the class name of every object. getClass can be
used to get an object that stores the class name. It has a getName method. The name of
the class of the actual parameter of the throw statement can be retrieved in the handler as
shown below.

anyException.getClass().getName();

In the case of a user defined exception, the thrown object could include any number of
data fields that might be useful in the handler.
throws Clause

throws clause is overloaded in C++ and conveys two different meanings: one as
specification and the other as command. Java is similar in syntax but different in
semantics. The appearance of an exception class name in the throws clause of Java
method specifies that the exception class or any of its descendents can be thrown by the
method.

A C++ program unit that does not include a throw clause can throw any exceptions. A
Java method that does not include a throws cannot throw any checked exception it does
not handle. A method cannot declare more exceptions in its throws clause than the
methods it overrides, though it may declare fewer. A method that does not throw a
particular exception, but calls another method that could throw the exception, must list
the exception in its throws clause.

The finally clause

A Java exception handler may have a finally clause. A finally clause always executes
when its try block executes (whether or not there is an exception). The finally clause is
written as shown below:

try {
…

}
catch (…) {

…
}
…

112
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

finally {
…

}

A finally clause is usually included to make sure that some clean-up (e.g., closing opened
files) is done. If the finally clause includes a transfer of control statement (return, break,
continue, throw) then that statement overrides any transfer of control initiated in the try or
in a catch clause.

First, let's assume that the finally clause does not include any transfer of control. Here are
the situations that can arise:

• No exception occurs during execution of the try, and no transfer of control is
executed in the try. In this case the finally clause executes, then the statement
following the try block.

• No exception occurs during execution of the try, but it does execute a transfer of
control. In this case the finally clause executes, then the transfer of control takes
place.

• An exception does occur during execution of the try, and there is no catch clause
for that exception. Now the finally clause executes, then the uncaught exception is
"passed up" to the next enclosing try block, possibly in a calling function.

• An exception does occur during execution of the try, and there is a catch clause
for that exception. The catch clause does not execute a transfer of control. In this
case the catch clause executes, then the finally clause, then the statement
following the try block.

• An exception does occur during execution of the try, there is a catch clause for
that exception, and the catch clause does execute a transfer of control. Here, the
catch clause executes, then the finally clause, then the transfer of control takes
place.

If the finally block does include a transfer of control, then that takes precedence over any
transfer of control executed in the try or in an executed catch clause. So for all of the
cases listed above, the finally clause would execute, then its transfer of control would take
place. Here's one example:

try {
return 0;

} finally {
return 2;

}

The result of executing this code is that 2 is returned. Note that this is rather confusing!
The moral is that you probably do not want to include transfer-of-control statements in
both the try statements and the finally clause, or in both a catch clause and the finally
clause.

Java Threads

Java supports concurrency through threads which are lightweight processes. A thread is
similar to a real process in that a thread and a running program are threads of execution.

113
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

A thread takes advantage of the resources allocated for that program instead of having to
allocate those resources again. A thread has its own stack and program counter. The code
running within the thread works only within the context implied by the stack and PC so
also called an execution context.

Creating Java Threads

There are two ways to create our own Thread object:

1. Subclassing the Thread class and instantiating a new object of that class
2. Implementing the Runnable interface

In both cases the run() method should be implemented. This is elaborated with the help
of following examples:

Example of Extending Thread

public class ThreadExample extends Thread {
 public void run () {
 for (int i = 1; i <= 100; i++) {
 System.out.println(“Thread: ” + i);
 }
 }
}

Example of Implementing Runnable

public class RunnableExample implements Runnable {
public void run () {

for (int i = 1; i <= 100; i++) {
 System.out.println (“Runnable: ” + i);
 }
 }
}

It may be noted that both of these are very similar to each other with minor syntactic and
semantic differences.

Starting the Threads

A thread is started by simply sending the start message to the thread. This is shown in the
following example:

public class ThreadsStartExample {
 public static void main (String argv[]) {
 new ThreadExample ().start ();

 new Thread(new RunnableExample ()).start ();
 }
}

114
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

Thread Methods

Some of the common thread methods are listed below:

• start()
• sleep()
• yield()
• run()
• wait()
• notify()
• notifyAll()
• setPriority()

Thread Synchronization - Wait and Notify

Threads are based upon the concept of a Monitor. The wait and notify methods are used
just like wait and signal in a Monitor. They allow two threads to cooperate and based on
a single shared lock object. The following example of a producer-consumer problem
elaborates this concept.

class Buffer {
private int [] buf;
private int head, tail, max, size;

public Buffer (int buf_size) {
buf = new int [buf_size];
head =0; tail = 0; size = 0;
max = buf_size;

}

public synchronized void deposit (int item) {
try {

while (size ==max) wait();
buf [tail] = item;
tail = (tail + 1) % max;
size++;
notify();

}
catch

 (interruptedException e) {
// exception handler

}
}

public synchronized int fetch() {
int item = 0;
try {

while (size == 0) wait();
item = buf [head] ;
head = (head + 1) % max;

115
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

size--;
notify();

}
catch
 (interruptedException e) {

// exception handler
}
return item;

}
class Producer extends Thread {

private Buffer buffer;

public Producer (Buffer buf) {
buffer = buf;

}

public void run () {
int item;
while (true) {
 // create a new item
 buffer.deposit(item);
}

}
}

class Consumer implements Runnable {
private Buffer buffer;

public Consumer (Buffer buf) {
buffer = buf;

}

public void run () {
int item;
while (true) {
 item = buffer.fetch();
 // consume item
}

}
}

We can now instantiate these threads as shown below:

Buffer buffer = new Buffer(100);
Producer producer1 = new Producer(buffer);
Consumer comsumer = new Consumer(buffer);
Thread consumer1 = new Thread(consumer);
producer1.start();
consumer1.start();

116
© Copyright Virtual University of Pakistan

Java Programming Language(Lecture 27-30) VU

In this case the buffer is a shared variable used by both producer and consumer.

notify and notifyAll

There is a slight difference between notify and notifyAll. As the name suggest, notify()
wakes up a single thread which is waiting on the object's lock. If there is more than one
thread waiting, the choice is arbitrary i.e. there is no way to specify which waiting thread
should be re-awakened. On the other hand, notifyAll() wakes up ALL waiting threads;
the scheduler decides which one will run.

Applet

Java also has support for web applications through Applets. An applet is a stand alone
Java application. Java applet runs in a Java-enabled Web browser.

Java versus C++

Generally, Java is more robust than C++. Some of the reasons are:
• Object handles are initialized to null (a keyword)
• Handles are always checked and exceptions are thrown for failures
• All array accesses are checked for bounds violations
• Automatic garbage collection prevents memory leaks and dangling pointers
• Type conversion is safer
• Clean, relatively fool-proof exception handling
• Simple language support for multithreading
• Bytecode verification of network applets

117
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

C# Programming Language (Lecture 31-34)
An Introduction

C# was released by Microsoft in June 2000 as part of the .Net framework. It was
co-authored by Anders Hejlsberg (who is famous for the design of the Delphi language),
and Scott Wiltamuth. C# is a strongly-typed object-oriented language. It is Similar to Java
and C++ in many respects. The .NET platform is centered on a Common Language
Runtime (CLR - which is similar to a JVM) and a set of libraries which can be exploited
by a wide variety of languages which are able to work together by all compiling to an
intermediate language (IL).

Java and C# - Some Commonalities

Java and C# are very similar and have a number of commonalities.
a. Both of these languages compile into machine-independent language-independent

code which runs in a managed execution environment.
b. Both C# and Java compile initially to an intermediate language: C# to Microsoft

Intermediate Language (MSIL), and Java to Java bytecode. In each case the
intermediate language can be run - by interpretation or just-in-time compilation -
on an appropriate 'virtual machine'. In C#, however, more support is given for the
further compilation of the intermediate language code into native code.

c. Both of these have garbage Collection coupled with the elimination of pointers (in
C# restricted use is permitted within code marked unsafe).

d. Both have powerful reflection capabilities.
e. In case of both these languages, there is no header files, all code scoped to

packages or assemblies, no problems declaring one class before another with
circular dependencies.

f. Both of these support only OOP and classes all descend from object and must be
allocated on the heap with new keyword.

g. Both support concurrency through thread support by putting a lock on objects
when entering code marked as locked/synchronized.

h. Both have single inheritance and support for interfaces.
i. There are no global functions or constants, everything belongs to a class.
j. Arrays and strings with built-in bounds checking.
k. The "." operator is always used and there are no more ->, :: operators.
l. null and boolean/bool are keywords.
m. All values must be initialized before use.
n. Integers expressions cannot be used in ‘if’ statements and conditions in the loops.
o. In both languages try Blocks can have a finally clause.

Some C# features which are different from Java

a. C# has more primitive data types than Java and has more extension to the value
types.

b. It supports safer enumeration types whereas Java does not have enumeration
types.

c. It also has support for struct which are light weight objects.
d. There is support for operator overloading.

118
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

e. C# has the concept of 'delegates' which are type-safe method pointers and are used
to implement event-handling.

f. It supports three types of arrays: single dimensional, multi-dimensional
rectangular and multi-dimensional jagged arrays.

g. It has restricted use of pointers. The 'switch' statements in C# have been changed
so that 'fall-through' behavior is disallowed.

h. It also has support for class 'properties'.

C# Hello World

Let us have a look at the Hello World Program in C#.

using System; // System namespace
public class HelloWorld
{
 public static void Main() // the Main function starts

// with capital M
 {

 Console.WriteLine("Hello World!”);
 }
}

In this example, it may be noted that just like Java and C++, C# is case sensitive.
As we have in Java, everything in C# has to be inside a class and there is no semicolon at
the end of the class. However, unlike Java, name of the class and the name of the file in
which it is saved do not need to match up. You are free to choose any extension for the
file, but it is usual to use the extension '.cs'. It supports single line and multiple line
comments.

Variable Types: Reference Types and Value Types

As mentioned earlier, C# is a type-safe language. Variables can hold either value
types or reference types, or they can be pointers. When a variable v contains a value type,
it directly contains an object with some value and when it contains a reference type, what
it directly contains is something which refers to an object.

119
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Built-in Types

The following table lists the built-in C# types and their ranges.

C#
Type

.Net Framework
(System) type

Signed? Bytes
Occupied

Possible
Values

 sbyte System.Sbyte Yes 1 -128 to 127

 short System.Int16 Yes 2 -32768 to 32767

 int System.Int32 Yes 4 -2147483648 to
 2147483647

 long System.Int64 Yes 8 -9223372036854775808 to
9223372036854775807

 byte System.Byte No 1 0 to 255

 ushort System.Uint16 No 2 0 to 65535

 uint System.UInt32 No 4 0 to 4294967295

 ulong System.Uint64 No 8 0 to
18446744073709551615

 float System.Single Yes 4 Approximately ±1.5 x 10-45 to ±3.4
x 1038 with 7 significant figures

 double System.Double Yes 8 Approximately ±5.0 x 10-324 to ±1.7
x 10308 with 15 or 16 significant
figures

 decimal System.Decimal Yes 12 Approximately ±1.0 x 10-28 to ±7.9
x 1028 with 28 or 29 significant
figures

 char System.Char N/A 2 Any Unicode character (16 bit)
 bool System.Boolean N/A 1 / 2 true or false

120
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Structs

1. Java did not have structs which have been brought back by C#. However, as
compared to C++, they are significantly different in C#.

2. In C++ a struct is exactly like a class, except that the default inheritance and
default access are public rather than private.

3. In C# structs are very different from classes.
4. Structs in C# are designed to encapsulate lightweight objects.
5. They are value types (not reference types), so they're passed by value.
6. They are sealed, which means they cannot be derived from or have any base class

other than System.ValueType, which is derived from Object.
7. Structs cannot declare a default (parameterless) constructor.
8. Structs are more efficient than classes, that’s’ why they are perfect for the

creation of lightweight objects.

Properties

C# has formalized the concept of getter/setter methods. The relationship between a get
and set method is inherent in C#, while has to be maintained in Java or C++. For
example, in Java/C++ we will have to write code similar to the one shown below:

public int getSize() {
return size;

}

public void setSize (int value) {
size = value;

}

foo.setSize (getSize () + 1);

In C# we can define a property and can use it as if we were using a public variable. This
is shown below:

public int Size {
get {return size; }
set {size = value; }

}

foo.size = foo.size + 1;

121
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Reference types

In C#, the pre-defined reference types are object and string. As mentioned earlier, object
is the ultimate base class of all other types. New reference types can be defined using
'class', 'interface', and 'delegate' declarations. Reference types actually hold the value of a
memory address occupied by the object they reference.

Reference types however suffer from the problem of aliasing as shown below:

object x = new object();
x.myValue = 10;
object y = x;
y.myValue = 20; // after this statement both x.myValue and y.myValue

// equal 20

There is however no aliasing in string. That is, strings are immutable. The properties of an
immutable object can't be modified. So in order to change what a string variable
references, a new string object must be created. Following is an example that elaborates
this concept:

string s1 = "hello";
string s2 = s1; // s2 points to the same strings as s1
s1 = “world”; // a new string is created and s1 points to it.

// s2 keeps pointing to the old strings

---------------------------------------END OF LECTURE 31---------------------------------------

Pointers

Pointers were present in C++ but Java designers took them out. C# has brought them
back. However, C#, pointers can only be declared to hold the memory addresses of value
types. That is, we cannot have pointers for reference types. The rest is very similar to C+
+. This is illustrated with the help of the following example:

int i = 5;
int *p;
p = &i; // take address of i
*p = 10; // changes the value of i to 10

One major difference between C++ and C# is that the ‘*’ applies to the type. That is, as
opposed to C++, in C#, the following statement would declare two pointers p1 and p2:

int * p1, p2;

Just like C++, the dereference operator ‘->’ is used to access elements of a struct type.

122
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Pointers and unsafe code

In C#, we have two modes for the code, the managed and unmanaged. Theses are
elaborated as below:

Managed code
1. Managed code is executed under the control of Common Language
Runtime (CRL).
2. It has automatic garbage collection. That is, the dynamically allocated
memory area which is no longer is in use is not destroyed by the programmer
explicitly. It is rather automatically returned back to heap by the built-in garbage
collector.
3. There is no explicit memory’s allocation and deallocation and there is no
explicit calls to the garbage collector i.e. call to destructor.

Unmanaged code (Java does not have this concept)
 The unmanaged code provides access to memory through pointers just like C++. It is
useful in many scenarios. For example:
• Pointers may be used to enhance performance in real time applications.
• External Functions: In non-.net DLLs some external functions requires a pointer as a

parameter, such as Windows APIs that were written in C.
• Debugging: Sometimes we need to inspect the memory contents for debugging

purposes, or you might need to write an application that analyzes another application
process and memory.

123
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

unsafe
The keyword unsafe is used while dealing with pointer. The name reflects the risks
that you might face while using it. We can declare a whole class as unsafe as shown
below:

unsafe class Class1 {
//you can use pointers here!

}

Or only some class members can be declared as unsafe:

class Class1 {
//pointer
unsafe int * ptr;
unsafe void MyMethod() {

//you can use pointers here
}

}

To declare unsafe local variables in a method, you have to put them in unsafe blocks as
the following:

static void Main() {
//can't use pointers here
unsafe
{

//you can declare and use pointer here
}
//can't use pointers here

}

Disadvantages of using unsafe code in C#:
• Complex code
• Harder to use
• Pointers are harder to debug
• You may compromise type safety
• Misusing might lead to the followings:

o Overwrite other variables
o Illegal access to memory areas not under your control
o Stack overflow

Garbage Collector Problem in C# and the fixed keyword

When pointers are used in C#, Garbage collector can change physical position of
the objects. If garbage collector changes position of an object the pointer will point at
wrong place in memory. To avoid such problems C# contains ‘fixed’ keyword –
informing the system not to relocate an object by the garbage collector.

124
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Arrays

Arrays in C# are more similar to Java than to C++. We can create an array as did in Java
by using the new operator. Once created, the array can be used as usual as shown below:

int[] i = new int[2];
i[0] = 1;
i[1] = 2;

By default all arrays start with their lower bound as 0. Using the .NET framework's
System.Array class it is possible to create and manipulate arrays with an alternative initial
lower bound.

Types of Arrays:
• Single Dimensional Arrays
• Multidimensional arrays

o Rectangular
o Jagged

Rectangular Arrays:

A rectangular array is a single array with more than one dimension, with the
dimensions' sizes fixed in the array's declaration. Here is an example:

int[,] squareArray = new int[2,3];

As with single-dimensional arrays, rectangular arrays can be filled at the time they are
declared.

Jagged Arrays (Similar to Java jagged arrays)

Jagged arrays are multidimensional arrays with irregular dimensions. This
flexibility derives from the fact that multidimensional arrays are implemented as arrays of
arrays.

int[][] jag = new int[2][];
jag[0] = new int [4];
jag[1] = new int [6];

Each one of jag[0] and jag[1] holds a reference to a single-dimensional int array.

Pointers and Arrays

Just as in C++, a pointer can be declared in relation to an array:

int[] a = {4, 5};
int *b = a;

125
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

In the above example memory location held by b is the location of the first type held by a.
This first type must, as before, be a value type. If it is reference type then compiler will
give error.

Enumerations

C# brought back enumerations which were discarded by Java designers. However,
they are slightly different from C++.

• An enumeration is a special kind of value type limited to a restricted and
unchangeable set of numerical values.

• By default, these numerical values are integers, but they can also be longs, bytes,
etc. (any numerical value except char) as will be illustrated below.

• Type safe
• Consider the following example:

public enum DAYS {
Monday=1,
Tuesday,
Wednesday,

 Thursday,
Friday,

 Saturday,
 Sunday

}

In C# enumerations are type-safe, by which we mean that the compiler will do its best to
stop you assigning illicit values to enumeration typed variables. For instance, the
following code should not compile:

int i = DAYS.Monday;
DAYS d = i;

In order to get this code to compile, you would have to make explicit casts both ways
(even converting from DAYS to int), ie:

int i = (int)DAYS.Monday;
DAYS d = (DAYS)i;

A useful feature of enumerations is that one can retrieve the literal as a string from the
numeric constant with which it is associated. In fact, this is given by the default
ToString() method, so the following expression comes out as true:

DAYS.Monday.ToString()=="Monday"

--END OF LECTURE 32-----------------------------------

126
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Boolean

• In C#, Boolean values do not convert to integers and Boolean values (true, false)
do not equate to integer variables. Thus, you may not write:

 if (someFuncWhichReturnsAnIntegerValue())

• No arithmetic expression is allowed where Boolean expressions are expected.
 Thus, if you write:

 if (x = y) // compilation error

 It will not be compiled.

Operator evaluation order

As discussed earlier, in C/C++ the operator evaluation order is not specified. We have
discussed at length how that creates problems. In C#, it is strictly from left to right and
hence there is no ambiguity.

For example,
 a=5;

x=a++ + --a;

If evaluated left-to-right
 x=10

If evaluated right-to-left
 x=8

Conversion

Like Java supports implicit widening conversion only. For narrowing conversion, fro
example from float to int, the programmer has to explicitly state his intentions.

127
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Loops

C# provides a number of the common loop statements. These include while, do-while,
for, and foreach.

The syntax of while, do-while, and for loops is similar to C++. The only difference is that
the loop control expression must be of Boolean type.

foreach loop

The 'foreach' loop is used to iterate through the values contained by any object which
implements the IEnumerable interface. It has the following syntax:

foreach (variable1 in variable2) statement[s]

When a 'foreach' loop runs, the given variable1 is set in turn to each value exposed by the
object named by variable2. Here is an example:

int[] a = new int[]{1,2,3};
foreach (int b in a)
System.Console.WriteLine(b);

Other Control Flow Statements

C# supports a number of control statements including break, continue, goto, if, switch,
return, and throw.

switch statement

They are more or less similar to their counterparts in C++. The switch statement is
however significantly different is explained below. The syntax of the switch statement is
given below:

switch (expression)
{

case constant-expression:
statements
jump statement
[default:

statements
jump statement

]
}

The expression can be an integral or string expression. Control does not fall through.
Jump statement is required for each block – even in default block. Fall through is allowed
to stack case labels as shown in the following example:

switch(a){
case 2:

128
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Console.WriteLine("a>1 and ");
goto case 1;

case 1:
Console.WriteLine("a>0");
break;

default:
Console.WriteLine("a is not set");
break;

}

As mentioned earlier, we can also use a string in the switch expression. This is
demonstrated with the help of the following example:

void func(string option){
 switch (option)
 {
 case "label":
 goto case "jump":
 case "quit":
 return;
 case "spin":
 for(;;){ }
 case "jump":
 case "unwind":
 throw new Exception();
 default:
 break;
 }
}

In this example, note that jump and unwind are stacked together and there is no jump
statement in the case of jump. When a case is empty, that is there is no statement in the
body of the case then it may not have any jump statement either.

129
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Class
1. Class Attributes:

• Attributes are used to give information to .Net compiler
o E.g. it is possible to tell the compiler that a class is compliant with >Net

Common Language Specification.
[CLSCompliant (true)]
publc class MyClass
{

//class code
}

2. Class Modifiers
 Support for OOP is provided through classes. In C#, we have the following
modifiers:

• public: same as C++
• internal: internal is accessible only to types within the same assembly
which is similar to package in Java.

• protected: same as C++
• internal protected: protected within the same assembly
• private: same as C++

• new:
– The 'new' keyword can be used for 'nested' classes.
– A nested class is one that is defined in the body of another class; it is in most

ways identical to a class defined in the normal way, but its access level cannot
be more liberal than that of the class in which it is defined.

– Classes are usually specified independently of each other. But it is possible for
one class to be specified within another's specification. In this case, the latter
class is termed a nested class.

– A nested class should be declared using the 'new' keyword just in case it has
the same name as (and thus overrides) an inherited type.

• abstract: A class declared as 'abstract' cannot itself be instanced - it is designed only
to be a base class for inheritance.

• sealed: A class declared as 'sealed' cannot be inherited from. It may be noted that
structs can also not be inherited from.But it can inherit from other class.

---END OF LECTURE 33-------------------------------------

Method Modifiers

C# provides the following methods modifiers:

• static: The 'static' modifier declares a method to be a class method.
• new, virtual, override:
• extern: Similar to C extern. Mean that the method is defined externally, using a

language other than C#

130
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Hiding and Overriding

The main difference between hiding and overriding relates to the choice of which method
to call where the declared class of a variable is different to the run-time class of the object
it references.

For example:

public virtual double getArea()
{

 return length * width;
}

public override double getArea()
{

 return length * length;
}

For one method to override another, the overridden method must not be static, and it must
be declared as either 'virtual', 'abstract' or 'override'. Now look at the following:

public double getArea()
{

 return length * width;
}

public new double getArea()
{

 return length * length;
}

Where one method 'hides' another, the hidden method does not need to be declared with
any special keyword. Instead, the hiding method just declares itself as 'new'.

http://www.akadia.com/services/dotnet_polymorphism.html

131
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Method Hiding

A 'new' method only hides a super-class method with a scope defined by its access
modifier. In this case method calls do not always 'slide through' in the way that they do
with virtual methods. So, if we declare two variables thus if we have:

Square sq = new Square(4);
Rectangle r = sq;

then

double area = r.getArea();

the getArea method run will be that defined in the Rectangle class, not the Square class.

Method parameters

In C#, as in C++, a method can only have one return value. You overcome this in
C++ by passing pointers or references as parameters. In C#, with value types, however,
this does not work. If you want to pass the value type by reference, you mark the value
type parameter with the ref keyword as shown below.

public void foo(int x, ref int y)

Note that you need to use the ref keyword in both the method declaration and the actual
call to the method.

someObject.f00(a, ref b);

132
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Out Parameters

C# requires definite assignment, which means that the local variables, a, and b must be
initialized before foo is called.

int a, b;
b = 0;
someObject.f00(ref a, b); // not allowed

// a has not been
// initialized

a = 0; b =0;
someObject.f00(ref a, b); // now it is OK

This is unnecessarily cumbersome. To address this problem, C# also provides the out
keyword, which indicates that you may pass in un-initialized variables and they will be
passed by reference.

public void foo(int x, ref int y, out int z)

a = 0; b = 0;
someObject.f00(a, ref b, out c); // no need to initialize c

params

One can pass an arbitrary number of types to a method by declaring a parameter array
with the 'params' modifier. Types passed as 'params' are all passed by value. This is
elaborated with the help of the following example:

public static void Main(){
double a = 1;
int b = 2;
int c = 3;
int d = totalIgnoreFirst(a, b, c);

}

public static int totalIgnoreFirst(double a, params int[] intArr){
int sum = 0;
for (int i=0; i < intArr.Length; i++)

sum += intArr[i];
return sum;

}

133
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Readonly fields

Readonly field are instance fields that cannot be assigned to. That is, their value is
initialized only once and then cannot be modified. This is shown in the following
example:

class Pair
{
 public Pair(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 public void Reset()
 {
 x = 0; // compile time errors
 y = 0;
 }
 private readonly int x, y; // this declares Pair as an immutable read only object
}

The is operator

• The ‘is’ operator supports run time type information.
• It is used to test if the operator/expression is of certain type

o Syntax: expression is type
• Evaluates to a Boolean result.
• It can be used as conditional expression.
• It will return true

o if the expression is not NULL
o the expression can be safely cast to type.

• The following example illustrates this concept:

class Dog {
…
}

class Cat {
…
}

…
 // object o;

if (o is Dog)
Console.Writeline(“it’s a dog”);

else if (o is Cat)
Console.Writeline(“it’s a cat”);

else
Console.Writeline(“what is it?”);

134
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

The as operator

• The as operator attempts to cast a given operand to the requested type.
o Syntax: expression as type

• The normal cast operation – (T) e – generates an InvalidCastException when there
is no valid cast.

• The as operator does not throw an exception; instead the result returned is null as
shown below:

o expression is type ? (type) expression : (type) null

The new operator

• In C++, the new keyword instantiates an object on the heap.
• In C#, with reference types, the new keyword does instantiate objects on the heap
but with value types such as structs, the object is created on the stack and a
constructor is called.
• You can, create a struct on the stack without using new, but be careful! New
initializes the object.
• If you don't use new, you must initialize all the values in the struct by hand before
you use it (before you pass it to a method) or it won't compile.

Boxing

Boxing is converting any value type to corresponding object type and convert the
resultant 'boxed' type back again.

int i = 123;
object box = i; // value of i is copied to the object box
if (box is int) // runtime type of box is returned as boxed value type
{

Console.Write("Box contains an int"); // this line is printed
}

Interfaces

• Just like Java, C# also has interfaces contain method signatures.
• There are no access modifier and everything is implicitly public.
• It doest not have any fields, not even static ones.
• A class can implement many interfaces but unlike Java there is no implements
keyword .
• Syntax notation is positional where we have base class first, then base
interfaces as shown below:

o class X: CA, IA, IB
{

…
}

135
© Copyright Virtual University of Pakistan

C# Programming Language (Lecture 31-34) VU

Delegates

Delegates are similar to function pointers. C/C++ function pointers lack instance-based
knowledge whereas C# delegate are event based can be thought of a call-back mechanism
where a request is made to invoke a specified method when the time is right.

Delegates are reference types which allow indirect calls to methods. A delegate instance
holds references to some number of methods, and by invoking the delegate one causes all
of these methods to be called. The usefulness of delegates lies in the fact that the
functions which invoke them are blind to the underlying methods they thereby cause to
run.

An example of delegates is shown below:

public delegate void Print (String s);
…

public void realMethod (String myString)
{
 // method code
}
…

Another method in the class could then instantiate the 'Print' delegate in the following
way, so that it holds a reference to 'realMethod':

Print delegateVariable = new Print(realMethod);

Exception Handling and Multithreading

Exception handling is similar to java but is less restrictive. Multithreading is similar to
java.

136
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-
37)

A Server-side Scripting Programming Language

An Introduction

What is PHP?

PHP stands for “PHP: Hypertext Preprocessor”. It is a server-side scripting language.
PHP scripts are executed on the server and it is especially suited for Web development
and can be embedded into HTML. The main goal of the language is to allow web
developers to write dynamically generated web pages quickly. Its syntax is very similar to
C/C++ and it has support for almost all major OS, web-servers, and databases. PHP is an
open source software (OSS) and is free to download and use.

What is a PHP File?
PHP files may contain text, HTML tags and scripts. PHP files are returned to the browser
as plain HTML. PHP files have a file extension of ".php", ".php3", or ".phtml". As
mentioned earlier, a PHP script is run on the web server, not on the user's browser.
Therefore, client-side compatibility issues are not of concern of the programmer as
simply return an HTML document for the browser to process. You need three things to
make this work: the PHP parser (CGI or server module), a web server and a web browser.

PHP Hello World

Following is the PHP Hello World program.

<html>
 <head>
 <title>PHP Test</title>
 </head>
 <body>

<?php // start of php code
 echo '<p>Hello World</p>';
 ?>
 </body>
</html>

The code written within “php” tags is parsed by the PHP processor and the rest is ignored.
Hence, a PHP parser would convert the above code into the following HTML document
and send it to the browser.

<html>
 <head>
 <title>PHP Test </title>

137
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

 </head>
 <body>

<p>Hello World</p>
 </body>
</html>

It may be noted that PHP supports C++ type of comments and requires a semicolon “;” at
the end of each statement.

PHP Opening and Closing Tags

PHP scripts are always enclosed in between two PHP tags. This tells your server to parse
the information between them as PHP. The three different forms are as follows:

1. <?php
echo “this is the recommended style”;

?>

2. <script language="php">
echo “this style is also available”;

</script>

3. <?
echo “this is short tags style; it needs to be configured”;

?>

There is also another form which may or may not be supported on some browsers. It is
shown as below:

4. <%
echo ‘this is ASP-style tags; it may not be available';

%>

138
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

Data types

The type of a variable is decided at runtime by PHP depending on the context in which
that variable is used. PHP supports the following data types:

• Boolean
• integer
• float or double
• string
• array
• object
• resource
• NULL

Integers

The size of an integer is platform-dependent, although a maximum value of about two
billion is the usual value (that's 32 bits signed). 2147483647 = 231 – 1. PHP does not
support unsigned integers. It is important to note that, unlike C++ or Java, if you specify a
number beyond the bounds of the integer type, it will be interpreted as a float instead. If
an operation results in a number beyond the bounds of the integer type, a float will be
returned instead. Also, there is no integer division operator in PHP. 1/2 yields the float
0.5.

Strings

PHP strings are created using single quote or double quote. They can also be created by
<<< which is called heredoc. One should provide an identifier after <<<, then the string,
and then the same identifier to close the quotation. The closing identifier must begin in
the first column of the line.

Variable

Variables in PHP are represented by a dollar sign followed by the name of the variable.
The variable name is case-sensitive. A valid variable name starts with a letter or
underscore, followed by any number of letters, numbers, or underscores. As a regular
expression, it would be expressed thus: '[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*'.

Note: For our purposes here, a letter is a-z, A-Z, and any ASCII characters from 127
through 255 (0x7f-0xff). Therefore, $Inzi½ is a legal variable name. It is not necessary to
initialize variables in PHP. Un-initialized variables have a default value of their type -
FALSE, zero, empty string or an empty array.

String conversion to numbers

When a string is evaluated as a numeric value, the resulting value and type are determined
as follows.

139
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

• The string will evaluate as a float if it contains any of the characters '.', 'e', or 'E'.
Otherwise, it will evaluate as an integer.

• The value is given by the initial portion of the string. If the string starts with valid
numeric data, this will be the value used. Otherwise, the value will be 0 (zero).

Here is an example:

<?php
$foo = 2 + "10.5"; // $foo is float (12.5)
$foo = 1 + "-1.1e3"; // $foo is float (-1099)
$foo = 1 + “Ali-1.3e3"; // $foo is integer (1)
$foo = 1 + "10 Small Cats"; // $foo is integer (11)
$foo = "10.0 cats " + 1; // $foo is float (11)

?>

Using strings in numeric expressions provides flexibility but it should be obvious that it
also is a source to numerous programming errors and mistakes. This kind of error is also
very hard to debug and detect.

Arrays

An array in PHP is an ordered map. An array can be created by the array() construct. It
takes a certain number of comma-separated key => value pairs. key may be an integer or
string. The following example illustrates this concept:

<?php
$arr = array("foo" => "bar", 12 => true);
echo $arr["foo"]; // bar
echo $arr[12]; // 1

?>

If no key is specified in the assignment, then the maximum of the existing integer indices
is taken, and the new key will be that maximum value + 1. If the current maximum is
negative then the next key created will be zero. If no integer indices exist yet, the key will
be 0 (zero). Note that the maximum integer key used for this need not currently exist in
the array. It simply must have existed in the array at some time since the last time the
array was re-indexed. If the specified key already has a value assigned to it, that value
will be overwritten. These things are demonstrated in the following example:

<?php
$arr = array(5 => 1, 12 => 2);
$arr[] = 56; // This is the same as $arr[13] = 56;

// at this point of the script
$arr["x"] = 42; // This adds a new element to

 // the array with key "x“
unset($arr[13]); // This removes the element from the array
$arr[] = 56; // This is the same as $arr[14] = 56;

 // at this point of the script
unset($arr); // This deletes the whole array

140
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

?>
class

A class is defined as shown below:

<?php
class Cart {

var $items; // Items in our shopping cart
 // Add $num articles of $artnr to the cart

 function add_item($artnr, $num) {
$this->items[$artnr] += $num;

}
function remove_item($artnr, $num) {

if ($this->items[$artnr] > $num) {
$this->items[$artnr] -= $num;
return true;

}
 elseif ($this->items[$artnr] == $num) {

unset($this->items[$artnr]);
return true;

}
else { return false; }

}
}

?>

Aliasing

Aliasing is used to assign by reference. To assign by reference, simply prepend an
ampersand (&) to the beginning of the variable which is being assigned (the source
variable) as shown below:

<?php
$foo = ‘Fakhar';
$bar = &$foo; // Reference $foo via $bar.
$bar = "My name is $bar"; // Alter $bar...
echo $bar;
echo $foo; // $foo is altered too.

?>

Variable variable

A variable variable is like pointers that is, it maintains the address of a variable in it. This
is shown in the example below:

<?php
$a = ‘hello’;
$$a = 'world';
echo "$a ${$a}“; // ‘hello world”

141
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

?>

Constants

A constant is an identifier (name) for a simple value that cannot change during the
execution of the script. A constant is case-sensitive by default. By convention, constant
identifiers are always uppercase. The name of a constant follows the same rules as any
label in PHP. A valid constant name starts with a letter or underscore, followed by any
number of letters, numbers, or underscores. As a regular expression, it would be
expressed thusly: [a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]* .

Logical operators

PHP supports the following logical operators.

and, or, xor, !, &&, ||

The reason for the two different variations of "and" and "or" operators is that they operate
at different precedence. This is demonstrated with the help of the following example:

$a and $b or $c // ($a and $b) or $c
$a && $b || $c
$a and $b || $c // $a and ($b || $c)

String operators

There are two string operators. The first is the concatenation operator ('.'), which returns
the concatenation of its right and left arguments. The second is the concatenating
assignment operator ('.='), which appends the argument on the right side to the argument
on the left side.

<?php
$a = "Hello ";
$b = $a . "World!"; // now $b contains "Hello World!"
$a = "Hello ";
$a .= "World!"; // now $a contains "Hello World!"

?>

142
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

Array Operators

PHP provides a number of operators to manipulate arrays. These are:

• $a + $b Union – Union of $a and $b.
• $a == $b Equality – TRUE if $a and $b have

 the same key/value pairs.
• $a === $b Identity - TRUE if $a and $b have

the same key/value pairs in the
 same order and of the same types.

• $a != $b Inequality - TRUE if $a is not equal to $b.
• $a <> $b Inequality - TRUE if $a is not equal to $b.
• $a !== $b Non-identity - TRUE if $a is not identical to $b.

Note the difference between == and ===. The former checks if the same key-value pairs
are present in the two arrays and the order does not matter whereas the latter requires that
in order to be identical the pairs have to be in the same order.

The + operator appends the right handed array to the left handed, whereas duplicated
keys are NOT overwritten. This concept is elaborated as below:

$a = array("a" => "apple", "b" => "banana");
$b = array("a" => "pear", "b" => “date", "c" => “mango");
$c = $a + $b; // Union of $a and $b

This will result in an array c with the following values:

["a"]=> "apple" ["b"]=> "banana" ["c"]=> “mango"

Control Statements

PHP supports the following control statements:

• if
• while
• do while
• for
• switch
• foreach
• break
• continue

Most control structures work in a manner similar to C. The differences are highlighted in
the following paragraphs.

If statements

143
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

The if statement in PHP has the following shape and form:

<?php
if ($a > $b) { echo "a is bigger than b"; }
elseif ($a == $b) { echo "a is equal to b"; }
else { echo "a is smaller than b"; }

?>

There may be several elseifs within the same if statement. The first elseif expression (if
any) that evaluates to TRUE would be executed. In PHP, you can also write 'else if' (in
two words) and the behavior would be identical to the one of 'elseif' (in a single word).

foreach

foreach statement works only on arrays, and will issue an error when you try to use it on a
variable with a different data type or an uninitialized variable. It gives an easy way to
iterate over arrays. There are two syntaxes; the second is a minor but useful extension of
the first:

• foreach (array_expression as $value) statement
• foreach (array_expression as $key => $value) statement

The first form loops over the array given by array_expression. On each loop, the value of
the current element is assigned to $value and the internal array pointer is advanced by
one. The second form does the same thing, except that the current element's key will also
be assigned to the variable $key on each loop. As of PHP 5, it is possible to iterate objects
too.

Note: Unless the array is referenced, foreach operates on a copy of the specified array
and not the array itself. Therefore changes to the array element returned are not reflected
in the original array. As of PHP 5, array's elements can be modified by preceding $value
with &. This will assign reference instead of copying the value.

<?php
$arr = array(1, 2, 3, 4);
foreach ($arr as &$value)

{ $value = $value * 2; }
// $arr is now array(2, 4, 6, 8)

?>

This is possible only if iterated array can be referenced (i.e. is variable).

each

each return the current key and value pair from an array and advance the array cursor. It is
used in the following manner:

array each (array &array)

144
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

Returns the current key and value pair from the array array and advances the array cursor.
This pair is returned in a four-element array, with the keys 0, 1, key, and value. Elements
0 and key contain the key name of the array element, and 1 and value contain the data. If
the internal pointer for the array points past the end of the array contents, each() returns
FALSE.

break

break ends execution of the current for, foreach, while, do-while or switch structure. In
PHP, break accepts an optional numeric argument which tells it how many nested
enclosing structures are to be broken out of. The following example illustrates this
concept:

<?php
$i = 0;
while (++$i) {

switch ($i) {
case 5:

echo "At 5
\n";
break 1; // Exit only the switch.

case 10:
echo "At 10; quitting
\n";
break 2; // Exit the switch and the while.

default:
break; // Exit only the switch.

}
}

?>

continue

continue is used within looping structures to skip the rest of the current loop iteration and
continue execution at the condition evaluation and then the beginning of the next
iteration. Note: Note that in PHP the switch statement is considered a looping structure
for the purposes of continue. Like break, continue accepts an optional numeric argument
which tells it how many levels of enclosing loops it should skip to the end of.

Omitting the semicolon after continue can lead to confusion as shown below:

<?php
for ($i = 0; $i < 5; ++$i) {

if ($i == 2) continue print "$i\n";
}

?>

One can expect the result to be : 0 1 3 4 but this script will output : 2 because the return
value of the print() call is int(1), and it will look like the optional numeric argument
mentioned above.

145
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

Alternative syntax for control statements

PHP offers an alternative syntax for some of its control structures; namely, if, while, for,
foreach, and switch. In each case, the basic form of the alternate syntax is to change the
opening brace to a colon (:) and the closing brace to endif;, endwhile;, endfor;,
endforeach;, or endswitch;, respectively. An example is shown below:

<?php
if ($a == 5):

echo "a equals 5";
echo "...";

elseif ($a == 6):
echo "a equals 6";
echo "!!!";

else: echo "a is neither 5 nor 6";
endif;

?>

User defined functions

Just like all programming languages, one can define functions in PHP as shown in the
following example:

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n)
{

echo "Example function.\n";
return $retval;

}
?>

PHP also allows functions to be defined inside functions. It may be noted that C and its
descendents do not support this feature but descendants of Algol generally support it. The
following example shows this concept:

<?php
function foo() {

function bar() {
echo "I don't exist until foo() is called.\n";
}

}

/* We can't call bar() yet since it doesn't exist. */

foo();

/* Now we can call bar(), foo()'s processesing has made it
 accessible. */

bar();

146
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

?>

PHP also supports recursive functions as shown below:

<?php
function recursion($a) {

if ($a < 20) {
echo "$a\n"; recursion($a + 1);

}
}

?>
Function arguments

PHP supports passing arguments by value (the default), passing by reference, and default
argument values. If you want an argument to a function to always be passed by reference,
you can prepend an ampersand (&) to the argument name in the function definition:

<?php
function add_some_extra(&$string) {

$string .= 'and something extra.';
}
$str = 'This is a string, ';
add_some_extra($str);
echo $str; // outputs 'This is a string, and

 // something extra.‘
?>

You can't return multiple values from a function, but similar results can be obtained by
returning a list as shown below:

<?php
function small_numbers() {

return array (0, 1, 2);
}
list ($zero, $one, $two) = small_numbers();

?>

To return a reference from a function, you have to use the reference operator & in both
the function declaration and when assigning the returned value to a variable:

<?php
function &returns_reference() {

return $someref;
}
$newref =& returns_reference();

?>

147
© Copyright Virtual University of Pakistan

PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)C# Programming
Language (Lecture 31-34) VU

Classes and Objects

Classes and objects are similar to Java. A variable of the desired type is created with the
new operator. It supports Single inheritance only and uses the keyword extends to inherit
from a super class. The inherited methods and members can be overridden, unless the
parent class has defined a method as final.

Databases

One of the strongest features of PHP is its support for providing web pages access to
database. The following example shows database manipulation through ODBC in PHP:

<html>
<body>
<?php

$conn=odbc_connect('northwind','','');
if (!$conn) {

exit("Connection Failed: " . $conn);
}
$sql="SELECT * FROM customers";
$rs=odbc_exec($conn,$sql);
if (!$rs) {exit("Error in SQL");}
echo "<table><tr>";
echo "<th>Companyname</th>";
echo "<th>Contactname</th></tr>“;
while (odbc_fetch_row($rs)){

$compname=odbc_result($rs,"CompanyName");
$conname=odbc_result($rs,"ContactName");
echo "<tr><td>$compname</td>";
echo "<td>$conname</td></tr>";

}
odbc_close($conn);
echo "</table>";

?>
</body>
</html>

148
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

Modern Programming Languages-JavaScript
Lecture 38

The <script> Tag

The <script> tag (<script>….</script>) in all major browsers interprets contents as
JavaScript unless one of the following occurs

Inclusion of language attribute

<script language=“VBS”>….</script>
Inclusion of type attribute
<script type=“text/javascript”>….</script>

The type attribute is W3C recommended, it makes the language more common and in
many ways more useful

<script> tag is used to delimit the script code from the HTML

 The script tag causes the browser’s JavaScript interpreter to be invoked, the
script run and any output produced

 The browser is considered the “host” environment
 There are other hosts for JavaScript and its variants

Location of Code

JavaScript may be placed at three places
In the <head> element

Place scripts to be called or when event is triggered here
Ensures script is loaded before called

<html>
 <head>
 <script type=“text/javascript”>

//script statements
 </script>
 </head>

Location of Code

In the <body> element
Place scripts to be executed when the page loads here

149
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

Script generates some or all of the contents of the page
 <body>
 <script type=“text/javascript”>

//script statements
 </script>
 </body>
Location of Code

External to the HTML file
 <head>
 <script src=“myfile.js”>
 </script>
 </head>

Could be in <head> or <body>
External script should not contain <script> tag

Statements

• A script is made up of individual statements
• Javascript statements are terminated by returns or semi-colons same as

• So, prefer to use semi-colons

 x=x+1 alert(x) //throws an error while
 x=x+1; alert(x); //does not

150
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

• Every variable has a data type that indicates what kind of data the variable holds
• Basic data types in JavaScript
• Strings

 Strings may include special escaped characters
• Numbers (integers, floats)
• Booleans (true, false)
• ‘null’ and ‘undefined’ are also considered as types

• JavaScript is a weekly typed language meaning that the contents of a variable can
change from one type to another

• Example
 x = “hello”; x = 5; x=false;
While week typing seems beneficial to a programmer it can lead to problems

Arrays

• An ordered set of values grouped together with a single identifier
• Defining Arrays

• var myArray = [1,5,1968,3];
• var myArray2 = [“fakhar”,true,3,-47.2];
• var myArray3 = new Array ();

151
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

• var myArray4 = new Array (10);

Arrays

• Arrays in JavaScript are 0 based
• We access arrays by index values

• var myArray = [1,5,1968,3];
• myArray[3] is ‘3’

Difference

Array types (composite type as well) are reference types, so problem of aliasing is there

var firstArray = [“Mars”, “Jupiter”, “Saturn”];
var secondArray = firstArray;
secondArray[0] = “Neptune”;
alert(firstArray); // it has been changed

Operators

• Basic Arithmetic
 + , - , / , * , %
• Increment decrement
 ++, - -
• Comparison
 < , > , >= , <= , != , == , === (type equality)
• Logical
 &&, ||, !
• Bitwise Operators
 & , | , ^
• String Operator

• + (used for concatenation)
• document.write(“JavaScript” + “is” + “great!”);

Type Conversion

• Converting one type of data to another is both useful and a source of
numerous errors in JavaScript

• var x = “10” – 2 ; //result is 8
• var x = “2” – “2” ; //result is 0
• var x = “2” + “2” ; //result is “22”

152
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

Control Statements

• If
• Switch
• While
• Do-while
• For
• Continue
• Break
• For (in)

Labels and Flow Control

153
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript VU

154
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

Modern Programming Languages-JavaScript
Lecture 39

Objects

• An object is a collection of data types as well as functions in one package
• The various data types called properties and functions called methods are

accessed using the dot notation

• objectname.propertyname

Objects

• There are many types of objects in JavaScript

 Built-in objects (primarily type related)
 Browser objects (navigator, window etc.)
 Document objects (forms, images etc.)
 User defined objects

Two Object Models
• In JavaScript, two primary object models are employed
• Browser Object Model (BOM)

 The BOM provides access to the various characteristics of a browser such as
the browser window itself, the screen characteristics, the browser history and
so on.

• Document Object Model (DOM)
 The DOM on the other hand provides access to the contents of the browser

window, namely the documents including the various HTML elements
ranging from anchors to images as well as any text that may be enclosed by
such element.

155
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

156
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

157
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

158
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

159
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

160
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

Object Statement: With

document.write(“Hello World”);
document.write(“
”);
document.write(“this is another write statement”);

with (document) {
write(“Hello World”);
 write(“
”);
 write(“this is another write statement”);

}

161
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

162
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

163
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

164
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

165
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

166
© Copyright Virtual University of Pakistan

Modern Programming Languages-JavaScript C# Programming Language (Lecture 31-34)
VU

167
© Copyright Virtual University of Pakistan

Modern Programming Languages - 40 VU

Modern Programming Languages
Lecture # 40

Names

• Design issues:
 Maximum length?
 Are connector characters allowed?
 Are names case sensitive?
 Are special words reserved words or keywords?

Special Words

• There are two types of special words
 Keyword
 Reserved word

• A keyword is a word that is special only in a certain context
 REAL X
 REAL = 44.7

• Disadvantage: poor readability

• A reserved word is a special word that cannot be used as a user-defined name
 Type

• Type: Determines the range of values of variables and the set of operations that
are defined for values of that type; in the case of floating point, type also
determines the precision

 Value
• Value: The contents of the location with which the variable is associated

 Binding

• Binding : A binding is an association, such as between an attribute and an entity,
or between an operation and a symbol

 Binding Time
 It is the time at which a binding takes place

Possible binding times

1. Language design time - e.g. bind operator symbols to operations
2. Language implementation time - e.g. bind fl. pt. type to a representation

3. Compile time - e.g. bind a variable to a type in C or Java
4. Load time- e.g.
5. Runtime - e.g. bind a non-static local variable to a memory cell

168
© Copyright Virtual University of Pakistan

Modern Programming Languages - 40 VU

Static and Dynamic Binding

• A binding is static if it occurs before run time and remains unchanged throughout
program execution

• A binding is dynamic if it occurs during execution or can change during execution
of the program

Type Bindings

• How is a type specified?
• When does the binding take place?
• If static, type may be specified by either an explicit or an implicit declaration

 An explicit declaration is a program statement used for declaring the types
of variables

 An implicit declaration is a default mechanism for specifying types of
variables (the first appearance of the variable in the program)

• FORTRAN, PL/I, BASIC, provide implicit declarations
 Advantage: writability
 Disadvantage: reliability

Dynamic Type Binding

• Specified through an assignment statement e.g. in SNOBOL
 LIST = ‘my name’
 LIST = 4 + 5

• Advantage
 Flexibility (generic program units)

• Disadvantages:
 Type error detection by the compiler is difficult
 High cost (dynamic type checking and interpretation)

Storage Bindings

 At what time we associate the memory location with a name

Categories of variables by lifetimes
1. Static Storage Binding

• Bound to memory cells before execution begins and remains bound to the
same memory cell throughout execution
• Example

 In FORTRAN 77 all variables are statically bound
 C static variables

• Advantage

 Efficiency (direct addressing), history-sensitive, subprogram support

169
© Copyright Virtual University of Pakistan

Modern Programming Languages - 40 VU

• Disadvantage

 Lack of flexibility (no recursion)
 Stack Dynamic Variables:

• Bound to storages when execution reaches the code to which the declaration is
attached. (But, data types are statically bound.) That is, stack-dynamic variables
are allocated from the run-time stack.

• Example
o E.g. a Pascal procedure consists of a declaration section and a code

section.
o E.g. FORTRAN 77 and FORTRAN 90 use SAVE list for stack-dynamic

list.
o E.g. C and C++ assume local variables are static-dynamic.

• Advantage

o allows recursion; conserves storage

• Disadvantages

o Overhead of allocation and deallocation
o Subprograms cannot be history sensitive
o Inefficient references (indirect addressing)

Explicit Heap Dynamic Variables

• Allocated and de-allocated by explicit directives, specified by the programmer,
which take effect during execution

• Referenced only through pointers or references
• Examples

 Dynamic objects in C++ (via new and delete)
 All objects in Java

• Advantage
 Provide dynamic storage management

• Disadvantage
 Inefficient and unreliable

Implicit Heap Dynamic Variables

• Allocation and de-allocation is caused by assignment statements
• Example

 All variables in SNOBOL
• Advantage

 Flexibility
• Disadvantages

 Inefficient, because all attributes are dynamic
 Loss of error detection

170
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 41 VU

Modern Programming Languages Lecture 41

Type Checking
• Generalizes the concept of operands and operators to include subprograms and

assignments
• Type checking is the activity of ensuring that the operands of an operator are of

compatible types
• A compatible type is one that is either legal for the operator, or is allowed under

language rules to be implicitly converted, by compiler generated code, to a legal
type. This automatic conversion is called coercion

• A type error is the application of an operator to an operand of an inappropriate
type

• If all type bindings are static, nearly all type checking can be static
• If type bindings are dynamic, type checking must be dynamic
• A programming language is strongly typed if type errors are always detected
• A programming language which does all the type checking statically then it is a

strongly typed languages otherwise weakly typed language.

Strongly Typed Languages?
• FORTRAN 77 is not strongly typed

 Parameters, EQUIVALENCE
• C and C++ are not

 Parameter type checking can be avoided
 Unions are not type checked

• Pascal is not
 Variant records

• Modula-2 is not
 Variant records

• Ada is, almost
 UNCHECKED CONVERSION is a loophole
 Coercion rules strongly affect strong typing; they can weaken it

considerably (C++ versus Ada)
• Advantage of strong typing

 Allows the detection of the misuse of variables that result in type errors

Type Compatibility
• Type compatibility by name means that the two variables have compatible types

if they are in either the same declaration or in declarations that use the same type
name

• Easy to implement but highly restrictive
 Sub ranges of integer types are not compatible with integer types

171
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 41 VU

Data Types
• Design Issues

 What is the syntax of references to variables?
 What operations are defined and how are they specified?

Primitive Data Types
• Not defined in terms of other data types
1. Integer

 Almost always an exact reflection of the hardware, so the mapping is
trivial

 There may be as many as eight different integer types in a language

2. Floating Point
 Models real numbers, but only as approximations
 Languages for scientific use support at least two floating-point types;
sometimes more
 Usually exactly like the hardware, but not always; some languages allow
accuracy specs in code e.g. (Ada)

 type SPEED is digits 7 range 0.0..1000.0;
 type VOLTAGE is delta 0.1 range -12.0..24.0;

3. Decimal
 For business applications (money)
 Store a fixed number of decimal digits
 Advantage

 Accuracy
 Disadvantages

 Limited range, wastes memory
 COBOL and ADA supports decimal
 C++ and java does not support decimal

4. Boolean
 Could be implemented as bits, but often as bytes
 Advantage

 Readability

Character String Types

 Values are sequences of characters
 Design issues:

 Is it a primitive type or just a special kind of array?
 Is the length of objects static or dynamic?

 Operations:
 Assignment
 Comparison (=, >, etc.)
 Concatenation
 Substring reference
 Pattern matching

172
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 41 VU

 Examples
 Pascal---Not primitive; assignment and comparisons supported
only
 Ada, FORTRAN 77, FORTRAN 90 and BASIC

▪ Somewhat primitive
▪ Assignment, comparison, catenation
▪ Substring reference

 C and C++
▪ Not primitive
▪ Use char arrays and a library of functions that provide these
operations

 SNOBOL4 (a string manipulation language)
▪ Primitive
▪ Many operations, including elaborate pattern matching

 Java; string class (not arrays of char)

Ordinal Types (user defined)
 An ordinal type is one in which the range of possible values can be easily
associated with the set of positive integers
 Enumeration Types - one in which the user enumerates all of the possible
values, which are symbolic constants
 Design Issue

 Should a symbolic constant be allowed to be in more than one type
definition?

 Examples
 Pascal

▪ Cannot reuse constants
▪ They can be used for array subscripts e.g. for variables, case
selectors
▪ NO input or output
▪ Can be compared

 Ada
▪ Constants can be reused (overloaded literals)
▪ Disambiguates with context or type_name
▪ CAN be input and output

 C and C++
▪ Like Pascal, except they can be input and output as integers

 Java does not include an enumeration types
 C# includes them

 Evaluation (of enumeration types)
 Useful for readability

▪ e.g. no need to code a color as a number
 Useful for reliability

▪ e.g. compiler can check operations and ranges of values

173
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 41 VU

 Subrange Type
 An ordered contiguous subsequence of an ordinal type
 Pascal

▪ Subrange types behave as their parent types; can be used as
for variables and array indices
▪ E.g. type pos = 0 .. MAXINT;

 Ada
▪ Subtypes are not new types, they are just constrained existing
types (so they are compatible)
▪ Can be used as in Pascal, plus case constants
▪ E.g. subtype POS_TYPE is
▪ E.g. INTEGER range 0 ..INTEGER'LAST;

 Evaluation (of enumeration types)
▪ Aid to readability
▪ Reliability - restricted ranges add error detection

 Implementation of user-defined ordinal types
 Enumeration types are implemented as integers
 Subrange types are the parent types with code inserted (by the
compiler) to restrict assignments to subrange variables

5. Arrays

 An array is an aggregate of homogeneous data elements in which an
individual element is identified by its position in the aggregate, relative to the
first element
 Design Issues

 What types are legal for subscripts?
 Are subscripting expressions in element references range checked?
 When are subscript ranges bound?
 When does allocation take place?
 What is the maximum number of subscripts?
 Can array objects be initialized?

6. Subscript Types
 FORTRAN, C, C++

 int only
 Pascal

 Any ordinal type (int, boolean, char, enum)
 Ada

 int or enum (includes boolean and char)
 Java

 integer types only

174
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 41 VU

Four Categories of Arrays (based on subscript binding and binding to storage)
 Static - range of subscripts and storage bindings are static e.g. FORTRAN
77, some arrays in Ada

 Advantage: execution efficiency (no allocation or de-allocation)
 Fixed stack dynamic - range of subscripts is statically bound, but storage
is bound at elaboration time e.g. C local arrays are not static

 Advantage: space efficiency
 Stack-dynamic - range and storage are dynamic, but fixed from then on
for the variable’s lifetime e.g. Ada declare blocks declare

 STUFF : array (1..N) of FLOAT;
 begin
 ...
 end;
 Advantage: flexibility - size need not be known until the array is
about to be used

175
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 422
VU

Modern Programming Languages Lecture 42

Records-(like structs in C/C++)
 Description:

- Are composite data types like arrays
- The difference between array and record is that array
elements are of same data type where as record is a logical grouping of
heterogeneous data elements.
- Another difference is that access to array elements is much
slower than access to record fields, because subscripts are dynamic (field
names are static)
- Dynamic subscripts could be used with record field access,
but it would disallow type checking and it would be much slower

 Design Issues:
- What is the form of references?
- What unit operations are defined?

 Record Definition Syntax
- COBOL uses level numbers to show nested records; others use recursive
definitions

- Examples:
 COBOL

 field_name OF record_name_1 OF ... OF
 record_name_n

 Others (dot notation)
 record_name_1.record_name_2. ...
 .record_name_n.field_name

- Better Approach:
 According to readability point of view COBOL record definition
syntax is easier to read and understand but according to writability
point of view other languages record definition syntax is easier to write
and less time consuming.

 Record Field References

- Two types of record field references:
 Fully qualified references must include all record names

 Elliptical references allow leaving out record names as long as the
reference is unambiguous

- Pascal and Modula-2 provide a with clause to abbreviate references

176
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 422
VU

 Record Operations

- Assignment
 Pascal, Ada, and C allow it if the types are identical
 In Ada, the RHS can be an aggregate constant

- Initialization
 - Allowed in Ada, using an aggregate constant

- Comparison
 - In Ada, = and /=; one operand can be an aggregate constant

Pointers
 Description:

- A pointer type is a type in which the range of values consists of memory
addresses and a special value, nil (or null)

 Uses:
- Addressing flexibility
- Dynamic storage management

 Fundamental Pointer Operations:
- Assignment of an address to a pointer
- References (explicit versus implicit dereferencing)

 Design Issues
- What is the scope and lifetime of pointer variables?
- What is the lifetime of heap-dynamic variables?
- Are pointers restricted to pointing at a particular type?
- Are pointers used for dynamic storage management, indirect addressing, or
both?
- Should a language support pointer types, reference types, or both?
- Pointer arithmetic?

 Problems with Pointers

- Dangling pointers
 A pointer points to a heap-dynamic variable that has been
deallocated

- Lost Heap-Dynamic Variables
 A heap-dynamic variable that is no longer referenced by any
program pointer
 The process of losing heap-dynamic variables is called memory
leakage

177
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 422
VU

- Pointers are like goto's - they widen the range of cells that can be accessed
by a variable
- Pointers are necessary - so we can't design a language without them

 Examples:
- Pascal: used for dynamic storage management only

 Explicit dereferencing
 Dangling pointers are possible (dispose)
 Dangling objects are also possible

- Ada: a little better than Pascal and Modula-2
 Some dangling pointers are disallowed because dynamic objects can
be automatically deallocated at the end of pointer's scope
 All pointers are initialized to null
 Similar dangling object problem (but rarely happens)

- C/C++: Used for dynamic storage management and addressing
 Explicit dereferencing and address-of operator
 Can do address arithmetic in restricted forms
 Domain type need not be fixed (void *)
 float stuff[100];

 float *p;
 p = stuff;
 *(p+5) is equivalent to stuff [5] and p [5]
 *(p+i) is equivalent to stuff[i] and p[i]
 void * - can point to any type and can be type checked (cannot be
dereferenced)

- Fortran90: Can point to heap and non-heap variables
 Implicit dereferencing
 Special assignment operator for non dereferenced references

- C++ Reference Types
 Constant pointers that are implicitly dereferenced
 Used for parameters
 Advantages of both pass-by-reference and pass-by-value

- Java - Only references
 No pointer arithmetic
 Can only point at objects (which are all on the heap)
 No explicit deallocator (garbage collection is used)
 Means there can be no dangling references
 Dereferencing is always implicit

Unions
 Description:

- A union is a type whose variables are allowed to store different type
values at different times during execution

 Design Issues for unions:
178

© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 422
VU

- What kind of type checking, if any, must be done?
- Should unions be integrated with records?

 Examples:

- FORTRAN
 EQUIVALENCE

- Algol has “discriminated unions”
 Use a hidden tag to maintain the current type
 Tag is implicitly set by assignment
 References are legal only in conformity clauses
 This runtime type selection is a safe method of accessing union
objects

- Pascal
 Both discriminated and non-discriminated unions are used e.g.

type intreal = record tag : Boolean of
 true : (blint : integer);
 false : (blreal : real);
end;

 Problem with Pascal’s design is that type checking is ineffective

 Reasons:
o User can create inconsistent unions (because the tag can be
individually assigned)

 var blurb : intreal;
 x : real;
 blurb.tagg := true; { it is an integer }
 blurb.blint := 47; { ok }
 blurb.tagg := false; { it is a real }
 x := blurb.blreal; { assigns an integer
 to a real }

o The tag is optional!

- Ada
 Discriminated unions are safer than Pascal & Modula-2
 Reasons

o Tag must be present
o It is impossible for the user to create an inconsistent union
(because tag cannot be assigned by itself)
o All assignments to the union must include the tag value)

- C and C++ have free unions (no tags)
 Not part of their records
 No type checking of references

- Java has neither records nor unions but aggregate types can be created
with classes, as in C++

179
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 422
VU

- Unions are potentially unsafe in most languages (except Ada)

Arithmetic Expressions

 Description:

- Arithmetic evaluation was one of the motivations for the development of
the first programming languages
- Arithmetic expressions consist of operators, operands, parentheses, and
function calls
- 15 * (a + b) / log(x)

 Design issues for arithmetic expressions:

- What are the operator precedence rules?

- What are the operator associativity rules?

- What is the order of operand evaluation?

- Are there restrictions on operand evaluation side effects?

- Does the language allow user-defined operator overloading?

- What mode mixing is allowed in expressions?

- Conditional expressions?

180
© Copyright Virtual University of Pakistan

b = a + fun(a);

a=10 fun(a)=5

b=15

Modern Programming Languages Lecture 423
VU

Modern Programming Languages Lecture 43

 Arithmetic Expressions: Operators
- A unary operator has one operand
- A binary operator has two operands
- A ternary operator has three operands

 Arithmetic Expressions: Operator Precedence Rules
- The operator precedence rules for expression evaluation define the order in
which “adjacent” operators of different precedence levels are evaluated
- Typical precedence levels

 parentheses
 unary operators
 ** (if the language supports it)
 *, /
 +, -

 Arithmetic Expressions: Potentials for Side Effects
- Functional side effects: when a function changes a two-way parameter or a
non-local variable
- Problem with functional side effects:

 When a function referenced in an expression alters another operand of
the expression; e.g., for a parameter change:

a = 10;
/* assume that fun changes its parameter */
b = a + fun(a);

181
© Copyright Virtual University of Pakistan

int fun(int &x)
{

x = x + 1;
return x*2;

}

a = 10;
b = a + fun(a);

a=11 fun(a)=22

b=33

a=10 fun(a)=22

b=32

32

33

Modern Programming Languages Lecture 423
VU

 Functional Side Effects
- Two possible solutions to the problem

 Write the language definition to disallow functional side effects
o No two-way parameters in functions
o No non-local references in functions
o Advantage: it works!
o Disadvantage: inflexibility of two-way parameters and non-

local references
- Write the language definition to demand that operand evaluation order be
fixed

 Disadvantage: limits some compiler optimizations

 Operator Overloading
- Use of an operator for more than one purpose is called operator
overloading
- Some overloaded operators are common (e.g. ‘+’ for int and float)
- Some are potential trouble (e.g. ‘*’ in C and C++)

 * is also used for pointers
- Loss of compiler error detection (omission of an operand should be a
detectable error)
- Some loss of readability
- Can be avoided by introduction of new symbols (e.g., Pascal’s div for
integer division)
- C++ and Ada allow user-defined overloaded operators
- Potential problems

 Users can define nonsense operations
 Readability may suffer

 Type Conversion

- Implicit Type Conversion
- Explicit Type Conversion

 Implicit Type Conversions

- A narrowing conversion is one that converts an object to a type that
cannot include all of the values of the original type e.g., float to int
- A widening conversion is one in which an object is converted to a type
that can include at least approximations to all of the values of the original type
e.g., int to float
- A mixed-mode expression is one that has operands of different types
- Coercion is an implicit type conversion
- Disadvantage of coercions:

 They decrease in the type error detection ability of the compiler
- In most languages, all numeric types are coerced in expressions, using
widening conversions
- In Ada, there are virtually no coercions in expressions

182
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 423
VU

 Explicit Type Conversions
- Called casting in C-based language
- Examples

 C: (int) angle
 Ada: Float (sum)

- Note that Ada’s syntax is similar to function calls

 Errors in Expressions
- Causes

 Coercions of operands in expressions
 Inherent limitations of arithmetic e.g., division by zero
 Limitations of computer arithmetic e.g. overflow or underflow

- Division by zero, overflow, and underflow are run-time errors (sometimes
called exceptions)

Relational Expressions

 - Use relational operators and operands of various
 types

 - Evaluate to some boolean representation

 - Operator symbols used vary somewhat among
 different languages (!=, /=, .NE., <>, #)

Boolean Expressions

 - Operands are Boolean and the result is also a Boolean

 - Operators

 FORTRAN 77 FORTRAN 90 C Ada

 AND and && and
 OR or || or
 NOT not ! not
 xor
Boolean Expressions
 One odd characteristic of C’s expressions
 a < b < c

Short Circuit Evaluation

 - A and B

183
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 423
VU

 - A or B

- Example

 index := 1;
 while (index <= length) and
 (LIST[index] <> value) do
 index := index + 1

C, C++, and Java: use short-circuit evaluation for
 the usual Boolean operators (&& and ||), but
 also provide bitwise Boolean operators that are
 not short circuit (& and |)

Ada: programmer can specify either (short-circuit
 is specified with ‘and then’ and ‘or else’)

FORTRAN 77: short circuiting is there, but any side
 affected place must be set to undefined

Problem with Short Circuiting
(a > b) || (b++ / 3)

Short-circuit evaluation exposes the potential
problem of side effects in expressions

184
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

Modern Programming Languages Lecture 44

Control Structure

• Def: A control structure is a control statement and the statements whose execution
it controls

• Levels of Control Flow
1. Within expressions
2. Among program units
3. Among program statements

• Overall Design Question
 What control statements should a language has, beyond selection and pretest logical
loops?

Evolution

 - FORTRAN I control statements were based directly on IBM 704 hardware
 - Much research and argument in the1960s about the issue
 - One important result: It was proven that all flowcharts can be coded with only two-way
selection and pretest logical loops

Selection Statements
Design Issues

1. What is the form and type of the control expression?

2. What is the selectable segment form (single statement, statement sequence, compound
statement)?

3. How should the meaning of nested selectors be specified?

Single-Way Selection Statement

 FORTRAN IF
 - IF (boolean_expr) statement

 Problem
 - Can select only a single statement;
 - To select more, a goto must be used
FORTRAN example:

 IF (.NOT. condition) GOTO 20
 ...
 ...
 20 CONTINUE

185
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 ALGOL 60 if:
 if (boolean_expr) then
 begin
 ...
 end

Two-way Selector

 ALGOL 60 if:

 if (boolean_expr)
 then statement (the then clause)
 else statement (the else clause)

 - The statements could be single or compound

Nested Selectors

Example (Pascal)

 if ... then
 if ... then
 ...
 else ...

 - Which then gets the else?

 - Pascal's rule: else goes with the nearest then

Nested Selectors

ALGOL 60's solution - disallow direct nesting

 if ... then if ... then
 begin begin
 if ... if ... then ...
 then ... end
 else ... else ...
 end

FORTRAN 77, Ada, Modula-2 solution – closing special words

Example (Ada)

 if ... then if ... then
 if ... then if ... then

 else end if

186
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 ... else
 end if ...
 end if end if

- Advantage: flexibility and readability

- Modula-2 uses the same closing special word for all control structures (END)

 - This results in poor readability

Multiple Selection Constructs

Design Issues

1. What is the form and type of the control expression?

2. What segments are selectable (single, compound, sequential)?

3. Is the entire construct encapsulated?

4. Is execution flow through the structure restricted
 to include just a single selectable segment?

5. What is done about un-represented expression
 values?

Early Multiple Selectors

 1. FORTRAN arithmetic IF (a three-way selector)
 - IF (arithmetic expression) N1, N2, N3

 Bad aspects:
 - Not encapsulated
 (selectable segments could be anywhere)
 - Segments require GOTO’s

Modern Multiple Selectors

1. Pascal case (from Hoare's contribution to ALGOL W)

 case expression of
 constant_list_1 : statement_1;
 ...
 constant_list_n : statement_n
 end

Design Choices
 1. Expression is any ordinal type
 (int, boolean, char, enum)

187
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 2. Only one segment can be executed per
 execution of the construct
 3. In Wirth's Pascal, result of an un-represented
 control expression value is undefined
 (In 1984 ISO Standard, it is a runtime error)

 - Many dialects now have otherwise or else
 clause

The C and C++ switch

 switch (expression) {
 constant_expression_1 : statement_1;
 ...
 constant_expression_n : statement_n;
 [default: statement_n+1]
 }

Any number of segments can be executed in one execution of
 the construct (there is no implicit branch at the end of
 selectable segments)

- Trade-off between reliability and flexibility (convenience)

- To avoid it, the programmer must supply a break statement
 for each segment

Ada's case is similar to Pascal's case, except:

 1. Constant lists can include:
 - Subranges e.g., 10..15
 - Boolean OR operators
 e.g. 1..5 | 7 | 15..20

 2. Lists of constants must be exhaustive
 - Often accomplished with others clause
 - This makes it more reliable

- Multiple Selectors can appear as direct extensions
 to two-way selectors, using else-if clauses
 (ALGOL 68, FORTRAN 77, Modula-2, Ada)

Example (Ada)
 if ...
 then ...

elsif ...
 then ...
elsif ...
 then ...

188
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 else ...
end if

- Far more readable than deeply nested if's
- Allows a boolean gate on every selectable group

Iterative Statements

 - The repeated execution of a statement or
 compound statement is accomplished either by
 iteration or recursion; here we look at iteration,
 because recursion is a unit-level control

- General design Issues for iteration control
 statements are:
 1. How is iteration controlled?
 2. Where is the control mechanism in the loop?

Counter-Controlled Loops

Design Issues

 1. What is the type and scope of the loop variable?

 2. What is the value of the loop variable at loop
 termination?

 3. Should it be legal for the loop variable or loop
 parameters to be changed in the loop body,
 and if so, does the change affect loop control?

 4. Should the loop parameters be evaluated only
 once, or once for every iteration?

1. FORTRAN 77 and 90

 - Syntax: DO label var = start, finish [, stepsize]

 - Stepsize can be any value but zero
 - Parameters can be expressions

 - Design choices:
 1. Loop variables can be INTEGER, REAL, or DOUBLE
 2. Loop variable always has its last value
 3. The loop variable cannot be changed in the loop, but
 the parameters can; because they are evaluated
 only once, it does not affect loop control
 4. Loop parameters are evaluated only once

FORTRAN 90’s ‘Other DO’
189

© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 - Syntax:
 [name:] DO variable = initial, terminal [, stepsize]
 …
 END DO [name]

 - Loop variable must be an INTEGER

2. ALGOL 60

- Syntax: for var := <list_of_stuff> do statement
 where <list_of_stuff> can have:
 - List of expressions
 - expression step expression until expression
 - expression while boolean_expression

 for index := 1 step 2 until 50,
 60, 70, 80,
 index + 1 until 100 do

 (index = 1, 3, 5, 7, ..., 49, 60, 70, 80,
 81, 82, ..., 100)

ALGOL 60 Design choices

 1. Control expression can be int or real; its
 scope is whatever it is declared to be

 2. Control variable has its last assigned value after
 loop termination

 3. Parameters are evaluated with every iteration,
 making it very complex and difficult to read

 4.The loop variable cannot be changed in the loop,
 but the parameters can, and when they are, it
 affects loop control

3. Pascal

 - Syntax:
 for variable := initial (to | downto) final do
 statement

 - Design Choices:
 1. Loop variable must be an ordinal type of usual scope
 2. After normal termination, loop variable is undefined
 3. The loop variable cannot be changed in the loop; the
 loop parameters can be changed, but they are

190
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 evaluated just once, so it does not affect loop
 control

4. Ada

 - Syntax:
 for var in [reverse] discrete_range loop
 ...
 end loop

Ada Design choices

 1. Type of the loop var is that of the discrete range;
 its scope is the loop body (it is implicitly declared)
 2. The loop var does not exist outside the loop
 3. The loop var cannot be changed in the loop, but the
 discrete range can; it does not affect loop control
 4. The discrete range is evaluated just once
5. C

 - Syntax:
 for ([expr_1] ; [expr_2] ; [expr_3]) statement

 - The expressions can be whole statements, or even
 statement sequences, with the statements
 separated by commas
 - The value of a multiple-statement expression is
 the value of the last statement in the expression
 e.g.
 for (i = 0, j = 10; j == i; i++) ...

- If the second expression is absent, it is an infinite loop

-C Design Choices

 1. There is no explicit loop variable
 2. Irrelevant
 3. Everything can be changed in the loop
 4. Pretest
 5. The first expression is evaluated once, but the
 other two are evaluated with each iteration

 - This loop statement is the most flexible

6. C++
 - Differs from C in two ways:
 1. The control expression can also be Boolean
 2. The initial expression can include variable
 definitions (scope is from the definition to

191
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 the end of the function in which it is defined)

7. Java
 - Differs from C++ in two ways:
 1. Control expression must be Boolean
 2. Scope of variables defined in the initial
 expression is only the loop body

Logically-Controlled Loops

 - Design Issues
 1. Pre-test or post-test?
 2. Should this be a special case of the counting
 loop statement (or a separate statement)?

Examples

 1. Pascal has separate pretest and post-test
 logical loop statements (while-do and
 repeat-until)

 2. C and C++ also have both, but the control
 expression for the post-test version is treated
 just like in the pretest case (while - do and
 do - while)

 3. Java is like C, except the control expression
 must be Boolean (and the body can only be
 entered at the beginning- Java has no goto)

 4. Ada has a pretest version, but no post-test

 5. FORTRAN 77 and 90 have neither

User-Located Loop Control Mechanisms

- Design issues

 1. Should the conditional be part of the exit?
 2. Should the mechanism be allowed in an already
 controlled loop?
 3. Should control be transferable out of more than
 one loop?

1. C , C++, and Java - break
 - Unconditional; for any loop or switch;
 one level only (Java’s can have a label)
 - There is also a continue statement for
 loops; it skips the remainder of this iteration,

192
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

 but does not exit the loop

 2. FORTRAN 90 - EXIT
 - Unconditional; for any loop, any number of
 levels
 - FORTRAN 90 also has a CYCLE, which has the
 same semantics as C's continue
Examples:

 1. Ada - conditional or unconditional exit;
 for any loop and any number of levels

 for ... loop
 ...
 exit when ...
 ...
 end loop

Example (Ada)

LOOP1:
 while ... loop

 ...
 LOOP2:

for ... loop
 ...
 exit LOOP1 when ..
 ...
 end loop LOOP2;
 ...

end loop LOOP1;

Unconditional Branching

- All classical languages have it

- Problem: readability
 Edsger W. Dijkstra,
-Go To Statement Considered Harmful,
 CACM, Vol. 11, No. 3, March 1968, pp. 147-148
- Some languages do not have them e.g. Modula-2
 and Java
- Advocates: Flexibility
 KNUTH D E, Structured programming with go to
 statements, ACM Computing Surveys 6, 4 (1974)

Conclusion
Choice of control statements beyond selection and
logical pretest loops is a trade-off between language

193
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 42
VU

size and writability!

Connection between control statements and
program verification is intimate

- Verification is impossible with goto’s
- Verification is possible with only selection and
 logical pretest loops
- Verification is relatively simple with only
 guarded commands

194
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 425
VU

Modern Programming Languages Lecture 45

Actual/Formal Parameter Correspondence:

1. Positional
2. Keyword

 e.g. SORT(LIST => A, LENGTH => N);

Default Parameter Values
 procedure SORT(LIST : LIST_TYPE;
 LENGTH : INTEGER := 100);
 ...
 SORT(LIST => A);

Parameters and Parameter Passing

Semantic Models
 - in mode, out mode, in-out mode

Conceptual Models of Transfer

 1. Physically move a value

 2. Move an access path

Implementation Models

 1. Pass-by-value (in mode)

 - Either by physical move or access path

2. Pass-by-result (out mode)

 - Local’s value is passed back to the caller

 - Physical move is usually used

 - Disadvantages: Collision
Example:
procedure sub1(y: int, z: int);
 ...

sub1(x, x);

3. Pass-by-reference (in-out mode)
 i. Actual parameter collisions
 e.g.
 procedure sub1(a: int, b: int);

195
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 425
VU

 ...
 sub1(x, x);

 ii. Array element collisions
 e.g.
 sub1(a[i], a[j]); /* if i = j */

iii. Collision between formals and globals

 Root cause of all of these is: The called subprogram is provided wider access to Non-
locals than is necessary

Type checking parameters

- Now considered very important for reliability

FORTRAN 77 and original C: none

Pascal, Modula-2, FORTRAN 90, Java, and Ada: it is always required

- ANSI C and C++: choice is made by the user

Implementing Parameter Passing

 ALGOL 60 and most of its descendants use the run-time stack

 - Value copied to the stack; references are indirect to the stack

 - Result : same

 - Reference : regardless of form, put the address on the stack

Design Considerations for Parameter Passing

 1. Efficiency
 2. One-way or two-way

 - These two are in conflict with one another!

 Good programming =>
 limited access to variables, which means one-way whenever possible

 Efficiency =>
 pass by reference is fastest way to pass structures of significant size

Concluding Remarks
• Different programming languages for different problems
 Imperative, Declarative, Functional, Object-Oriented, Scripting
• Readability – maintainability

196
© Copyright Virtual University of Pakistan

Modern Programming Languages Lecture 425
VU

• Side effects
• Mainly because of the assignment statement and aliasing
• Reduces readability and causes errors
• Operand evaluation order
• Data types and data sizes
• Static-Dynamic activation records
• Necessary for recursion

http://www.cs.utep.edu/cheon/cs3360/exam/sample/chap7.php

197
© Copyright Virtual University of Pakistan

	Course Objectives
	Introduction and Historical Background (Lecture 1-8)
	Language Evaluation Criterion
	Language Evaluation Criterion
	Ada Programming Language: An Introduction (Lecture 13-17)
	The need for a single standard language was felt in 1975 and the draft requirements were given the code name strawman. Strawman was refined to Woodman and then Tinman in 1976. It was further refined to ironman. At that time proposals were invited for the design of a new language. Out of the 17 proposals received, four were selected and given the code names of green, red, blue, and yellow. Initial designs were submitted in 1978 and red and green short listed on the basis of these designs. Standard requirements were then refined to steelman. The designs were refined further and finally Green was selected in 1979. DoD announced that the language will be called Ada. The 1995 revision of Ada (Ada 95) was developed by a small team led by Tucker Taft. In both cases, the design underwent a public comment period where the designers responded to public comments.

	LISP Programming Language: An Introduction (Lecture 18-21)
	PROLOG - PROgramming in LOGic(Lecture 22-26)
	

 Java Programming Language(Lecture 27-30)
	C# Programming Language (Lecture 31-34)
	PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)
	Modern Programming Languages-JavaScript
	Lecture 38
	Location of Code
	Arrays
	Operators
	Type Conversion
	Control Statements
	Labels and Flow Control
	Modern Programming Languages-JavaScript
	Lecture 39
	Objects
	Two Object Models
	Modern Programming Languages
	Lecture # 40
	Names
	Special Words
	Possible binding times
	Static and Dynamic Binding
	Type Bindings
	Dynamic Type Binding
	Storage Bindings
	Categories of variables by lifetimes
	Explicit Heap Dynamic Variables
	Implicit Heap Dynamic Variables
	Modern Programming Languages Lecture 41
	Type Checking
	Strongly Typed Languages?
	Type Compatibility
	Data Types
	Primitive Data Types
	Character String Types
	Ordinal Types (user defined)
	Four Categories of Arrays (based on subscript binding and binding to storage)
	Modern Programming Languages Lecture 42
	Records-(like structs in C/C++)
	Pointers
	Unions
	Arithmetic Expressions
	Modern Programming Languages Lecture 43
	Modern Programming Languages Lecture 44
	
	1. FORTRAN 77 and 90
	
	2. ALGOL 60
	3. Pascal
	4. Ada
	5. C
	6. C++
	7. Java
	Logically-Controlled Loops
	Examples
	Unconditional Branching
	Conclusion
	Modern Programming Languages Lecture 45
	Parameters and Parameter Passing
	 1. Pass-by-value (in mode)
	2. Pass-by-result (out mode)
	Implementing Parameter Passing
	Design Considerations for Parameter Passing
	Concluding Remarks

